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Abstract

Sufficient conditions are established for ultimate boundedness of solu-
tions of certain nonlinear vector differential equations of third-order. Our
result improves on Tunc’s [C. Tunc, On the stability and boundedness of
solutions of nonlinear vector differential equations of third order].
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1 Introduction

For over four decades much attention have been drawn to the ultimate bound-
edness of solutions of ordinary scaler and vector nonlinear differential equations
of third-order. See [1–6,11–20] and the references cited therein for a comprehen-
sive treatment of the subject. Throughout, the results presented in the book of
Reissig et al. [14], Lyapunov’s second (direct) method has been used as a basic
tool to verify the results established in these works.
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Recently, Tunc [19] discussed the stability and boundedness results of the
nonlinear vector differential equation

. . .
X +Ψ(Ẋ)Ẍ +BẊ + cX = P (t) (1.1)

or its equivalent system form

Ẋ = Y

Ẏ = Z

Ż = −Ψ(Y )Z −BY − cX + P (t),

(1.2)

obtained as usual by setting Ẋ = Y , Ẍ = Z in (1.1), where t ∈ R+ = (0,∞),
X ∈ Rn, c is a positive constant and B is an n× n-constant symmetric matrix,
Ψ is an n×n-continuous symmetric matrix function for the argument displayed
explicitly and the dots indicate differentiation with respect to t, P : R+ → Rn.
It is also assumed that P is continuous for the argument displayed explicitly.
Moreover, the existence and the uniqueness of the solutions of (1.1) will be
assumed (see Picard-Lindelof theorem in Rao [13]). Let J(Ψ(Y )Y |Y ) denote
the linear operator from the vector Ψ(Y )Y to the matrix

J(Ψ(Y )Y |Y ) =

(
∂

∂yj

n∑

k=1

Ψikyk

)
= Ψ(Y ) +

(
n∑

k=1

∂Ψik

∂yj
yk

)
,

(i, j = 1, 2, . . . , n), where (yi, y2, . . . , yn) and (Ψik) are components of Y and
Ψ, respectively. Besides, it is also assumed as basic throughout this paper that
J(Ψ(Y )Y |Y ) exists, symmetric and continuous. Finally, it is assumed that
n× n-symmetric matrix B and n× n-continuous symmetric matrix function Ψ
commute with each other. Our motivation comes from the paper of Tunc [19],
who obtained boundedness criteria for the solutions of (1.1). The boundedness
criteria obtained by Tunc [19] is of the type in which the bounding constant
depends on the solution in question (see [17]). This is because the Lyapunov
function used in the proof of the boundedness result is not complete (see [4,12]).
Our aim in this paper is to further study the boundedness of solutions of Eq.

(1.1). In the next section, we establish a criteria for the ultimate boundedness
of solutions of Eq. (1.1), which improves on Tunc [19].

2 Main results

Before stating our main result, we give a well-known algebraic result required
in the proof.

Lemma 1 Let A be a real symmetric n× n-matrix. Then for any X ∈ Rn,

δa‖X‖2 ≤ 〈AX,X〉 ≤ Δa‖X‖2,

where δa and Δa are, respectively, the least and greatest eigenvalues of the ma-
trix A.
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Proof See [20].

Lemma 2
d

dt

∫ 1

0

〈σcΨ(σY )Y, Y 〉dσ = 〈cΨ(Y )Y, Z〉.

Proof See [19].

Theorem 1 In addition to the basic assumptions imposed on Ψ(Y ), B and c
that appeared in the system (1.2), we suppose that there exist positive constants
δ0, ε, a0, a1, b0, b1 such that the following conditions are satisfied,

(i) n× n−symmetric matrices B and Ψ commute with each other and

a0b0 − c > 0, b0 ≤ λi(B) ≤ b1, a0 + ε ≤ λi(Ψ(Y )) ≤ a1

for all Y ∈ Rn,

(ii) ‖P (t)‖ ≤ δ0 for all t ≥ 0.

Then, there exists a constant d > 0 such that any solution (X(t), Y (t), Z(t)) of
the system (1.2) determined by

X(0) = X0, Y (0) = Y0, Z(0) = Z0

ultimately satisfies

‖X(t)‖2 + ‖Y (t)‖2 + ‖Z(t)‖2 ≤ d

for all t ∈ R+.

Proof Our main tool in the proof of the result is the Lyapunov function
V = V (X,Y, Z) defined for any X,Y, Z ∈ Rn, by

2V = a0c〈X,X〉+ a0

∫ 1

0

〈σΨ(σY )Y, Y 〉dσ + αa0b
2
0〈X,X〉

+ 〈BY, Y 〉+ 〈Z,Z〉+ 2αb0a
2
0〈X,Y 〉+ 2αa0b0〈X,Z〉

+ 2a0〈Y, Z〉+ 2c〈X,Y 〉 − αa0b0〈Y, Y 〉, (2.1)

where

0 < α < min

{
1

a0
,
a0
b0

,
a0b0 − c

a0b0[a0 + c−1(b1 − b0)2]
,

c

a0b0(a1 − a0)

}
, (2.2)

and a1 > a0, b1 
= b0. This function, after re-arrangements, can be rewritten as

2V = a0b0‖a−
1
2

0 Y + a
− 1

2
0 b−1

0 cX‖2 + ‖Z + a0Y + αa0b0X‖2

+ a0

∫ 1

0

〈σΨ(σY )Y, Y 〉dσ − 2a20〈Y, Y 〉+ 〈(B − b0I)Y, Y 〉

+ αa0b
2
0(1− αa0)〈X,X〉+ c(a0 − cb−1

0 )〈X,X〉+ a0(a0 − αb0)〈Y, Y 〉. (2.3)
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We can now verify the properties of this function. First, it is clear from (2.3)
that

V (0, 0, 0) = 0.

Next, in view of the assumptions of the Theorem and Lemma 1, respectively, it
follows that

a0

∫ 1

0

〈σΨ(σY )Y, Y 〉dσ−2a20〈Y, Y 〉 = a0

∫ 1

0

〈σ(Ψ(σY )−a0I)Y, Y 〉dσ ≥ εa0‖Y ‖2,

and 〈(B − b0I)Y, Y 〉 ≥ 0. Also, in addition,

αa0b
2
0(1− αa0)〈X,X〉 = μ1‖X‖2, c(a0 − cb−1

0 )〈X,X〉 = μ2‖X‖2,

and

a0(a0 − αb0)〈Y, Y 〉 = μ3‖Y ‖2,

where

μ1 = αa0b
2
0(1 − αa0) > 0, μ2 = c(a0 − cb−1

0 ) > 0

and

μ3 = a0(a0 − αb0) > 0

in view of (2.2).
Hence one can get from (2.3) that

V ≥ 1

2
a0b0‖a−

1
2

0 Y + a
− 1

2
0 b−1

0 cX‖2 + ‖Z + a0Y + αa0b0X‖2

+
1

2
(μ1 + μ2)‖X‖2 + 1

2
μ3‖Y ‖2 + 1

2
a0ε‖Z‖2

≥ 1

2
(μ1 + μ2)‖X‖2 + 1

2
μ3‖Y ‖2 + 1

2
a0ε‖Z‖2. (2.4)

Thus, it is evident from the terms contained in (2.4) that there exists d1, suffi-
ciently small enough, such that

V ≥ d1(‖X‖2 + ‖Y ‖2 + ‖Z‖2) (2.5)

where d1 = 1
2 min{μ1 + μ2, μ3, a0ε}.

Now, let (X,Y, Z) = (X(t), Y (t), Z(t)) be any solution of differential system
(1.2). Differentiating the function V = V (X(t), Y (t), Z(t)) with respect to t
along system (1.2) and using Lemma 2, we have

V̇ = −αa0b0c〈X,X〉 − 〈(a0B − cI − αa20b0I)Y, Y 〉
− 〈(Ψ(Y )− a0I)Z,Z〉 − αa0b0〈(Ψ(Y )− a0I)X,Z〉
− αa0b0〈(B − b0I)X,Y 〉+ 〈αa0b0X + a0Y + Z, P (t)〉. (2.5)
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This we can rewrite as

V̇ = −1

2
αa0b0c〈X,X〉 − 〈(a0B − cI − αa20b0I)Y, Y 〉

− 〈(Ψ(Y )− a0I)Z,Z〉+ 〈αa0b0X + a0Y + Z, P (t)〉

− 1

4
αa0b0 (〈cX,X〉+ 4〈(Ψ(Y )− a0I)X,Z〉)

− 1

4
αa0b0c (〈cX,X〉+ 4〈(B − b0I)X,Y 〉) .

Since

〈cX,X〉+ 4〈(Ψ(Y )− a0I)X,Z〉
= ‖c 1

2X + 2c−
1
2 (Ψ(Y )− a0I)Z‖2 − ‖2c− 1

2 (Ψ(Y )− a0I)Z‖2

and

〈cX,X〉+ 4〈(B − b0I)X,Y 〉
= ‖c 1

2X + 2c−
1
2 (B − b0I)Y ‖2 − ‖2c− 1

2 (B − b0I)Y ‖2,

it follows that

V̇ = −1

2
αa0b0c〈X,X〉 − 〈(a0B − cI − αa20b0I)Y, Y 〉

− 〈(Ψ(Y )− a0I)Z,Z〉+ 1

4
αa0b0‖2c−

1
2 (B − b0I)Y ‖2

+
1

4
αa0b0‖2c−

1
2 (Ψ(Y )− a0I)Z‖2 + 〈αa0b0X + a0Y + Z, P (t)〉.

Using the fact that

‖2c− 1
2 (B − b0I)Y ‖2 = 4〈c−1(B − b0I)Y, (B − b0I)Y 〉

and

‖2c− 1
2 (Ψ(Y )− a0I)Z‖2 = 4〈c−1(Ψ(Y )− a0I)Z, (Ψ(Y )− a0I)Z〉,

we have that

V̇ = −1

2
αa0b0c〈X,X〉 −

〈(
a0B − cI − αa0b0[a0I + c−1(B − b0)

2]
)
Y, Y

〉

−
〈(
(Ψ(Y )− a0I)[I − αa0b0c

−1(Ψ(Y )− a0I)]
)
Z,Z

〉
+〈αa0b0X+a0Y +Z, P (t)〉.

Next, in view of the assumptions of Theorem and Lemma 1, respectively, it
follows that

V̇ ≤ −1

2
αa0b0c‖X‖2 −

(
(a0b0 − c)− αa0b0[a0 + c−1(b1 − b0)

2]
)
‖Y ‖2

− ε
(
1− αa0b0c

−1(a1 − a0)
)
‖Z‖2 + (αa0b0‖X‖+ a0‖Y ‖+ ‖Z‖)‖P (t)‖

≤ −2d2(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + δ0(αa0b0‖X‖+ a0‖Y ‖+ ‖Z‖),
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where

d2 =
1

2
min

{
αa0b0c; 2[(a0b0 − c)− αa0b0(a0 + c−1(b1 − b0)

2)];

2ε[1− αa0b0c
−1(a1 − a0)]

}
> 0

by (2.2). Furthermore,

V̇ ≤ −2d2(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + d3(‖X‖+ ‖Y ‖+ ‖Z‖)

where d3 = δ0 max{1, a0, αa0b0}. Thus, by Schwarz’s inequality,

V̇ ≤ −2d2(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + d4(‖X‖2 + ‖Y ‖2 + ‖Z‖2) 1
2

where d4 = 3
1
2 d3.

If we choose

(‖X‖2 + ‖Y ‖2 + ‖Z‖2) 1
2 ≥ d5 = D4d

−1
2 ,

we have that
V̇ ≤ −d2(‖X‖2 + ‖Y ‖2 + ‖Z‖2). (2.7)

Thus, there exists d6 such that

V̇ ≤ −1 if ‖X‖2 + ‖Y ‖2 + ‖Z‖2 ≥ d26.

The remainder of the proof of Theorem may now be obtained by use of the
estimates (2.5) and (2.7) and an obvious adaptation of the Yoshizawa type
reasoning in [12]. �
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