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Abstract

This paper discusses the notion, the properties and the application of
multicores, i.e. some compact sets contained in metric spaces.
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1 Introduction

The compactness of a map is a fundamental and important assumption of the
fixed point theory. Thus, we should be interested in the properties of compact
sets in metric spaces and not only in the properties of the spaces themselves.
In the paper [7] G. Fournier and A. Granas consider a topological space of
NES(compact) type and prove that this type of a space is a Lefschetz space,
i.e. every compact map f : X → X is a Lefschetz map. From this proof it results
that every compact set in this space, especially a set f(X), has a property thanks
to which a map f is a Lefschetz map. Hence the idea of the introduction of the
notion of multicores, i.e. certain compact sets in metric spaces. In the paper, we
examine three types of multicores. It proves that every metric space that has at
least one point of convergence contains all types of multicores. There is a metric
space that is not of AANMR type but its every compact subset is one of the
three types of multicores. Finally, it is worth to note that every admissible and
compact multivalued map ϕ : X � X for which ϕ(X) is a respective multicore,
is a Lefschetz map. Thanks to the Dugundji theorem about the extending of
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continuous maps, in the definition of AR, ANR and AANRC (aproximative
ANR in the sense of Clapp) we can use locally convex spaces instead of normed
spaces (see [20]).

2 Preliminaries

Throughout this paper all topological spaces are assumed to be metric. We shall
assume that all single-valued mappings considered in the paper are continuous.
Let H∗ be the Čech homology functor with compact carriers and coefficients
in the field of rational numbers Q from the category of Hausdorff topological
spaces and continuous maps to the category of graded vector spaces and linear
maps of degree zero. Thus H∗(X) = {Hq(X)} is a graded vector space, Hq(X)
being the q-dimensional Čech homology group with compact carriers of X . For
a continuous map f : X → Y , H∗(f) is the induced linear map f∗ = {fq} where
fq : Hq(X) → Hq(Y ) (see [2] and [8]). A space X is acyclic if:

(i) X is non-empty,

(ii) Hq(X) = 0 for every q ≥ 1 and

(iii) H0(X) ≈ Q.

A continuous mapping f : X → Y is called proper if for every compact set
K ⊂ Y the set f−1(K) is non-empty and compact. A proper map p : X → Y is
called Vietoris provided for every y ∈ Y the set p−1(y) is acyclic. Let X and Y
be two spaces and assume that for every x ∈ X a non-empty closed subset ϕ(x)
of Y is given. In such a case we say that ϕ : X � Y is a multi-valued mapping.
For a multi-valued mapping ϕ : X � Y and a subset U ⊂ Y , we let:

ϕ−1(U) = {x ∈ X ; ϕ(x) ⊂ U}.

If for every open U ⊂ Y the set ϕ−1(U) is open, then ϕ is called an upper
semi-continuous mapping; we shall write ϕ is u.s.c.

Proposition 2.1 (see [2, 8]) Assume that ϕ : X � Y and ψ : Y � T are u.s.c.
mappings with compact values and p : Z → X is a Vietoris mapping. Then:

(2.1.1) for any compact A ⊂ X, the image ϕ(A) =
⋃

x∈A ϕ(x) of the set A
under ϕ is a compact set;

(2.1.2) the composition ψ ◦ ϕ : X � T , (ψ ◦ ϕ)(x) = ⋃
y∈ϕ(x)ψ(y), is an u.s.c.

mapping;

(2.1.3) the mapping ϕp : X � Z, given by the formula ϕp(x) = p−1(x), is u.s.c.

Let ϕ : X � Y be a multivalued map. A pair (p, q) of single-valued, con-
tinuous map of the form is called a selected pair of ϕ (written (p, q) ⊂ ϕ) if the
following two conditions are satisfied:

(i) p is a Vietoris map,

(ii) q(p−1(x)) ⊂ ϕ(x) for any x ∈ X .
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Definition 2.2 A multivalued mapping ϕ : X � Y is called admissible pro-
vided there exists a selected pair (p, q) of ϕ.

Remark 2.3 We can assume that an admissible multivalued mapping
ϕ : X � Y is u.s.c. and for each x ∈ X ϕ(x) is compact, because in the fixed
point theory it is sufficient to consider some multivalued admissible selector
ψ : X � Y , such that for every x ∈ X :

(i) ψ(x) ⊂ ϕ(x),

(ii) q(p−1(x)) = ψ(x), where (p, q) ⊂ ϕ the fixed pair of selectors of the
mapping ϕ.

Theorem 2.4 (see [8]) Let ϕ : X � Y and ψ : Y � Z be two admissible maps.
Then the composition ψ ◦ ϕ : X � Z is an admissible map.

Lemma 2.5 (see [8]) If ϕ : X � Y is an admissible map, Y0 ⊂ Y and X0 =
ϕ−1(Y0), then the contraction ϕ0 : X0 � Y0 of ϕ to the pair (X0, Y0) is an
admissible map.

Theorem 2.6 (see [2]) If p : X → Y is a Vietoris map, then an induced map-
ping

p∗ : H∗(X) → H∗(Y )

is a linear isomorphism.

Let u : E → E be an endomorphism of an arbitrary vector space. Let us
put N(u) = {x ∈ E : un(x) = 0 for some n}, where un is the nth iterate of u
and Ẽ = E/N(u). Since u(N(u)) ⊂ N(u), we have the induced endomorphism
ũ : Ẽ → Ẽ defined by ũ([x]) = [u(x)]. We call u admissible provided dim Ẽ <∞.

Let u = {uq} : E → E be an endomorphism of degree zero of a graded vector
space E = {Eq}. We call u a Leray endomorphism if

(i) all uq are admissible,

(ii) almost all Ẽq are trivial.

For such an u, we define the (generalized) Lefschetz number Λ(u) of u by putting

Λ(u) =
∑

q

(−1)qtr(ũq),

where tr(ũq) is the ordinary trace of ũq (comp. [2]). The following important
property of a Leray endomorphism is a consequence of the well-known formula
tr(u ◦ v) = tr(v ◦ u) for the ordinary trace. An endomorphism u : E → E of
a graded vector space E is called weakly nilpotent if for every q ≥ 0 and for
every x ∈ Eq, there exists an integer n such that unq (x) = 0. Since, for a weakly
nilpotent endomorphism u : E → E, we have N(u) = E, we get:

Proposition 2.7 If u : E → E is a weakly nilpotent endomorphism, then
Λ(u) = 0.
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Proposition 2.8 Assume that, in the category of graded vector spaces, the
following diagram commutes

E′ �u
E′′

�
u′′

E′′
�

�
�

��
v

�E′

�
u′

u

If one of u′, u′′ is a Leray endomorphism, then so is the other; and Λ(u′) =
Λ(u′′).

Let ϕ : X � X be an admissible map. Let (p, q) ⊂ ϕ, where p : Z → X
is a Vietoris mapping and q : Z → X a continuous map. Assume that q∗ ◦
p−1
∗ : H∗(X) → H∗(X) is a Leray endomorphism for all pairs (p, q) ⊂ ϕ. For

such a ϕ, we define the Lefschetz set Λ(ϕ) of ϕ by putting

Λ(ϕ) = {Λ(q∗p−1
∗ ); (p, q) ⊂ ϕ}.

Let us observe that ifX is an acyclic or, in particular, contractible space, then for
every admissible map ϕ : X � X and for any pair (p, q) ⊂ ϕ the endomorphism
q∗p−1

∗ : H∗(X) → H∗(X) is a Leray endomorphism and Λ(q∗p−1
∗ ) = 1.

Theorem 2.9 (see [8]) If ϕ : X � Y and ψ : Y � T are admissible, then
the composition ψ ◦ ϕ : X � T is admissible and for every (p1, q1) ⊂ ϕ and
(p2, q2) ⊂ ψ there exists a pair (p, q) ⊂ ψ ◦ϕ such that q2∗p−1

2∗ ◦ q1∗p−1
1∗ = q∗p−1

∗ .

Definition 2.10 An admissible map ϕ : X � X is called a Lefschetz map
provided the generalized Lefschetz set Λ(ϕ) of ϕ is well defined and Λ(ϕ) 	= {0}
implies that the set Fix(ϕ) = {x ∈ X : x ∈ ϕ(x)} is non-empty.

Theorem 2.11 (see [17]) Let U be an open subset of a normed space E and
let X be a compact subset U . Then for each sufficiently small ε > 0 there exists
a finite polyhedron Kε ⊂ U and a mapping pε : X → U such that:

2.2.1 ‖x− pε(x)‖ < ε for all x ∈ X,

2.2.2 pε(X) ⊂ Kε,

2.2.3 pε is homotopic to i, where i : X → U is an inclusion.

Let Y be a metric space and let IdY : Y → Y be a map given by formula
IdY (y) = y for each y ∈ Y .

Definition 2.12 A map r : X → Y of a space X onto a space Y is said to be
an r-map if there is a map s : Y → X such that r ◦ s = IdY .

Definition 2.13 A metric space X is called an absolute neighborhood retract
(notation: X ∈ ANR) provided there exists an open subset U of some normed
space E and an r-map r : U → X from U onto X .
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Definition 2.14 A metric space X is called an absolute retract (notation: X ∈
AR) provided there exists a normed space E and an r-map r : E → X from E
onto X .

Let A ⊂ X be a nonempty set. We shall say that A is a retract of X if
there exists a continuous map r : X → A such that for each x ∈ A r(x) = x. A
nonempty set B ⊂ X is a neighborhood retract in X if there exists an open set
U ⊂ X such that B ⊂ U and B is a retract of U .

Theorem 2.15 (see [8]) X ∈ ANR if and only if for each homeomorphism h
mapping X onto a closed subset h(X) of a metrizable space Y , the set h(X) is
a neighborhood retract in Y .

Theorem 2.16 (see [8]) X ∈ AR if and only if for each homeomorphism h
mapping X onto a closed subset h(X) of a metrizable space Y , the set h(X) is
a retract in Y .

Now we shall recall a generalization of the concept of absolute neighborhood
retracts, which was introduced by Clapp.

Definition 2.17 We shall say that a compact metric space X is an approx-
imative absolute neighborhood retract in the sense of Clapp (notation: X ∈
AANRC) provided for every ε > 0 there exists an open subset U of some
normed linear space E and two maps rε : U → X , sε : X → U such that
d(x, rε(sε(x))) < ε for any x ∈ X .

Theorem 2.18 (see [8]) X ∈ AANRC if and only if for each homeomorphism
h mapping X onto a closed subset h(X) of a metrizable space Y , for each ε > 0
there exists an open set Uε ⊃ h(X) of X and rε : Uε → h(X) such that for each
y ∈ h(X) d(rε(y), y) < ε.

Definition 2.19 Let E be a topological vector space. We shall say that E is
a Klee admissible space provided for any compact subset K ⊂ E and for any
open neighborhood V of 0 ∈ E there exists a map πV : K → E such that the
following two conditions are satisfied:

(2.19.1) πV (x) ∈ (x+ V ), for any x ∈ K,

(2.19.2) there exists a natural number n = nK such that πV (K) ⊂ En, where
En is an n-dimensional subspace of E.

Definition 2.20 We shall say that a topological vector spaceE is locally convex
provided that for each x ∈ E and for each open set U ⊂ E such that x ∈ U
there exists an open and convex set V ⊂ E such that x ∈ V ⊂ U .

It is clear that if E is a normed space then E is locally convex.

Theorem 2.21 (see [2, 7]) Let E be locally convex. Then E is a Klee admissible
space.
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Theorem 2.22 (see [9]) Let E be a Klee admissible space. For each compact
subset K ⊂ E and for any open set U ⊂ E such that K ⊂ U there exists a
continuous map πK : K → U such that the following conditions are satisfied:

2.22.1 πK(K) ⊂ En, where En is an n-dimensional subspace of E,

2.22.2 πK : K → U and i : K → U are homotopic, where i : K → U is an
inclusion.

The following theorem is obvious.

Theorem 2.23 Let Es be a locally convex space for every s ∈ S. Then the
space E =

∏
s∈S Es is a locally convex space.

Theorem 2.24 (see [9]) Let U be an open subset in a Klee admissible space E
and ϕ : U � U be an admissible and compact map, then ϕ is a Lefschetz map.

Definition 2.25 A metric space X is of finite type provided that for almost
every q ∈ N Hq(X) = {0} and for any q ∈ N dimHq(X) <∞.

Theorem 2.26 ([8]) Let X be a compact metric space of finite type. Then there
exists ε > 0 such that for every two maps f, g : Y → X, where Y is a Hausdorff
space, the condition d(f(y), g(y)) < ε for each y ∈ Y implies f∗ = g∗.

Definition 2.27 (see [19]) A map r : X → Y of a space X onto a space Y
is said to be an mr-map if there is an admissible map ϕ : Y � X such that
r ◦ ϕ = IdY .

In the definitions below instead of normed spaces (see [19]), we will use
locally convex spaces (see [20]).

Definition 2.28 (see [19, 20]) A metric space X is called an absolute multi-
retract (notation: X ∈ AMR) provided there exists a locally convex space E
and an mr-map r : E → X from E onto X .

Definition 2.29 (see [19, 20]) A metric space X is called an absolute neigh-
borhood multi-retract (notation: X ∈ ANMR) provided there exists an open
subset U of some locally convex space E and an mr-map r : U → X from U
onto X .

Theorem 2.30 (see [19, 20]) A space X is an ANMR if and only if there exists
a metric space Z and a Vietoris map p : Z → X which factors through an open
subset U of some locally convex space E, i.e. there are two continuous maps α
and β such that the following diagram

Z �p
X

�
β

U

�
�
�

��
α

is commutative.
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Definition 2.31 (see [20]) Let X be a compact space. We shall say that X is
an approximative ANMR (we write AANMR) provided that for any ε > 0 there
exists a locally convex space Eε and an open set Uε ⊂ Eε, a map rε : Uε → X
and an admissible map ϕε : X � Uε such that for any x ∈ X

rε(ϕε(x)) ⊂ B(x, ε),

where B(x, ε) is an open ball in X of a center in x and of a radius ε > 0.

Theorem 2.32 (see [20]) A space X is an AANMR if and only if for any ε > 0
there exists a space Zε, a Vietoris map pε : Zε → X, a locally convex space Eε,
an open set Uε ⊂ Eε, and maps rε : Uε → X, qε : Zε → Uε such that for any
z ∈ Zε

d(rε(qε(z)), pε(z)) < ε.

Theorem 2.33 (see [8]) Let X and Y be acyclic and compact spaces. Then
X × Y is a compact and acyclic space.

3 The multicores in metric spaces

We shall present the definition of a multicore in a metric space.

Definition 3.1 We shall say that a compact set K ⊂ X is an absolute multi-
core (we write K ∈ AMC(X)) provided that there exists a metric space Z, a
locally convex space E and maps r : E → X , q : Z → E such that the following
conditions are satisfied:

(3.1.1) for any z ∈ Z, r(q(z)) ∈ K,

(3.1.2) a map p : Z → K given by p(z) = r(q(z)) for any z ∈ Z is Vietoris.

Definition 3.2 We shall say that a compact set K ⊂ X is an absolute neigh-
borhood multicore (we write K ∈ ANMC(X)) provided that there exists a
metric space Z, an open subset U of some locally convex space E and maps
r : U → X , q : Z → U such that the following conditions are satisfied:

(3.2.1) for any z ∈ Z, r(q(z)) ∈ K,

(3.2.2) a map p : Z → K given by p(z) = r(q(z)) for any z ∈ Z is Vietoris.

Definition 3.3 We shall say that a compact set K ⊂ X is an approximative
absolute neighborhood multicore (we write K ∈ AANMC(X)) provided that for
any ε > 0 there exists a metric space Zε, a locally convex space Eε, an open set
Uε ⊂ Eε, a Vietoris map pε : Zε → K and maps rε : Uε → X , qε : Zε → Uε such
that the following conditions are satisfied:

(3.3.1) for any z ∈ Zε, rε(qε(z)) ∈ K,

(3.3.2) for any z ∈ Zε, d(rε(qε(z)), pε(z)) < ε.
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We observe that for any metric space X we have

∅ 	= AMC(X) ⊂ ANMC(X) ⊂ AANMC(X),

since {x} ∈ AMC(X) for each x ∈ X (see 3.5). The following theorem consists
of some properties of multicores. Let C1(X) ≡ AMC(X), C2(X) ≡ ANMC(X)
and C3(X) ≡ AANMC(X). We will denote the set

{K1 ×K2 : K1 ∈ Ci(X1) and K2 ∈ Ci(X2)},

with Ci(X1, X2) whereas the set

{K1 ×K2 × . . .×Kn × . . . : Kj ∈ Ci(Xj), j = 1, 2, . . . , n, . . .}

will be denoted by Ci(X1, X2, . . . , Xn, . . .), i = 1, 2, 3.
Let K(X) = {K ⊂ X : K is a nonempty and compact set}.

Theorem 3.4

3.4.1 C1(X) ⊂ C2(X) ⊂ C3(X).

3.4.2 Let X ⊂ Y . Then Ci(X) ⊂ Ci(Y ), i = 1, 2, 3.

3.4.3 Ci(X1, X2) ⊂ Ci(X1 ×X2), i = 1, 2, 3.

3.4.4 C3(X1, X2, . . . , Xn, . . .) ⊂ C3(
∏∞

n=1Xn).

3.4.5 Let K ∈ Ci(X). Then for each compact set A ⊂ K, A ∈ Ci(X), i = 1, 2.

3.4.6 Let K1,K2 ∈ Ci(X) and K1∩K2 = ∅. Then (K1∪K2) ∈ Ci(X), i = 2, 3.

3.4.7 Let V ⊂ X be an open set and let K ⊂ V be a compact set. Then

(K ∈ Ci(V )) ⇔ (K ∈ Ci(X)), i = 2, 3.

3.4.8 Let X =
⋃∞

n=1Xn, where Xn is open of X and Xn ⊂ Xn+1 for any n.
Then

Ci(X) =

∞⋃

n=1

Ci(Xn), i = 2, 3.

3.4.9 Let p : X → Y be a Vietoris map. Then for each compact set K ⊂ Y

(p−1(K) ∈ Ci(X)) ⇒ (K ∈ Ci(Y )), i = 1, 2, 3.

3.4.10 (X ∈ AMR) ⇒ (C1(X) = K(X)),

(X ∈ ANMR) ⇒ (C2(X) = K(X)),

(X ∈ AANMR) ⇔ (X ∈ C3(X)).

If the metric space X is compact, we can substitute the above implications with
equivalence.

3.4.11 Let K ⊂ X be a compact set. Then

(K ∈ AMR) ⇒ (K ∈ C1(X)),

(K ∈ ANMR) ⇒ (K ∈ C2(X)),

(K ∈ AANMR) ⇒ (K ∈ C3(X)).



The multicores in metric spaces and their application. . . 83

Proof The properties 3.4.1 and 3.4.2 are obvious.

We will show the property 3.4.3 for i = 3. Let K1 ∈ C3(X1) and K2 ∈
C3(X2). Let ε > 0 and δ = ε

2 . Then there exist locally convex spaces E1
δ ,

E2
δ , metric spaces Z1

δ , Z2
δ open sets U1

δ ⊂ E1
δ , U2

δ ⊂ E2
δ , maps r1δ : U

1
δ → X1,

r2δ : U
2
δ → X2, q1δ : Z

1
δ → U1

δ , q2δ : Z
2
δ → U2

δ and Vietoris maps p1δ : Z
1
δ → K1,

p2δ : Z
2
δ → K2 such that r1δ (q

1
δ (z)) ∈ K1, r2δ (q

2
δ (z)) ∈ K2 and

d(r1δ (q
1
δ (z)), p

1
δ(z)) < δ for each z ∈ Z1

δ

and
d(r2δ (q

2
δ (z)), p

2
δ(z)) < δ for each z ∈ Z2

δ .

Let X = X1 ×X2 and let K = K1 ×K2. Then the metric d in X given by

d((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2),

where d1 and d2 are metrics in X1 and X2 respectively. We define

Eε = E1
δ × E2

δ , Zε = Z1
δ × Z2

δ , Uε = U1
δ × U2

δ ,

rε : Uε → X given by rε(u1, u2) = (r1δ (u1), r
2
δ (u2)) for each (u1, u2) ∈ U1

δ × U2
δ ,

qε : Zε → Uε given by qε(z1, z2) = (q1δ (z1), q
2
δ (z2)) for each (z1, z2) ∈ Z1

δ × Z2
δ ,

pε : Zε → K given by pε(z1, z2) = (p1δ(z1), p
2
δ(z2)) for each (z1, z2) ∈ Z1

δ × Z2
δ .

From 2.33 the map pε is Vietoris. It is clear that maps rε, qε and pε satisfy the
definition 3.3. Hence K ∈ C3(X1 ×X2). For i = 1, 2 the proof is analogous.

3.4.4 Let (Xn, dn) be a metric space for each n ∈ N and let K =
∏∞

n=1Kn,
where Kn ∈ C3(Xn) for all n. Assume that for any n and for all xn, yn ∈ Xn

dn(xn, yn) ≤ 1. We define the metric in a space X given by:

d(x, y) =

∞∑

n=1

dn(xn, yn)

2n
,

where x = (x1, x2, . . . , xn, . . .), y = (y1, y2, . . . , yn, . . .). Let ε > 0 and let δ = ε
2 .

From the definition 3.3 for any n we get rnδ : U
n
δ → Xn, qnδ : Z

n
δ → Un

δ and a
Vietoris map pnδ : Z

n
δ → Kn such that for all zn ∈ Zn

δ

dn(r
n
δ (q

n
δ (zn)), p

n
δ (zn)) < δ,

where Un
δ ⊂ En

δ is an open subset in some locally convex space.
Let Eε =

∏∞
n=1E

n
δ (from 2.23 Eε is a locally convex space) and let Zε =∏∞

n=1 Z
n
δ . We observe that the space Zε is compact. There exists a natural

number n0 such that for any n ≥ n0

∞∑

n=n0+1

dn(xn, yn)

2n
< δ =

ε

2
.
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We define an open set in the space Eε given by:

Uε =

n0∏

i=1

U i
δ ×

∞∏

n=n0+1

En
δ .

Let rε : Uε → X be given by:

rε(x1, x2, . . . , xn, . . .) = (r1δ (x1), r
2
δ (x2), . . . , r

n0

δ (xn0), yn0+1, . . . , ym, . . .)

for each (z1, z2, . . . , zn, . . .) ∈ Zε, where ym ∈ Xm for all m > n0 are stationary
points and let qε : Zε → Uε be given by:

qε(z1, z2, . . . , zn, . . .) = (q1δ (z1), q
2
δ (z2), . . . , q

n
δ (zn), . . .)

for each (z1, z2, . . . , zn, . . .) ∈ Zε. A Čech homology theory is continuous, there-
fore a map pε : Zε → X given by

pε(z1, z2, . . . , zn, . . .) = (p1δ(z1), p
2
δ(z2), . . . , p

n
δ (zn), . . .)

for each (z1, z2, . . . , zn, . . .) ∈ Zε is a Vietoris map (see [20]) since

p−1
ε (x1, x2, . . . , xn, . . .) =

∞∏

n=1

(pnδ )
−1(xn)

for any x = (x1, x2, . . . , xn, . . .) ∈ X . It is clear that maps rε, qε and pε satisfy
the definition 3.3.

3.4.5 Let K ∈ C2(X) and let A ⊂ K be a compact set. From definition 3.2
there exists a locally convex space E′, a metric space Z ′, an open set U ′ ⊂ E′,
maps r′ : U ′ → X , q′ : Z ′ → U ′ such that for all z ∈ Z ′ r′(q′(z)) ∈ K and the
map p′ : Z ′ → K given by p′(z) = r′(q′(z)) for each z ∈ Z ′ is Vietoris. Let
E = E′, Z = p′−1(A), U = U ′, r = r′ and q = q′/Z . It is clear that maps r and
q satisfy the definition 3.2. For i = 1 the proof is analogous.

3.4.6 We prove the property for i = 3. The proof for i = 2 is analogous. From
the assumption, for each ε > 0 there exists locally convex spaces E1

ε , E
2
ε , metric

spaces Z1
ε , Z

2
ε , open sets U1

ε ⊂ E1
ε , U2

ε ⊂ E2
ε , maps r1ε : U

1
ε → X , r2ε : U

2
ε → X ,

q1ε : Z
1
ε → U1

ε , q2ε : Z
2
ε → U2

ε and Vietoris maps p1ε : Z
1
ε → K1, p2ε : Z

2
ε → K2

such that for each z ∈ Z1
ε r1ε(q

1
ε (z)) ∈ K1 and d(r1ε (q

1
ε(z)), p

1
ε(z)) < ε and for

each z ∈ Z2
ε r

2
ε(q

2
ε(z)) ∈ K2 and d(r2ε(q

2
ε (z)), p

2
ε(z)) < ε.

Let Eε = E1
ε × E2

ε , Uε = (U1
ε × V2) ∪ (V1 × U2

ε ) ⊂ Eε, where V1 ⊂ E1
ε ,

V2 ⊂ E2
ε are open sets such that V1 ∩ U1

ε = ∅ and V2 ∩ U2
ε = ∅ and let

Zε = (Z1
ε × {s2}) ∪ ({s1} × Z2

ε ) ⊂ Z1
ε × Z2

ε ,

where (s1, s2) ∈ Z1
ε × Z2

ε such that s1 	= s2. We observe that

(U1
ε × V2) ∩ (V1 × U2

ε ) = ∅ and (Z1
ε × {s2}) ∩ ({s1} × Z2

ε ) = ∅.



The multicores in metric spaces and their application. . . 85

We define:

rε : Uε → X, given by rε(x, y) =

{
r1ε(x), for (x, y) ∈ U1

ε × V2

r2ε(y), for (x, y) ∈ V1 × U2
ε ,

qε : Zε → Uε given by qε(z, t) =

{
(q1ε (z), v2) for (z, t) ∈ Z1

ε × {s2}
(v1, q

2
ε(t)), for (z, t) ∈ {s1} × Z2

ε ,

pε : Zε → K1 ∪K2 given by pε(z, t) =

{
p1ε(z), for (z, t) ∈ Z1

ε × {s2}
p2ε(t), for (z, t) ∈ {s1} × Z2

ε ,

where (v1, v2) ∈ V1 × V2 is a stationary point. It is clear that maps rε, qε, pε
satisfy the definition 3.3.

3.4.7 Let V ⊂ X be an open set and let K ⊂ V be a compact set. It is clear
that if (K ∈ Ci(V )) ⇒ (K ∈ Ci(X)), i = 2, 3. Assume that K ∈ C3(X). Then
for each ε > 0 there exists a locally convex space E′

ε, an open set U ′
ε ⊂ E′

ε, a
metric space Z ′

ε, maps r′ε : U
′
ε → X , q′ε : Z

′
ε → U ′

ε and a Vietoris map p′ε : Z
′
ε →

K such that r′ε(q
′
ε(z)) ∈ K for all z ∈ Z ′

ε and

d(r′ε(q
′
ε(z)), p

′
ε(z)) < ε

for each z ∈ Z ′
ε. Let Eε = E′

ε, Uε = r′−1
ε (V ), Zε = Z ′

ε, rε = (r′ε)/Uε
, qε = q′ε

and pε = p′ε. We observe that maps rε, qε and pε satisfy the definition 3.3 for
X = V . Hence K ∈ C3(V ) and the proof is complete. For i = 2 the proof is
analogous.

3.4.8 Let K ∈ Ci(X), i = 2, 3. Then there exists n such that K ⊂ Xn. From
3.4.7 we get that K ∈ Ci(Xn), i = 2, 3. Hence K ∈ ⋃∞

n=1 Ci(Xn) and Ci(X) ⊂⋃∞
n=1 Ci(Xn), i = 2, 3. We observe from 3.4.2 that for any n Ci(Xn) ⊂ Ci(X),

i = 2, 3, so
⋃∞

n=1 Ci(Xn) ⊂ Ci(X), i = 2, 3.

3.4.9 Let p : X → Y be a Vietoris map and let K ⊂ Y be a compact
set. Assume that p−1(K) ∈ C3(X). Let ε > 0. The map p : p−1(K) → K is
uniformly continuous, so there exists δ > 0 such that

(d(z1, z2) < δ) ⇒ (d(p(z1), p(z2)) < ε), for each z1, z2 ∈ p−1(K). (3.1)

From assumption there exists a locally convex space E′
δ, an open set U ′

δ ⊂ E′
δ,

a metric space Z ′
δ, maps r′δ : U

′
δ → X , q′δ : Z

′
δ → U ′

δ, a Vietoris map p′δ : Z
′
δ →

p−1(K) such that r′δ(q
′
δ(z)) ∈ p−1(K) for each z ∈ Z ′

δ and d(r′δ(q
′
δ(z)), p

′
δ(z)) < δ

for each z ∈ Z ′
δ. We define

Eε = E′
δ, Uε = U ′

δ, Zε = Z ′
δ, rε = p ◦ r′δ, qε = q′δ, pε = p ◦ p′δ.

It is clear that pε is a Vietoris map (see [8]) and rε(qε(z)) ∈ K for all z ∈ Zε.
From (3.1) we get

d(rε(qε(z)), pε(z)) = d(p(r′δ(q
′
δ(z))), p(p

′
δ(z))) < ε.

For i = 1, 2 the proof is analogous.
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3.4.10 The third implication is obvious. We shall present the middle im-
plication. It is obvious that C2(X) ⊂ K(X). From assumption and 2.30 there
exists a locally convex space E′, an open set U ′ ⊂ E′, a metric space Z ′ and
maps r′ : U ′ → X , q′ : Z ′ → U ′ such that r′ ◦ q′ : Z ′ → X is a Vietoris map. Let
p′ = r′ ◦ q′ and let K ∈ K(X). We define

E = E′, U = U ′, r = r′ : U → X, Z = p′−1(K), q = q′/Z : Z → U.

We observe that r(q(z)) ∈ K for all z ∈ Z and the map s : Z → K given by
s(z) = r(q(z)) for each z ∈ Z is Vietoris. For i = 1 the proof is analogous.

3.4.11 It is obvious. �

Now we shall present a few examples of multicores. Let X be a metric space.
By B(x0, r) we denote an open ball, whereas by K(x0, r) a closed ball in X of
a center in x0 ∈ X and of a radius r > 0. Let R denote the set of real numbers.

Example 3.5 Let K = {x}, where x ∈ X . Then K ∈ AMC(X).

Justification: We define:

E = R, r : E → X given by r(t) = x for each t ∈ R,

Z = K(0, 1) ⊂ R, where K(0, 1) is a closed ball in R,

q : Z → E given by q(z) = z for each z ∈ Z,

p : Z → K given by p(z) = x for each z ∈ Z.

Example 3.6 Let K = {x1, x2, . . . , xn} ⊂ X be a finite set. Then K ∈
ANMC(X).

Justification: We define:

E = R, U ⊂ E,

U =
⋃n

i=1B
(
i, 13

)
, where B

(
i, 13

)
is an open ball in R, i = 1, 2, . . . , n,

r : U → X, given by r(u) = xi, for all u ∈ B
(
i, 13

)
, i = 1, 2, . . . , n,

Z =
⋃n

i=1K
(
i, 14

)
, where K

(
i, 14

)
is a closed ball in R,

q : Z → U given by q(z) = z for each z ∈ Z,

p : Z → K, given by p(z) = xi, for each z ∈ K
(
i, 14

)
, i = 1, 2, . . . , n.

Example 3.7 Let K = ({xn}∞n=1 ∪ {x0}) ⊂ X where a sequence {xn}∞n=1 such
that limn→∞ xn = x0. Then K ∈ AANMC(X).

Justification: Let ε > 0. Then there exists n0 such that for any n > n0

d(xn, x0) < ε.
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We define:

Uε =

n0⋃

i=1

B

(
1

i
,

1

2i(i+ 1)

)
∪
(
−1,

2n0 + 1

2n0(n0 + 1)

)
, where B

(
1

i
,

1

2i(i+ 1)

)

is an open ball in R and

(
−1,

2n0 + 1

2n0(n0 + 1)

)
is an open interval in R,

rε : Uε → X given by rε(u) = xi for u ∈ B

(
1

i
,

1

2i(i+ 1)

)
, i = 1, 2, . . . , n0

rε(u) = x0 for u ∈
(
−1,

2n0 + 1

2n0(n0 + 1)

)
,

Zε =

∞⋃

n=1

K

(
1

n
,

1

3n(n+ 1)

)
∪ {0}, where K

(
1

n
,

1

3n(n+ 1)

)

is a closed ball in R,
qε : Zε → Uε given by q(z) = z for each z ∈ Zε,

pε : Zε → K given by pε(z) = xn for each z ∈ K

(
1

n
,

1

3n(n+ 1)

)
, n = 1, 2, . . .

and pε(0) = x0.

We observe that if X ∈ AMR then

AMC(X) = ANMC(X) = AANMC(X) (see 3.4.1, 3.4.10).

however, if X is compact, X ∈ ANMR and X /∈ AMR (see [19]) then

AMC(X) ⊂ ANMC(X) = AANMC(X) (see 3.4.1, 3.4.10)

and if X = ((Y ×{z0})∪ ({y0}×Z)) ⊂ Y ×Z, where (y0, z0) ∈ Y ×Z, y0 	= z0,
Y ∈ AANMR, Y /∈ ANMR (see [20]) and Z is compact, Z ∈ ANMR, Z /∈ AMR
(see [19]) then

AMC(X) ⊂ ANMC(X) ⊂ AANMC(X) (see 3.4.1, 3.4.10, 3.9).

The above inclusions cannot be substituted with an equality. Now an important
theorem shall be presented. First, however, we shall prove the following lemma.

Lemma 3.8 Let E be a locally convex space and let U be an open set in E.
Assume that a map q : Z → U induced a monomorphism q∗ : H∗(Z) → H∗(U)
where Z is a compact metric space. Then Z is of finite type.

Proof Theorem 2.22 implies that for a compact set K = q(Z) ⊂ U ⊂ E there
exists a map πK : K → U such that πK(K) ⊂ En and maps πK , i : K → U are
homotopic, where En ⊂ E is an n-dimensional subspace of E and i : K → U
is an inclusion. Let i1 : U ∩ En → U be an inclusion, q̂ : Z → K given by
q̂(z) = q(z) for each z ∈ Z and

t : Z → U ∩ En, given by t(z) = πK(q̂(z)) for each z ∈ Z
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then we have the following commutative diagram:

H∗(Z) �q∗ H∗(U)

�
i1∗

H∗(U ∩ En).

�
�
�

��
t∗

In the above diagram we get that i1∗◦t∗ = q∗ and, hence, t∗ is a monomorphism.
From the Schauder theorem, for a compact set K1 = πK(K) ⊂ U ∩ En = V
and for sufficiently small ε > 0 there exists a projection pε : K1 → V such that
pε(K1) ⊂ Kε and maps pε, i2 : K1 → V are homotopic, where i2 : K1 → V is an
inclusion and Kε is a polyhedron of finite type such that Kε ⊂ V . We have the
following commutative diagram:

H∗(Z) �t∗
H∗(V )

�
i3∗

H∗(Kε),

�
�
�

��
r∗

where i3 : Kε → V is an inclusion and r : Z → K1 given by r(z) = pε(t(z)) for
each z ∈ Z. It is clear, that r∗ is a monomorphism. Hence Z is a space of finite
type. �

Theorem 3.9 Let K ∈ K(X) and let i : K → X be an inclusion such that
i∗ : H∗(K) → H∗(X) is a monomorphism. Then

3.9.1 (K ∈ AMC(X)) ⇒(K is acyclic),
3.9.2 (K ∈ ANMC(X)) ⇒ (K is of finite type).

Proof 3.9.1 We have the following commutative diagram:

H∗(Z) �r∗ ◦ q∗
H∗(X)

�
i∗

H∗(K),

�
�
�

��
p∗

where p∗ = (r ◦ q)∗. Hence a map q : Z → E induced a monomorphism
q∗ : H∗(Z) → H∗(E). Since H∗(Z) ≈ H∗(K), therefore the set K is acyclic.

3.9.2 Acting analogously as in 3.9.1 we get a monomorphism q∗ : H∗(Z) →
H∗(U). From 3.8 we get that Z is of finite type. Since H∗(Z) ≈ H∗(K),
therefore the set K is of finite type. �

We recall that a metric space X ∈ NES(compact metric) if for any compact
metric space Y , for any closed subset A ⊂ Y and for each continuous map
f : A → X there exists an open set U ⊂ Y and a continuous map F : U → X
such that A ⊂ U and for each y ∈ A F (y) = f(y).
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Theorem 3.10 Let X be a metric space and X ∈ NES(compact metric). Then
ANMC(X) = K(X).

Proof Let K ∈ K(X). We embed K into a Hilbert cube Q in a normed
space E (in particular a locally convex space). Let us denote by s : K → K̃ the
homeomorphism of K onto K̃ ⊂ Q. Consider the map i′ ◦ s−1 : K̃ → X where
s−1 : K̃ → K is an inverse homeomorphism and i′ : K → X is an inclusion. Since
X ∈ NES(compact metric), there is an open set U ⊂ Q containing K̃ and the
extension h : U → X of i′ ◦ s−1 over U . Let j : K̃ → U be inclusions. It is clear
that h ◦ j = i′ ◦ s−1. Let r′ : E → Q be a retraction and let V = r′−1(U) ⊂ E,
r1 = r′/V : V → U and i : U → V be an inclusion. We define:

r : V → X given by r = h ◦ r1,
Z = K and q : Z → V given by q = i ◦ j ◦ s.

We observe that for each z ∈ Z r(q(z)) = z and the proof is complete. �

Theorem 3.11 Let Yn ∈ ANMR for each n (not necessarily compact) and let
Y =

∏∞
n=1 Yn. Then for any compact set A ⊂ Y there exists a compact set

K ⊂ Y such that A ⊂ K and K ∈ AANMC(Y ).

Proof Let A ⊂ Y be a compact set. Let πn : Y → Yn be a map given by

πn(y1, y2, . . . , yn, . . .) = yn

for each (y1, y2, . . . , yn, . . .) ∈
∏∞

n=1 Yn, n = 1, 2, . . . We define the compact set
K ⊂ Y :

K =

∞∏

n=1

πn(A).

It is clear that A ⊂ K. From 3.4.10 and 3.4.4 we get that K ∈ AANMC(Y ).
�

Theorem 3.12 Let X ∈ AANMR and Y ∈ ANMR (not necessarily compact).
Then for any compact set A ⊂ X × Y there exists a compact set K ⊂ X × Y
such that A ⊂ K and K ∈ AANMC(X × Y ).

Proof Let π : X×Y → Y be a map given by π(x, y) = y for each (x, y) ∈ X×Y
and let A ⊂ X × Y be a compact set. We define K = X ×π(A). It is clear that
A ⊂ K. From 3.4.10 and 3.4.3 we get that K ∈ AANMC(X × Y ) and the proof
is complete. �

Theorem 3.13 Let X =
⋃∞

n=1 Un, where Un ⊂ Un+1 and Un is an open set in
X for each n. Assume that for each n Un ∈ ANMR. Then K(X) = ANMC(X).
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Proof Let K ⊂ X be a compact set. We observe that there exists n such that
K ⊂ Un. From 3.4.10 and 3.4.8 we get that K ∈ ANMC(X) and the proof is
complete. �

We shall now present an example for a metric space that is neither of ANMR
type nor of AANMR type but its every compact subset is either of AMC(X) or
ANMC(X), or AANMC(X).

Example 3.14 Let X = { 1
n}∞n=1 ∪ {0} ∪ (2, 3) where (2, 3) ⊂ R is an open

interval. We observe that X /∈ AANMR, since X is not a compact space.
From 3.4.10 and 3.9.2 X /∈ ANMR. If K ⊂ X is a compact set, then

K = K1 ∪K2, where K1 ⊂ ({ 1
n}∞n=1 ∪ {0}), K2 ⊂ (2, 3), K1 ∩K2 = ∅ and K1,

K2 are compact.
From 3.4.10 if K2 	= ∅ then K2 ∈ AMC(X). The set K1 = { 1

n}, n = 1, 2, . . .,
then K1 ∈ AMC(X) (see 3.5) or K1 = { 1

n1
, 1
n2
, . . . , 1

nk
}, k > 1, then K1 ∈

ANMC(X) (see 3.6) or K1 = { 1
nk

}∞k=1 ∪ {0}, then K1 ∈ AANMC(X) (see 3.7).
From 3.4.6 the set K ∈ ANMC(X) or K ∈ AANMC(X). In particular, if

K1 = ∅ and K2 is any compact and nonempty subset of the interval (2, 3) or
K1 = { 1

n}, n = 1, 2, . . . and K2 = ∅ then K ∈ AMC(X).

4 Fixed point result

In this part of the paper we shall present a few applications of multicores in the
fixed point theory.

Theorem 4.1 Let X be a metric space and let ϕ : X � X be an admissible
and compact map. Assume that

K = ϕ(X) ∈ ANMC(X).

Then ϕ is a Lefschetz map.

Proof From the assumption we get a locally convex space E, an open set
U ⊂ E, a map r : U → X , a metric space Z, a map q : Z → U such that the
map p : Z → K given by p(z) = r(q(z)) for each z ∈ Z is a Vietoris map.
Let ϕ̂ : X � K be a multivalued map given by ϕ̂(x) = ϕ(x) for each x ∈ X ,
ϕ̃ : K � K be a multivalued map given by ϕ̃(x) = ϕ(x) for each x ∈ K and let
i : K → X be an inclusion.

We have the following commutative diagrams:

Z �r ◦ q
X

�
i

K,

�
�
�

��
p
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K �i
X

�
ϕ

X,
�

�
�

��
ϕ̂

�K

�
ϕ̃

i

K �qp−1

U

�
(qp−1) ◦ ϕ̂ ◦ r

U .
�

�
�

��
ϕ̂ ◦ r

�K

�
ϕ̃

qp−1

We observe that

(ϕ̂ ◦ r) ◦ (q ◦ p−1) =

= ϕ̂ ◦ (r ◦ q) ◦ p−1 = ϕ̂ ◦ (i ◦ p) ◦ p−1 = (ϕ̂ ◦ i) ◦ (p ◦ p−1) = ϕ̃ ◦ IdK = ϕ̃.

The map ψ ≡ (qp−1) ◦ ϕ̂ ◦ r is admissible and compact. From 2.24 ψ is a
Lefschetz map. Using the above diagrams and applying a method of proving
commonly known in mathematical literature (see [2, 7, 8, 9, 10, 11, 19, 20, 21]),
it can be proved that the map ϕ is a Lefschetz map. �

The following theorem is the simple consequence of the above theorem.

Theorem 4.2 Let X be a metric space and let ϕ : X � X be an admissible
and compact map. Assume that K = ϕ(X) ∈ AMC(X). Then ϕ has a fixed
point.

Theorem 4.3 Let X be a metric space and let ϕ : X � X be an admissible
and compact map. Assume that there exists a compact set K ⊂ X such that K
is of finite type, ϕ(X) ⊂ K and K ∈ AANMC(X). Then ϕ is a Lefschetz map.

Proof From the assumption we have for each ε > 0 a locally convex space Eε,
an open set Uε ⊂ Eε, a map rε : Uε → X , a metric space Zε, a Vietoris map
pε : Zε → K such that the map sε : Zε → K given by sε(z) = rε(qε(z)) for each
z ∈ Z satisfied the condition d(sε(z), pε(z)) < ε for each z ∈ Zε. Let ϕ̂ : X � K
be a multivalued map given by ϕ̂(x) = ϕ(x) for each x ∈ X , ϕ̃ : K � K be a
multivalued map given by ϕ̃(x) = ϕ(x) for each x ∈ K and let i : K → X be
an inclusion. Let (p, q) ⊂ ϕ. Then (p, q̂) ⊂ ϕ̂ and (p̃, q̃) ⊂ ϕ̃ where p̃, q̃, q̂ are
respective contractions of maps p, q. From 2.26 there exists ε1 > 0 such that for
each 0 < ε ≤ ε1 sε∗ = pε∗.

We have the following commutative diagrams:
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H∗(Zε) �rε∗ ◦ qε∗
H∗(X)

�
i∗

H∗(K),

�
�
�

��
pε∗

H∗(K) �i∗
H∗(X)

�
q∗p−1

∗

H∗(X),
�

�
�

��
q̂∗p−1

∗

�H∗(K)

�
q̃∗p̃−1

∗

i∗

H∗(K) �qε∗p−1
ε∗

H∗(Uε)

�
(qε∗p−1

ε∗ ) ◦ tε∗

H∗(Uε),
�

�
�

��
tε∗

�H∗(K)

�
q̃∗p̃−1

∗

qε∗p−1
ε∗

where tε∗ ≡ (q̂∗p−1
∗ ) ◦ rε∗. Hence the homomorphism q∗p−1

∗ is a Leray endo-
morphism. Assume that Λ(ϕ) 	= {0} then there exists (p, q) ⊂ ϕ such that
Λ(q∗p−1

∗ ) 	= 0. Hence for each 0 < ε ≤ ε1 there exists xε ∈ ((qεp
−1
ε )◦ ψ̂ ◦rε)(xε),

so rε(xε) ∈ (rε ◦ (qεp−1
ε )◦ ψ̂)(rε(xε)), where ψ̂ = q̂p−1 (see the above diagrams).

We have zε ∈ (p−1
ε ◦ ψ̂)(rε(xε)) such that rε(qε(zε)) = rε(xε), pε(zε) ∈ ψ̂(rε(xε))

and d(rε(xε), pε(zε)) = d(rε(qε(zε)), pε(zε)) < ε. We observe that for each ε > 0

rε(xε) ∈ K is the ε-fixed point of the map ψ̃ = q̃p̃−1 (see the above diagrams).
The set K is compact, so ψ̃ has a fixed point. It is clear that Fix(ψ̃) ⊂ Fix(ϕ)
and the proof is complete. �

We recall that an admissible map ϕX : X � X is a compact absorbing
contraction (we write ϕX ∈ CAC(X)), provided that there exists an open set
U ⊂ X such that the following conditions are satisfied:

(i) the map ϕU : U → U given by ϕU (x) = ϕX(x) for each x ∈ U is compact
and ϕU (U) ⊂ U ,

(ii) for each x ∈ X there exists a natural number n such that ϕn
X(x) ⊂ U ,

where ϕn
X = ϕX ◦ ϕX ◦ . . . ◦ ϕX , (n-iterate).

Theorem 4.4 Let X be a metric space and ϕX : X � X be an admissible
map. Assume that ϕX ∈ CAC(X) and ϕU (U) ∈ ANMC(X), then ϕX is a
Lefschetz map.

Proof Let ϕ : (X,U) � (X,U) given by ϕ(x) = ϕX(x) for each x ∈ X
and let (p, q) ⊂ ϕX . Then there exists a space Z such that p : Z → X is a
Vietoris map and q : Z → X is a continuous map. Let p̃ : p−1(U) → U given
by p̃(x) = p(x) for each x ∈ p−1(U) and q : p−1(U) → U given by q̃(x) = q(x)
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for each x ∈ p−1(U). Then (p̃, q̃) ⊂ ϕU . From 3.4.5, 3.4.7 and 4.1 we get
that the homomorphism q̃∗p̃−1

∗ : H∗(U) → H∗(U) is a Leray endomorphism.
Let p̂, q̂ : (Z, p−1(U)) → (X,U) given by p̂(x) = p(x) and q̂(x) = q(x) for each
x ∈ Z. Then (p̂, q̂) ⊂ ϕ. The homomorphism q̂∗p̂−1

∗ : H∗(X,U) → H∗(X,U)
is weakly nilpotent (see [8, 21]). Hence, q∗p−1

∗ is a Leray endomorphism and
Λ(q∗p−1

∗ ) = Λ(q̃∗p̃−1
∗ ) (see Lemma 2.6 in [21] and 2.7). Assume that Λ(ϕX) 	=

{0} then there exists (p, q) ⊂ ϕX such that Λ(q∗p−1
∗ ) 	= 0. The above deduction,

4.1 and 3.4.7 implicate that Fix(ϕU ) 	= ∅ and the proof is complete. �

Remark 4.5 Generally, the last theorem can be proven with the assumption
that ϕX ∈ GCAC(X) (see [10, 11, 21]).

Open problem 4.6 Let X be a metric space that is not compact. Assume that
ANMC(X) = K(X). Is the space X ∈ ANMR?
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