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Abstract

In a 0-distributive lattice sufficient conditions for an α-ideal to be an
annihilator ideal and prime ideal to be an α-ideal are given. Also it is
proved that the images and the inverse images of α-ideals are α-ideals
under annihilator preserving homomorphisms.
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1 Introduction

Varlet [7] introduced 0-distributive lattices as a generalization of distributive
lattices and pseudo-complemented lattices. The theory of 0-distributive lattices
was further studied by Balasubramani, Venkatanarsimhan [1,2], C. Jayaram
[5], and Pawar and Mane [6]. W. H. Cornish [3] introduced and studied the
properties of α-ideals in distributive lattices. Generalization of the concept of
α-ideals in 0-distributive lattices is carried out by C. Jayaram [5]. Additional
properties of α-ideals in 0-distributive lattices were obtained by Pawar and Mane
[6] which generalize the results of Cornish [3].
In this paper a joint study of annihilator ideals and α-ideals in 0-distributive

lattices is continued to supplement the results of Jayaram [5] and Pawar, Mane
[6]. We prove that the image and the inverse image of an α-ideal are α-ideals un-
der annihilator preserving homomorphism of a 0-distributive lattice. Further it
is proved that in a 0-distributive lattice the set of all prime ideals is an antichain
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if every prime ideal is an annihilator ideal. This result facilitates us to charac-
terize finite Boolean algebras. Several properties of α-ideals in a 0-distributive
quasi-complemented lattice are studied. Necessary and sufficient conditions for
the set of all α-ideals of a 0-distributive lattice to be semi-complemented are
furnished.

2 Preliminaries

For basic concepts in lattice theory, we refer to Grätzer [4]. Throughout this
paper by a lattice L = 〈L,∧,∨〉 we mean a bounded lattice with the least element
0 and the greatest element 1. L is said to be 0-distributive if a ∧ b = 0 and
a∧ c = 0 imply a∧ (b ∨ c) = 0 for all a, b, c in L. For any non-empty subset A of
L define A∗ = {x ∈ L | x∧a = 0 for each a ∈ A}. A∗ is called the annihilator of
A. When A = {x}, A∗ = {x}∗ = (x]∗, where (x] is the principal ideal generated
by x ∈ L, i.e. (x] = {y ∈ L | y ≤ x}. Note that L is 0-distributive if and only if
for any non-empty subset A of L, A∗is an ideal of L. An ideal I of L is called an
annihilator ideal if I = A∗ for some non-empty subset A of L, or equivalently if
I = I∗∗. An element d ∈ L is called dense if (d]∗ = (0]. An ideal I of L is called
a dense ideal if I∗ = (0]. We denote the collection of all dense elements by D.
An ideal I of L is called an α-ideal if (x]∗∗ ⊆ I for every x ∈ I. We denote the
set of all α-ideals of L by Iα (L). L is pseudo-complemented if for every a ∈ L
there exists a∗ ∈ L such that (a]∗ = (a∗]. L is called quasi-complemented if
for any a ∈ L there is b ∈ L such that a ∧ b = 0 and (a ∨ b]

∗
= {0}. An ideal

J 	= (0] of L is a semi-complement of an ideal I of L if I ∩ J = (0]. A family
K of ideals of L is said to be semi complemented if every element of K has a
semi-complement in it. L is said to be disjunctive if for all a < b there is c ∈ L
such that a ∧ c = 0 but b ∧ c 	= 0. By a homomorphism we mean a 0-1 lattice
homomorphism. For an ideal I of L, we define

Ie =
{
x ∈ L

∣∣ (a]∗ ⊆ (x]∗ for some a ∈ I
}
.

Note that Ie coincides with I ′ =
{
x ∈ L

∣∣ x ∈ (a]∗∗ for some a ∈ I
}
defined by

Jayram [5].

In sequel, we need the following results:

Result 1 Every annihilator ideal in L is an α-ideal.

Result 2 [7] A lattice L is quasi-complemented if for any x ∈ L there exists
y ∈ L such that (x]∗∗ = (y]∗.

Result 3 [5] For any ideal I in L the set

Ie = {x ∈ L
∣∣(a]∗ ⊆ (x]∗ for some a ∈ I}

is the smallest α-ideal containing I and an ideal I in L is an α-ideal if and only
if I = Ie.

Result 4 L is 0-distributive if and only if

(a ∨ b]∗ = (a]∗ ∩ (b]∗ for all a, b ∈ L.



α-ideals and annihilator ideals in 0-distributive lattices 65

Result 5 [6] For any ideal I in a 0-distributive lattice L, the following are
equivalent:

1. I is an α-ideal.

2. I = ∪x∈L(x]
∗∗.

3. For any x, y in L, (x]∗ = (y]∗ and x ∈ I ⇒ y ∈ I.

Result 6 [7] L is a 0-distributive lattice if and only if the set I(L) of all ideals
of L forms a pseudo-complemented lattice.

Result 7 [4] Let 〈L,∧,∨〉 be a pseudo-complemented lattice and

S(L) =
{
a ∈ L

∣∣ a = a∗∗
}
.

Then 〈S(L),,�〉 forms a Boolean algebra, where for a, b ∈ S(L) we have

a  b = a ∧ b and a � b = (a∗ ∧ b∗)∗ .

Result 8 Any 0-distributive and disjunctive lattice is distributive.

Result 9 [4] In a distributive lattice L, if a < b, then there exists a prime ideal
P containing a but not b.

Result 10 [5] Let I be an α-ideal of a 0-distributive lattice L and S be a meet
sub-semilattice of L such that I ∩ S = ∅. Then there exists a prime α-ideal P
of L such that I ⊆ P and P ∩ S = ∅.
Result 11 [4] (Nachbin’s Theorem) Let L be a bounded distributive lattice. L is
a Boolean lattice if and only if ℘, the set of all prime ideals of L, is an antichain.

Result 12 [4] If f : L1 → L2 is a 0-1 lattice homomorphism, then

1. For any ideal I of L1, f(I) is an ideal of L2.

2. For any ideal J of L2, f−1(J) is an ideal of L1.

3. Ker f =
{
x ∈ L1

∣∣ f(x) = 0′
}
is an ideal of L1 where 0′ is the least element

of L2.

3 α-ideals and annihilator ideals

Throughout this section L denotes a bounded 0 – distributive lattice and D be
the set of all dense elements of L.
We begin with the following result.

Theorem 3.1 Let S be any non-empty subset of L which is closed under ∧
operation. Define,

I =
{
x ∈ L

∣∣ x ∧ y = 0 for some y ∈ S
}
.

Then I is an α-ideal of L.
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Proof Obviously 0 ∈ I. If x1 ≤ x2 in L and x2 ∈ I then x1 ∈ I.
Now, let x1, x2 ∈ I. Then x1 ∧ s1 = 0 and x2 ∧ s2 = 0 for some s1, s2 ∈ S.

Hence x1 ∧ (s1 ∧ s2) = 0 and x2 ∧ (s1 ∧ s2) = 0 imply (x1 ∨ x2) ∧ (s1 ∧ s2) = 0
(since L is 0-distributive). As s1∧s2 ∈ S, we get x1∨x2 ∈ I. Thus I is an ideal
of L. Let x ∈ I and y ∈ (x]∗∗. Clearly x ∈ I implies x ∧ s = 0 for some s ∈ S.
But then s ∈ (x]∗ and hence, y∧s = 0. This shows that y ∈ I and consequently
(x]∗∗ ⊆ I. Hence I is an α-ideal of L. �

From Theorem 3.1, the result of Pawar and Mane ([6], Theorem 3) follows
as a corollary.

Corollary 3.2 For any filter F in L,

O(F ) =
{
x ∈ L

∣∣ x ∧ y = 0 for some y ∈ F
}

is an α-ideal of L.

An ideal I of L is called a 0-ideal if I = O(F ) for some filter F [6]. Hence
we get

Corollary 3.3 Every 0-ideal of L is an α-ideal of L.

Every minimal prime ideal in L is an α-ideal ([6], Theorem 1) but not ev-
ery prime ideal in L is necessarily an α-ideal. For this consider the following
example:

Consider the lattice L = {0, a, b, c, d, e, 1} whose Hasse diagram is as in Fig.
1. The ideal (e] is a prime ideal but not an α-ideal. For d ∈ (e], (d]∗∗ = L � (e].

0

a

b
c

d

e

1

L

Fig. 1

Sufficient condition for a prime ideal in L to be an α-ideal is given in the
following theorem.

Theorem 3.4 If a prime ideal P of L is non-dense, then P is an α-ideal.
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Proof By assumption, P ∗ 	= (0]. Hence there exists x ∈ P ∗ such that x 	= 0.
But then (x]∗ ⊇ P ∗∗ gives (x]∗ ⊇ P as P ⊆ P ∗∗. Further if t ∈ (x]∗, then
t∧ x = 0 ∈ P . But as P is a prime ideal, t ∈ P (since P ∩P ∗ = (0] =⇒ x /∈ P ).
But this shows that (x]∗ ⊆ P . Combining both the inclusions, we get P = (x]∗.
Hence P is an annihilator ideal. By Result 1, P is an α-ideal. �

A sufficient condition for a 0-distributive lattice to be quasi-complemented
is given in the following theorem.

Theorem 3.5 If no proper α-ideal of L is dense, then L is quasi-complemented.

Proof Let x ∈ L and put I = (x]∗ ∨ (x]∗∗. Then Ie is an α-ideal in L (by
Result 3). Further, (x]∗ ⊆ I ⊆ Ie, we get (Ie)∗ ⊆ (x]∗∗ and (x]∗∗ ⊆ I ⊆ Ie

imply (Ie)∗ ⊆ (x]∗. Hence (Ie)∗ ⊆ (x]∗ ∩ (x]∗∗ = (0]. Therefore Ie is a dense
α-ideal in L. By the assumption Ie = L. As D 	= ∅, there exists d ∈ D such
that d ∈ Ie . There exists t ∈ I such that (t]∗ ⊆ (d]∗ = (0] and hence (t]∗ = (0].
As t ∈ I = (x]∗ ∨ (x]∗∗, we have t ≤ a∨ b for some a ∈ (x]∗ and b ∈ (x]∗∗. Hence
a∧ b = 0. Further (a ∨ b]∗ ⊆ (t]∗ = (0] gives (a]∗ ∩ (b]∗ = (0] (see Result 4) and
hence (a]∗ ⊆ (b]∗∗. As b ∈ (x]∗∗, we get (b]∗∗ ⊆ {(x]∗∗}∗∗ = (x]∗∗. Thus we have
(a]∗ ⊆ (x]∗∗. At the same time a ∈ (x]∗ gives (a]∗ ⊇ (x]∗∗. Combining both the
inclusions we get (a]∗ = (x]∗∗. Thus for any x ∈ L, there exists a ∈ L such that
(a]∗ = (x]∗∗. Hence L is quasi-complemented (by Result 2). �

Consider the 0-distributive lattice L = {0, a, b, c, 1} whose Hasse diagram is
as in Fig. 2. All α-ideals of L are principal ideals. Note that not every principal
ideal in a 0-distributive lattice is an α-ideal, e.g. (a].

0

a

b
c

1

L

Fig. 2

Every finite 0-distributive lattice is both quasi-complemented and pseudo-
complemented. This follows by the following theorem.

Theorem 3.6 Let every α-ideal in L be a principal ideal. Then L is both
quasi-complemented and pseudo-complemented.

Proof Let x ∈ L. Then (x]∗ is an α-ideal in L (by Result 1). By assumption,
(x]∗ = (a] for some a ∈ L. Then x∗ = a. Therefore L is pseudo-complemented.
Further (x]∗∗ = (a]∗ shows that L is quasi-complemented (by Result 2). �
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Theorem 3.7 If L is a quasi-complemented lattice and if a prime ideal P of
L contains no dense element, then P is an α-ideal.

Proof Let (a]∗ = (b]∗ and a ∈ P for some a, b ∈ L. As L is quasi-complemented,
there exists x ∈ L such that (a]∗∗ = (x]∗ (by Result 2). Hence a∧x = 0. Further

(a ∨ x]∗ = (a]∗ ∩ (x]∗ (by Result 4)

= (a]∗ ∩ (a]∗∗ = (0].

This implies a∨x ∈ D. As P ∩D = ∅, a∨x /∈ P . We have x /∈ P due to a ∈ P .
Clearly x ∈ (a]∗ implies x ∈ (b]∗ and hence b ∧ x = 0. As b ∧ x ∈ P and x /∈ P
we get b ∈ P . Thus given (a]∗ = (b]∗ and a ∈ P we conclude b ∈ P . Finally, P
is an α-ideal (by Result 5). �

Corollary 3.8 If L is a quasi-complemented lattice such that no proper α-ideal
of L is a dense ideal, then every prime dense ideal of L contains a dense element.

Proof Let P be a prime dense ideal of L. Assume P ∩ D = ∅. Then by
Theorem 3.7, P is an α-ideal. As P is a proper α-ideal, by assumption, P is
non-dense, which is a contradiction. Hence P ∩ D 	= ∅ and the result follows.

�

In L, every annihilator ideal is an α-ideal but not conversely. A sufficient
condition for an α-ideal to be an annihilator ideal is given in the following
theorem.

Theorem 3.9 If every dense ideal in L contains a dense element, then every
α-ideal in L is an annihilator ideal.

Proof Let I be an α-ideal of L. Clearly I ⊆ I ∨ I∗ gives (I ∨ I∗)∗ ⊆ I∗ and
I∗ ⊆ I ∨ I∗ yields (I ∨ I∗)∗ ⊆ I∗∗. Hence (I ∨ I∗)∗ ⊆ I∗ ∩ I∗∗ = (0] showing
that (I ∨ I∗) is a dense ideal of L. By hypothesis, (I ∨ I∗) ∩ D 	= φ. Let
d ∈ (I ∨ I∗) ∩D. As d ∈ I ∨ I∗ we have d ≤ a ∨ b for some a ∈ I and b ∈ I∗.
Hence by Result 4, (a]∗ ∩ (b]∗ ⊆ (d]

∗
= (0] gives (b]∗ ⊆ (a]∗∗. Let x ∈ I∗∗. Then

b ∧ x = 0 as b ∈ I∗. Thus x ∈ (b]∗ ⊆ (a]∗∗. As a ∈ I and I is an α-ideal, we get
(a]∗∗ ⊆ I. But then x ∈ I shows that I∗∗ ⊆ I. But as I ⊆ I∗∗ always holds, we
get I = I∗∗ and the result follows. �

Though an α-ideal of L needs not be an annihilator ideal, there are some
0-distributive lattices in which every α-ideal is an annihilator ideal.
In a 0-distributive lattice L whose Hasse diagram is as in Fig. 2, the α-ideals

are (0] , (b], (c] and (1] = L. Each of them is an annihilator ideal.
The set Iα (L) of all α-ideals of L forms a complete distributive lattice with

(0] as the least element and L as the greatest element and the set theoretic
intersection as the infimum. The supremum of I, J ∈ Iα(L) is given by I ⊕
J = (I ∨ J)

e (see [4]). As L is a 0-distributive lattice, the set I (L) of all
ideals of L forms a pseudo-complemented lattice (see Result 6). Hence the set
{I ∈ I(L)

∣∣ I = I∗∗} forms a Boolean algebra (by Result 7). But I = I∗∗ if
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and only if I is an annihilator ideal of L. Thus the set Io (L) of all annihilator
ideals of L forms a Boolean algebra. For a 0-distributive lattice in which every
α-ideal is an annihilator ideal we have the set Iα (L) of all α-ideals of L forms
a complete Boolean algebra.
We know that L∗ = (0] . Hence L is always a dense ideal of L. But L needs

not be the unique dense ideal of L. For this consider the following example.

Consider the 0-distributive lattice L = {0, a, b, c, d, e, 1} whose Hasse dia-
gram is in Fig. 3. Here (a]∗ = (b]∗ = (c]∗ = (d]∗ = (e]∗ = (0]. Thus (a], (b], (c],
(d], (e] are all proper dense ideals of L.

0

c

d

e

a

b

1

L

Fig. 3

Theorem 3.10 If the lattice Iα(L) is semi complemented, then L is the only
dense α-ideal in L.

Proof Obviously, L ∈ Iα (L) as L∗ = (0] and (0]∗ = L. Suppose that there
exists a proper α-ideal I of L such that I∗ = (0]. By assumption there exists
J ∈ Iα(L), J 	= (0] such that I∩J = (0]. But then J ⊆ I∗ = (0] implies J = (0],
which is a contradiction. Hence L is the only dense, α-ideal of L. �

Remark 1 Not every ideal has to be an α-ideal in a 0-distributive lattice.
Indeed, consider the 0-distributive lattice L = {0, a, b, c, 1} whose Hasse diagram
is given in Fig. 2. Let I = (a] = {0, a}. Then I is an ideal of L. Now for a ∈ I,
(a]∗∗ = {0, a, b} � I. Hence I = (a] is not an α-ideal. We know that L is
disjunctive if and only if (a]∗ = (b]∗ gives a = b. Hence if L is a disjunctive
lattice, then every ideal in L is an α-ideal.

Remark 2 In a bounded distributive lattice, not every ideal has to be an α-
ideal. For this consider the following example: The set L = {1, 2, 4, 5, 10, 20}
with respect to divisibility is a distributive lattice. The ideal (2] = {1, 2} is not
an α-ideal of L. The Hasse diagram of L is given in Fig. 4.
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1

5

10

20

4

2

L

Fig. 4

Under the condition of disjunctivity in L we have

Theorem 3.11 Let L be a bounded distributive lattice. L is disjunctive if and
only if every ideal in L is an α-ideal.

Proof (⇒) In a 0-distributive, disjunctive lattice, every ideal is an α-ideal and
any distributive lattice with 0 is a 0-distributive lattice. Hence the implication
follows.

(⇐) Let every ideal in a distributive lattice L be an α-ideal. We prove that
L is disjunctive. Let x, y ∈ L be such that (x]∗ = (y]

∗ and x 	= y. As L is
distributive, there is a prime ideal P containing exactly one of them. Assume
that y ∈ P . As (x]∗ = (y]∗ and y ∈ P imply x ∈ P , since P is an α-ideal,
which is a contradiction. Hence (x]∗ = (y]

∗ gives x = y and shows that L is
disjunctive. �

From the proof of Theorem 3.11, we immediately get

Corollary 3.12 Let L be a bounded distributive lattice. Then the following
statements are equivalent:

1. L is disjunctive.

2. Every ideal of L is an α-ideal.

3. Every prime ideal of L is an α-ideal.

Theorem 3.13 If any proper α-ideal of L is non dense, then any dense ideal
of L contains a dense element.

Proof Let I be a dense ideal of L, i.e. I∗ = (0]. We have I ⊆ Ie by Result 3.
Hence (Ie)∗ ⊆ I∗ = (0] imply (Ie)

∗
= (0]. Let (Ie) ∩D = ∅. Since Ie is an

α-ideal (by Result 3), there is a prime α-ideal P such that Ie ⊆ P and P ∩D = ∅
(by Result 10). As P is a proper α-ideal, by assumption, P ∗ 	= (0]. But Ie ⊆ P
yields P ∗ ⊆ (Ie)∗ = (0]. Thus P ∗ = (0], which is a contradiction. Therefore
(Ie)∩D 	= ∅. Let d ∈ (Ie) ∩D. Then d ∈ (Ie) gives the existence of a ∈ I such
that (a]∗ ⊆ (d]

∗
= (0]. Hence a ∈ I ∩D and consequently I ∩D 	= ∅. �

Combining the above results we get
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Theorem 3.14 The following statements are equivalent in L:

1. I∗ 	= (0] for any proper α-ideal I of L.

2. I ∩D 	= ∅ for any dense ideal I of L.
3. Every α-ideal is an annihilator ideal.

4. Iα(L) is semi-complemented.

5. Iα(L) has a unique dense element.

Further any of the above conditions imply that L is quasi-complemented.

In the following theorem we give a sufficient condition for the collection of
all prime ideals of L to be an antichain.

Theorem 3.15 Let L be a 0-distributive lattice in which every prime ideal is
an annihilator ideal. Then ℘, the collection of all prime ideals of L, is an
antichain.

Proof Let P,Q ∈ ℘ be such that P ⊂ Q. Choose q ∈ Q \P and x ∈ Q∗. Then
x ∧ q = 0 ∈ P . As P is a prime ideal and q /∈ P , we get x ∈ P . Thus Q∗ ⊆ P .
P ⊂ Q implies Q∗ ⊆ P ∗. Thus Q∗ ⊆ P ∩ P ∗ and so Q∗∗ = L. By assumption,
Q∗∗ = Q, thus Q = L , which is a contradiction, as Q is a proper ideal. Hence
no two of prime ideals are comparable. �

Corollary 3.16 A bounded distributive lattice L is a Boolean lattice if every
prime ideal in L is an annihilator ideal.

Proof By Theorem 3.15, the collection ℘ of all prime ideals of L is an antichain
and hence by Nachbin’s Theorem (Result 11), L is a Boolean lattice. �

If I is an ideal in a finite Boolean lattice L, then I = (x] for some x ∈ L.
Hence I∗ = (x′], where x′ denotes the complement of x in L. Therefore I∗∗ =
(x′′] = (x] = I. Thus every ideal in a finite Boolean lattice is an annihilator
ideal. Hence we have

Theorem 3.17 For a finite distributive lattice L the following statements are
equivalent:

1. Every ideal in L is an annihilator ideal.

2. Every prime ideal is an annihilator ideal.

3. ℘ is an antichain.

4. L is a Boolean lattice.
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4 Annihilator preserving homomorphisms and α-ideals

Throughout this section L and L′ denote bounded 0-distributive lattices with
the least elements 0 and 0′ respectively and f : L → L′ denotes a 0-1 lattice
homomorphism. f is called an annihilator preserving if f (A∗) = {f (A)}∗
for any (0] ⊂ A ⊂ L. We say that f−1 preserves annihilators if f−1 (B∗) ={
f−1 (B)

}∗
for any (0′] ⊂ B ⊂ L′.

Theorem 4.1 Let f : L → L′ be a homomorphism. Then we have:

1. If f is an annihilator preserving epimorphism, then for every annihilator
ideal A of L, f(A) is an annihilator ideal of L′.

2. If f−1 preserves annihilators, then for every annihilator ideal B of L′,
f−1(B) is an annihilator ideal of L.

Proof (1) Let A be an annihilator ideal of L, i.e. A∗∗ = A. By Result 12, f (A)
is an ideal of L′. As f is annihilator preserving, {f(A)}∗∗ = f (A∗∗) = f(A).
This shows that f(A) is an annihilator ideal of L′.
(2) Let B be an annihilator ideal of L′. Hence B∗∗ = B. By Result 12,

f−1(B) is an ideal of L. Since f−1 preserves annihilators, we get

{
f−1(B)

}∗∗
= f−1 (B∗∗) = f−1(B).

This proves f−1(B) is an annihilator ideal of L. �

Corollary 4.2 If f : L → L′ is a homomorphism such that f−1 preserves the
annihilators, then Ker f is an annihilator ideal and hence an α-ideal in L.

Proof Ker f = {x ∈ L | f (x) = 0′} where 0′ is the least element in L′. Hence
Ker f = f−1 ((0′]). As (0′] is an annihilator ideal in L′, by Theorem 4.1, Ker f
is an annihilator ideal in L and hence an α-ideal in L (by Result 1). �

Theorem 4.3 Let f : L → L′ be an epimorphism. If Ker f = {0}, then f is
annihilator preserving and f−1 preserves annihilators.

Proof (1) We prove that f is an annihilator preserving map.
Let (0] ⊂ A ⊂ L. Then we have f (A∗) ⊆ (f (A))

∗. Let x ∈ (f (A))
∗ ⊆ L′.

As f is onto, there exists y ∈ L such that f (y) = x ∈ (f(A))∗

=⇒ f(y) ∧ f(a) = 0′ for all a ∈ A
=⇒ f(y ∧ a) = 0′

=⇒ y ∧ a ∈ Ker f = {0}
=⇒ y ∧ a = 0 for all a ∈ A
=⇒ y ∈ A∗

=⇒ f(y) ∈ f (A∗) i.e. x ∈ f (A∗).

Hence (f (A))
∗ ⊆ f (A∗). Combining both the inclusions we get f (A∗) =

(f (A))
∗. This proves that f is annihilator preserving.
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(2) We prove that f−1 preserves annihilators.
Let (0] ⊂ A ⊂ L′ and x ∈

{
f−1 (A)

}∗
. Then x ∧ a = 0 for all a ∈ f−1 (A).

=⇒ x ∧ a = 0 for all f (a) ∈ A
=⇒ f (x) ∧ f (a) = 0′ for all f (a) ∈ A
=⇒ f (x) ∈ A∗

=⇒ x ∈ f−1 (A∗)

Hence
{
f−1 (A)

}∗ ⊆ f−1 (A∗).

Suppose x ∈ f−1 (A∗) and a ∈ f−1 (A). Then f (x) ∈ A∗ and f (a) ∈ A.
Hence f (x)∧f (a) = 0′ gives f (x ∧ a) = 0′. Thus x∧a ∈ Ker f = {0}. Therefore
x∧a = 0, for all a ∈ f−1 (A). Thus x ∈

{
f−1 (A)

}∗
. This shows that

{
f−1 (A)

}∗

⊆ f−1 (A∗). Combining the two inclusions we get f−1 (A∗) =
{
f−1 (A)

}∗
. �

Theorem 4.4 Let f : L → L′ be an annihilator preserving epimorphism. If
Ker f = {0}, then we have:

A∗ = B∗ if and only if {f(A)}∗ = {f(B)}∗

for any non-empty subsets A,B of L.

Proof Assume that A∗ = B∗. Then clearly f (A∗) = f (B∗). Since f is an
annihilator preserving we get {f (A)}∗ = {f (B)}∗.
Conversely, suppose {f (A)}∗ = {f (B)}∗. Let x ∈ A∗. Then x ∧ a = 0 for

all a ∈ A.
=⇒ f (x ∧ a) = 0′ for all a ∈ A
=⇒ f (x) ∧ f (a) = 0′ for all a ∈ A
=⇒ f (x) ∈ {f (A)}∗
=⇒ f (x) ∈ {f (B)}∗ by assumption
=⇒ f (x) ∧ f (b) = 0′ for all b ∈ B
=⇒ f (x ∧ b) = 0′ for all b ∈ B
=⇒ x ∧ b ∈ Ker f = {0} for all b ∈ B
=⇒ x ∧ b = 0 for all b ∈ B
=⇒ x ∈ B∗

Hence A∗ ⊆ B∗. Similarly we can prove B∗ ⊆ A∗. Thererfore A∗ = B∗. �

A necessary and sufficient condition for the inverse image of an α-ideal to
be an α-ideal is given in the following theorem.

Theorem 4.5 Let f : L → L′ be an epimorphism. For every α-ideal J ′ of L′,
f−1 (J ′) is an α-ideal in L if and only if for each x′ ∈ L′, f−1

(
(x′]∗

)
is an

α-ideal in L.

Proof (⇒) Choose any x′ ∈ L′. As the annihilator ideal (x′]∗ is an α-ideal (by
Result 1), the proof of ‘only if part’ follows by assumption.
(⇐) Let J ′ be an α-ideal of L′. Then f−1 (J ′) is an ideal of L (by Result 12).

Let x, y ∈ L be such that (x]∗ = (y]
∗ and x ∈ f−1 (J ′). We claim that (f (x)]

∗
=

(f (y)]
∗ .
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Indeed, f (t) ∈ (f (x)]
∗ implies f (t) ∧ f (x) = 0, thus f (x) ∈ (f (t)]

∗ and
x ∈ f−1

[
(f (t)]

∗]. By assumption f−1
[
(f (t)]

∗] is an α-ideal of L. As (x]∗ =

(y]
∗ and x ∈ f−1

[
(f (t)]

∗], we get y ∈ f−1
[
(f (t)]

∗] (by Result 5). But then
f (t) ∧ f (y) = 0 gives f (y) ∈ (f (t)]

∗ thus y ∈ f−1
[
(f (t)]

∗] and consequently
f (t) ∈ (f (y)]

∗. Thus we get (f (x)]
∗ ⊆ (f (y)]

∗. Similarly, we can prove that
(f (y)]

∗ ⊆ (f (x)]
∗. Hence (f (x)]

∗
= (f (y)]

∗. Now x ∈ f−1 (J ′) yields f (x) ∈
J ′. As J ′ is an α-ideal, (f (x)]∗ = (f (y)]∗ and f (x) ∈ J ′ give f (y) ∈ J ′ (by
Result 5). But then y ∈ f−1 (J ′). Thus (x]∗ = (y]

∗ and x ∈ f−1 (J ′) imply
y ∈ f−1 (J ′). Hence by Result 5, f−1 (J ′) is an α-ideal of L. �

We prove that the images and the inverse images of α-ideals under annihi-
lator preserving homomorphism of 0-distributive lattices are again α-ideals.

Theorem 4.6 Let f : L → L′ be an annihilator preserving epimorphism.

1. If I is an α-ideal of L, then f(I) is an α-ideal of L′.

2. If J ′ is an α-ideal of L′, then f−1 (J ′) is an α-ideal of L.

Proof (1) Let I be an α-ideal of L. By Result 12, f (I) is an ideal of L′. Let
f (a) ∈ f(I), i.e. a ∈ I. As I is an α-ideal, (a]∗∗ ⊆ I. Hence f ((a]∗∗) ⊆ f (I).
Since f is annihilator preserving we have f ((a]∗∗) = (f (a)]∗∗. Thus (f (a)]∗∗ ⊆
f (I). This shows that f (I) is an α-ideal of L′.
(2) Let J ′ be an α-ideal of L′. Let x, y ∈ L with (x]∗ = (y]

∗ and x ∈ f−1 (J ′).
(x]∗ = (y]

∗ implies f ((x]∗) = f
(
(y]

∗). By assumption, (f (x)]
∗
= (f (y)]

∗.
Further x ∈ f−1 (J ′) gives f (x) ∈ J ′. Now (f (x)]

∗
= (f (y)]

∗, f (x) ∈ J ′ and
J ′ is an α-ideal of L′, consequently f (y) ∈ J ′ (by Result 5) and y ∈ f−1 (J ′).
Thus (x]∗ = (y]

∗ and x ∈ f−1 (J ′) imply y ∈ f−1 (J ′). Finally, by Result 5,
f−1 (J ′) is an α-ideal of L. �
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