
Kybernetika

Tyrone Rees; Martin Stoll; Andy Wathen
All-at-once preconditioning in PDE-constrained optimization

Kybernetika, Vol. 46 (2010), No. 2, 341--360

Persistent URL: http://dml.cz/dmlcz/140748

Terms of use:
© Institute of Information Theory and Automation AS CR, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/140748
http://project.dml.cz


KYBERNET IKA — VOLUME 4 6 ( 2 0 1 0 ) , NUMBER 2 , PAGES 3 4 1 – 3 6 0

ALL-AT-ONCE PRECONDITIONING
IN PDE-CONSTRAINED OPTIMIZATION

Tyrone Rees, Martin Stoll and Andy Wathen

The optimization of functions subject to partial differential equations (PDE) plays an
important role in many areas of science and industry. In this paper we introduce the basic
concepts of PDE-constrained optimization and show how the all-at-once approach will lead
to linear systems in saddle point form. We will discuss implementation details and different
boundary conditions. We then show how these system can be solved efficiently and discuss
methods and preconditioners also in the case when bound constraints for the control are
introduced. Numerical results will illustrate the competitiveness of our techniques.
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Classification: 65F10, 65N22, 65F50, 76D07

1. INTRODUCTION

For many decades researchers have studied the numerical solution of so-called for-
ward PDE problems, where the solution to a PDE has to be computed. Using
advances made for forward problems as well as the increase in available computing
power has enabled researchers to look at inverse or design problems. In such prob-
lems the aim is to minimize a functional J(y, u) subject to a PDE where y and u
are the state and control of the optimality system, respectively.

Optimal control subject to PDEs is a field where many contributions were made
over the last decade (see [17, 18, 28] for general introductions). We recently focussed
our interest on the fast solution of the linear systems that arise when the discretized
problem has to be solved [23, 24, 27]. In this paper we will focus our attention
on the details of implementation, boundary conditions, etc. that we find often not
addressed well.

2. THE PROBLEM

The optimization problem that we consider in this paper is given by the following
setup: given function, ȳ, that represents the desired state, minimize the functional

J(y, u) :=
1

2
‖y − ȳ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) , (1)
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for some domain Ω ∈ Rd ( d = 2, 3) with boundary Γ, where β ∈ R+ is a regulariza-
tion parameter. The state y and the control u are linked via the state equation

{
−∇2y = u in Ω,

y = g on Γ,
(2)

where g is a given function defined on the boundary Γ. Note that in our example
the state equation is simply the Poisson equation with Dirichlet boundary data,
but in general this could also be a more complicated PDE. Note that the variable
y can be eliminated from (1) using the state equation (2) which would result in a
problem where a function J(y(u), u) := F (u) has to be minimized. Minimizing F (u)
is typically referred to as the reduced problem; for reasons that become clear in
the next part we will refer to this problem as the unconstrained problem, since the
function F (u) has no additional constraints.

The case when F (u) has to be minimized subject to so-called bound constraints

ua(x) ≤ u(x) ≤ ub(x) a.e in Ω (3)

will be denoted as the constraint problem. Here, we define

Uad :=
{
u ∈ L2(Ω) : ua(x) ≤ u(x) ≤ ub(x) a.e in Ω

}
.

The presented setup can be summarized in the following PDE constrained optimiza-
tion problem





miny,u
1
2 ‖y − ȳ‖2L2(Ω) +

β
2 ‖u‖2L2(Ω) s.t.

−∇2y = u in Ω
y = g on Γ

ua(x) ≤ u(x) ≤ ub(x) a.e in Ω.

(4)

For a general discussion of problems of this type we refer to [9, 17, 23, 28] for more
details.

There are two paths that we can now take to obtain the solution to the opti-
mization problem (4). The first is optimize-then-discretize and the second approach
is discretize-then-optimize. These two approaches coincide for the minimization of
J(y, u) subject to many PDE problems, including in particular the Poisson equation,
but in general these two paths will not lead to the same setup (see [17] for a general
discussion and [6] for a particular example where the state equation is given by the
advection diffusion equation).

Following the discretize-then-optimize approach, we use the finite element method
to discretize (4). Let {φ1, . . . , φn+n∂

} be a set of finite element basis functions
associated with the n interior nodes and n∂ boundary nodes of a triangulation of Ω.
Consider uh =

∑n+n∂

i=1 uiφi and yh =
∑n+n∂

i=1 yiφi, the discrete analogues of u and
y respectively. Then it can be shown [23] that the discrete version of (4) is given by





min 1
2y

TMy − bTy + β
2u

TMu s.t.

Ky = Mu− d

ua ≤ u ≤ ub,

(5)
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where d represents the boundary data, bi =
∫
ȳφi and Ki,j =

∫
∇φi · ∇φj ,

Mi,j =
∫
φiφj represent the stiffness and mass matrices respectively. The third

line in (5) are bounds on finite element expansion coefficients which follow eas-
ily from (3) for any Lagrange finite elements, at least if ua, ub are piecewise
constant on the chosen mesh. Here, the set of admissible controls is given by
Uad := {u ∈ Rn : ua ≤ u ≤ ub}. Consider firstly the solution to the unconstrained
problem, where no bound constraints on the control u are present. We can write
down the Lagrangian

L(y,u,λ) = 1

2
yTMy − bTy +

β

2
uTMu+ λT (Mu−Ky − d), (6)

where λ is a vector of Lagrange multipliers. From this we immediately obtain the
following discrete optimality condition




M 0 −K
0 βM M

−K M 0




︸ ︷︷ ︸




y
u
λ


 =




b
0
d


 .

K

(7)

In Section 4.1 we will discuss the efficient solution of the linear system (7).
The introduction of bound constraints adds an extra layer of complexity to the

minimization of J(y,u) as the control has to be kept within Uad which requires an
inner-outer iteration process. The optimization problem (5) can also be solved using
a Lagrange multiplier approach (see [27, 28]). In this case the Lagrangian is also
given by L(y,u,λ) as shown in (6). Here differention with respect to y and λ are
as before, but when we consider box constraints on the control the last optimality
condition becomes the complementarity conditions

(u− u∗)T∇uL(y
∗,u∗,λ∗) = (u− u∗)T (βMu∗ +Mλ∗) ≥ 0 ∀u ∈ Uad, (8)

where * denotes the optimal value of the variable. Condition (8) follows from the
variational inequality

F ′(u∗)(u− u∗) ≥ 0 ∀u ∈ Uad,

where F (u) is equivalent to J(y(u),u) and Uad = {u ∈ Rn : ua ≤ u ≤ ub}. More-
over, it follows that u∗ solves the minimization problem

min
u∈Uad

uT (βMu∗ +Mλ∗) = (u∗)T (βMu∗ +Mλ∗). (9)

With Uad as defined above, we get the componentwise expression of u∗

(u∗)i =





(ub)i if (βMu∗ +Mλ∗)i < 0

∈ Uad if (βMu∗ +Mλ∗)i = 0

(ua)i if (βMu∗ +Mλ∗)i > 0.

(10)
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Relation (10) can be used to define a new Lagrangian by introducing two additional
parameters µa and µb which enable us to define a new Lagrange function taking the
bound constraints into account

L(y,u,λ,µa,µb) :=
1
2y

TMy− bTy + β
2u

TMu+ λT (−Ky+Mu− d)

+µT
a (ua − u) + µT

b (u− ub) ,
(11)

where µa and µb represent the Lagrange multipliers for the inequality constraints
on u. For the Lagrange function L(y,u,λ,µa,µb) the following theorem determines
the optimality criteria of the system (5) (see [28, Theorem 1.4]).

Theorem 2.1. For an optimal control u∗ with the corresponding state y∗ and an
invertible K there exist Lagrange multipliers λ, µa, and µb such that

∇yL(y∗,u∗,λ,µa,µb) = 0
∇uL(y∗,u∗,λ,µa,µb) = 0
µa ≥ 0,µb ≥ 0
µT
a (ua − u∗) = µT

b (u∗ − ub) = 0.

The conditions given in Theorem 2.1 are the so-called Karush–Kuhn–Tucker condi-
tions or KKT conditions (see [11, 20] for more information).

3. BOUNDARY CONDITIONS AND IMPLEMENTATION ISSUES

Homogeneous Dirichlet boundary

In practice, discretization of the optimality system (4) can be done by standard
finite element methods if the boundary conditions that we discuss in this section
are correctly implemented. In this section we want to address some of the issues
that arise when using standard finite element packages such as dealii [1] for the
discretization of (5).

In the normal manner with finite elements, we assemble the discretized Poisson’s
equation to give

K̂y = M̂u (12)

before applying the essential boundary conditions. Implementation of the essential
boundary conditions leads to

Ky = Mu− d, (13)

where d contains the Dirichlet boundary conditions.
To see how the boundary conditions are applied to the optimality system (7)

we write out the stiffness matrix without having applied the essential boundary
conditions as

K̂ =

[
XK Y T

K

YK KI

]
,

where the subscript I denotes the interior nodes. The corresponding mass matrix is

M̂ =

[
XM Y T

M

YM MI

]
.
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So far the Dirichlet boundary conditions have not been applied and we will discuss
this now in more detail. The discrete optimality system in the unconstrained case
and with no essential boundary condition is given by




XM Y T
M 0 0 −XT

K −YK

YM MI 0 0 −Y T
K −KT

I

0 0 βXM βY T
M XM Y T

M

0 0 βYM βMI YM NI

−XK −Y T
K XM Y T

M 0 0
−YK −KI YM MI 0 0







yB

yI

uB

uI

λB

λI



=




0
0
0
0
bB

bI



. (14)

Consider first the case where homogeneous Dirichlet boundary conditions are given
for the state and hence for the adjoint variable, i. e., yB = 0 and λB = 0 (see [28,
Lemma 2.24]). Applying this boundary condition we get




0 0 0 0 −I 0
0 MI 0 0 0 −KT

I

0 0 βXM βY T
M 0 Y T

M

0 0 βYM βMI 0 MI

−I 0 0 0 0 0
0 −KI YM MI 0 0







yB

yI

uB

uI

λB

λI



=




0
bI

0
0
0
0



.

Note that we still need to know the value of u on the boundary. Consider the third
and fourth equations of (14) written as

0 = M(βu+ λ) =

[
XM Y T

M

YM MI

] [
βuB + λB

βuI + λI

]
,

or, equivalently,

0 = XM (βuB + λB) + Y T
M (βuI + λI) (15)

0 = YM (βuB + λB) +MI(βuI + λI). (16)

Equation (16) gives (βuI +λI) = −M−1
I YM (βuB + λB) and putting that into (15)

we get

0 =
[
XM − Y T

MM−1
I YM

]
(βuB + λB).

Since M̂ is positive definite, its Schur-complement XM − Y T
MM−1

I YM is invertible
and so βuB + λB = 0. Since λB = 0 in this case, we have also that uB = 0.

Finally, applying this boundary condition, we get the linear system




0 0 0 0 −I 0
0 MI 0 0 0 −KT

I

0 0 I 0 0 0
0 0 0 βMI 0 MI

−I 0 0 0 0 0
0 −KI 0 MI 0 0







yB

yI

uB

uI

λB

λI



=




0
bI

0
0
0
0



. (17)
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Going back to the fact that we want to employ standard finite element packages that
are freely available, it has to be noticed that (17) would typically be taken to be




I 0 0 0 −I 0
0 MI 0 0 0 −KT

I

0 0 βI 0 I 0
0 0 0 βMI 0 MI

−I 0 I 0 0 0
0 −KI 0 MI 0 0







yB

yI

uB

uI

λB

λI



=




0
bI

0
0
0
0



. (18)

in such a software package. Note that (18) and (17) only yield the same solutions if
the components of y, λ and u on the boundary are zero. This has to be taken into
account when one wants to solve problems of this type employing standard finite
element packages. One possibility would be to only work with a saddle point problem
on the inner nodes of the domain but this would mean for a practical application
that the matrices need to be condensed; this is not feasible for most applications
as storage requirements and computing times would be too expensive. One way to
achieve the same effect is to use Krylov subspace solvers such as minres [21] or
Conjugate Gradients (cg) [15] which compute an approximation, satisfying certain
optimality criteria (cf. [8, 14, 25]), to the solution in the subspace

Kk(K, r0) = span
{
r0,Kr0,K2r0, . . . ,Kk−1r0

}
,

where r0 is the initial residual. These methods only require the multiplication of the
saddle point matrix K with a vector. In order to use the matrices coming from a
finite element package as given in (18) we have to start off with the initial residual r0
to have zero components in the direction of the boundary values for y, λ and u. This
means that the bold identity matrices in equation (18) will be mapped onto zeros
whenever a matrix-vector multiplication has to be performed. If this is satisfied it
is easy to see that the solutions to (18) and (17) will be equivalent. For the case of
homogeneous Dirichlet boundary conditions we know that both state y and adjoint
variable λ are zero on the boundary. In addition, we have already shown that the
control u is zero on the boundary and any Krylov subspace solver will provide an
approximation to the solution of (17) as all boundary components will be zero.

Inhomogeneous Dirichlet boundary

For the case of inhomogeneous boundary conditions on the state y, it is not imme-
diately obvious what the right boundary conditions are for the adjoint variable λ
and hence for the control u. We will discuss this now in more detail by considering
the inhomogeneous problem





miny,u J(y, u) s.t.

−∇2y = u in Ω

y = g on Γ.

(19)

Recall that in this example the discretize-then-optimize and optimize-then-discretize
approaches are equivalent, so the boundary conditions of the adjoint equation in the
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continuous setting will be the same as those needed for the corresponding equation
in the discretize-then-optimize approach we adopt above.

We introduce two Lagrange multipliers, λ1 and λ2, and formally consider the
Lagrangian

L :=
1

2
‖y − ȳ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) −

∫

Ω

(−∇2y − u)λ1 dx−
∫

Γ

(y − g)λ2 ds.

Now consider the Fréchet derivative with respect to y in the direction h:

DyL(y, u, λ1, λ2)h =

∫

Ω

(y − ȳ)h dx−
∫

Ω

−∇2hλ1 dx−
∫

Γ

λ2h ds

=

∫

Ω

(y − ȳ)h dx+

∫

Ω

h∇2λ1 dx−
∫

Γ

∂h

∂n
λ1 ds

+

∫

Γ

h
∂λ1

∂n
ds−

∫

Γ

λ2h ds. (20)

For a minimum, since there are no restrictions (e. g. box constraints) on the state,
we must have that

DyL(y, u, λ1, λ2)h = 0 ∀h ∈ H1(Ω).

In particular, we must have DyL(y, u, λ1, λ2)h = 0 for all h ∈ C∞
0 (Ω). In this case

h|Γ = 0 = ∂h
∂n |Γ, and so (20) reduces to

∫

Ω

(y − ȳ +∇2λ1)h dx = 0 ∀ h ∈ C∞
0 (Ω).

Thus, applying the fundamental lemma of the Calculus of Variations, we get that

−∇2λ1 = y − ȳ in Ω. (21)

Now consider h ∈ H1
0 (Ω), so that h|Γ = 0. Then we get

∫

Γ

∂h

∂n
λ1 ds = 0 ∀h ∈ H1

0 (Ω)

so we have
λ1 = 0 on Γ. (22)

The remaining equations give us the link between λ1 and λ2, namely

λ1 =
∂λ2

∂n
on Ω.

If we ignore the index for λ1 we can write the adjoint equation as

−∇2λ = y − ȳ in Ω (23)

λ = 0 on Γ. (24)
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For completeness we derive the continuous variational (in)equality. In the case
without constraints on the control we get that DuL(y, u, λ1, λ2)h = 0, so this gives
us ∫

Ω

(βu + λ)h dx = 0 ∀h ∈ H1(Ω).

Using the fundamental lemma of the calculus of variations, we get

βu + λ = 0 in Ω. (25)

Based on (23), (24) and (25) the control u is defined on the boundary of Ω. Again,
employing finite elements for the discretization of the optimal control problem





min 1
2 ‖y − ȳ‖2L2(Ω) +

β
2 ‖u‖2L2(Ω) s.t.

−∇2y = u in Ω

y = g on Γ,

(26)

we obtain the following




0 0 0 0 −I 0
0 MI 0 0 0 −KT

I

0 0 I 0 0 0
0 0 0 βMI 0 MI

−I 0 0 0 0 0
0 −KI 0 MI 0 0







yB

yI

uB

uI

λB

λI



=




0
bI − YMgB

0
0
gB

YKgB




(27)

where gB interpolates −g on Γ and both uB and λB are zero on the boundary.
For consistency with the notation used above we define b̂I := bI − YMgB and
dI := YKgB. Again, the same implementation issues arise as the finite element
package of choice will most likely only present a system of the form




I 0 0 0 −I 0
0 MI 0 0 0 −KT

I

0 0 βI 0 I 0
0 0 0 βMI 0 MI

−I 0 I 0 0 0
0 −KI 0 MI 0 0







yB

yI

uB

uI

λB

λI



=




0

b̂I

0
0
gB

dI



. (28)

Note that this system could be decoupled to give two independent linear systems
– one involving the boundary terms, [yB,uB ,λB]

T , and the other in the interior
terms, [yI ,uI ,λI ]

T . Solving only with the second of these would give the solution
of the optimal control problem, since the boundary values are known; however, as
described above, deflating the matrix in this way would be an expensive operation.
Consider the decoupled system containing just the boundary terms of (18):




I 0 −I
0 βI I
−I I 0






yB

uB

λB


 =




0
0
gB


 . (29)
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When the bold identity matrices – which are an artifact of the finite element software
– are included it is easy to see that this system will yield incorrect values for yB ,uB,
and λB. If we set gB = 0 this will give the solution yB = uB = λB = 0, as
in the homogeneous case. Since the interior and boundary equations in (28) are

independent, and the boundary conditions are still present in b̂I and dI , this will
not affect the solution at the interior nodes. After having obtained the solution we
can then set the correct boundary values for the optimal state and control. We will
show results using this technique in Section 5.

3.1. Other boundary conditions

Consider the following problem, with mixed boundary conditions:





min 1
2 ‖y − ȳ‖2L2(Ω) +

β
2 ‖u‖2L2(Ω) s.t.

−∇2y = u in Ω

y = g1 on Γ1 and ∂y
∂n = g2 on Γ2

ua(x) ≤ u(x) ≤ ub(x) a.e in Ω,

(30)

where Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = Γ. This is a generalization of the case considered
above: Γ1 = Γ gives the inhomogeneous Dirichlet problem. Problems of this type
can be treated in the same way as described above. In this case we simply split up
the matrices K and M before applying the boundary conditions as

K =

[
XK Y T

K

YK KN

]
, M =

[
XM Y T

M

YM MN

]
,

where KN and MN refer to the nodes in the interior of Ω, as in the purely Dirichlet
case, with the addition of the nodes on Γ2. In the case where g2 6= 0 there will
also be the standard addition of an integral over Γ2 on the right hand side which is
associated with the Neumann boundary condition.

In the special case where Γ1 = ∅ we have a purely Neumann problem, and hence
K is a singular matrix with a one dimensional kernel. In the numerical methods
that follow we require K to be invertible, so we fix y at one node, in effect giving us
a mixed problem with a Dirichlet boundary condition at just one node. The stiffness
matrix K is then invertible, and we can use the same method as described above for
the mixed boundary condition case.

4. NUMERICAL SOLUTION

4.1. Without bound constraints

The numerical solution of the optimality system (5) based on the Lagrange multiplier
approach shown in Section 2 leads to solving the linear system given in (7). The
system matrix K is symmetric and indefinite and in so-called saddle point form.
Linear systems of this type have been studied intensively and we refer to [2, 8] for
a general discussion of solution techniques. Here we will focus on the systems that
arise in the context of PDE-constrained optimization. Systems of the type given in
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(7) are typically very poorly conditioned which means any iterative solver will only
be used in conjunction with preconditioning techniques, i. e.,

P−1Kx = P−1b,

where the preconditioner P represents a good approximation to K but should also
be easy to invert. The question now is which preconditioner is best suited for the
linear system (7).

One ‘ideal’ preconditioner, proposed by Rees, Dollar and Wathen in [23], is the
block-diagonal preconditioner

P̃BD =




M 0 0
0 βM 0
0 0 KM−1KT


 ,

where, in the (3,3) block, the Schur complementKM−1KT+ 1
βM – which would give

the exact solution in three iterations using minres [19] – has been approximated
by its dominant part, KM−1KT .

This preconditioner is symmetric and positive definite, which allows us to use
the minimal residual method (minres) proposed in [21], a method designed for
symmetric and indefinite systems. However, preconditioned minres requires a
solve with P̃BD at each step of the iteration, which is expensive here. Therefore, we
approximate P̃BD with

PBD =




A0 0 0
0 βA0 0
0 0 S0


 ,

where A0 and S0 are matrices – possibly defined implicitly – that are spectrally
equivalent to M and KM−1KT respectively and which are inexpensive to solve for
a given right hand side.

Consider first the action of the inverse of the mass matrix; suppose we have a
system Mz = b̂. One choice of preconditioner for the mass matrix is to let A−1

0

denote a fixed number of steps of the Chebyshev semi-iteration [12, 13] used to
accelerate a relaxed Jacobi iteration. This is given by the three term recurrence
relation

z(k+1) = ϑk+1(Sz
(k) + g− z(k−1)) + z(k−1), (31)

where S = I − ωD−1M , g = ωD−1b̂, ϑk+1 = Tk(1/ρ)
ρTk+1(1/ρ)

and Tk denotes the kth

Chebyshev polynomial of the first kind (see Algorithm (4.1)). The relaxation pa-
rameter ω is chosen in such a way that the eigenvalues of S lie in an interval which
is symmetric about the origin (see [8]). As shown by Wathen and Rees [30] this
method is very effective in the case of the mass matrix since the values ϑk+1 can be
computed using the bounds for eigenvalues of the iteration matrix, given by Wathen
[29], and then using the recursive definition of the Chebyshev polynomials.
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1: Set D = diag(M)
2: Set relaxation parameter ω
3: Compute g = ωD−1b̂
4: Set S = (I − ωD−1M) (this can be used implicitly)
5: Set z0 = 0 and z1 = Szk−1 + g
6: c0 = 2 and c1 = ω
7: for k = 2, . . . , l do
8: ck+1 = ωck − 1

4ck−1

9: ϑk+1 = ω ck
ck+1

10: zk+1 = ϑk+1(Szk + g− zk−1) + zk−1

11: end for

Algorithm 1. Chebyshev semi-iterative method for a number of l steps.

We now turn our attention to the approximation of the Schur complement, S0.
We want a linear operator that has the action of (KM−1KT )−1 = K−TMK−1. It
is well known (see, for example, [8]) that a fixed number of multigrid V-cycles is
an efficient preconditioner for the stiffness matrix, K. However, if K̂ is an effective
preconditioner for K, then K̂2 is not necessarily an effective preconditioner for K2,
which is essentially the situation we have here. Fortunately, for our case Braess and
Peisker [22] showed that KM−1KT is spectrally equivalent to K̂M−1K̂T , where
K̂−1 denotes a fixed number of multigrid V-cycles. In the results that follow we use
the Trilinos ML package [10] – an algebraic multigrid method (AMG) routine.

The second preconditioner we discuss here is a block triangular preconditioner
which was proposed by Rees and Stoll in [24]. This preconditioner has the form

PBT =




γ0A0 0 0
0 βγ0A0 0

−K M −S0


 ,

where γ0 is a scaling factor defined below. If we apply this preconditioner (on the
left) to the matrix K the resulting matrix will be, in general, nonsymmetric, but
as Bramble and Pasciak showed in [5], a non-standard inner product 〈·, ·〉H can be
introduced such that the preconditioned matrix P−1K is symmetric and positive
definite in this inner product. Based on this observation a Bramble–Pasciak version
of the cg method can be implemented, see Algorithm 2.

1: Given x0 = 0, set r0 = P−1 (b−Kx0) and p0 = r0
2: for k = 0, 1, . . . do

3: α = 〈rk,rk〉H
〈P−1Kpk,pk〉H

4: xk+1 = xk + αpk

5: rk+1 = rk − αP−1Kpk

6: β =
〈rk+1,rk+1〉H

〈rk,rk〉H
7: pk+1 = rk+1 + βpk

8: end for

Algorithm 2. Non-standard inner-product cg.
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The non-standard inner product is given by 〈x,y〉HBT = xTHBTy, where

HBT =




M − γ0A0 0 0
0 β(M − γ0A0) 0
0 0 −S0


 .

Note that this only defines an inner product if the diagonal blocks are symmetric
and positive definite. This is typically a drawback of the Bramble–Pasciak cg
as this might involve an expensive calculation to determine an appropriate scaling
parameter, γ0, which ensures positive-definiteness.

Recently, Rees and Stoll showed in [24] that for A0 as defined above, the scaling
can be done trivially and good performance can be observed. The condition that
M − γ0A0 is positive definite is equivalent to 1

γ0
A−1

0 M − I being positive definite,

and hence we need to know the smallest eigenvalue of A−1
0 M . For the case where A0

is a fixed number of steps of the Chebyshev semi-iteration the largest and smallest
eigenvalues of A−1

0 M are known analytically for any given number of iterations –
these values are tabulated in [24]. An appropriate scaling γ0 with the required
properties can then simply be chosen.

We want to discuss the Bramble–Pasciak cg in more detail as the efficient im-
plementation of the Bramble–Pasciak method can be quite subtle (see [7, 26]). For
reasons of convenience we will go back to the 2 × 2 saddle point formulation where
A0 is the preconditioner for the (1, 1) block and S0 the Schur-complement precon-
ditioner. The computation of α in Algorithm 2 (line 3) can be done in the following
way

〈rk, rk〉H = rTk

[
AA−1

0 r̃
(1)
k − r̃

(1)
k

BA−1
0 r̃

(1)
k − r̃

(2)
k

]
= 〈r(1)k , (Krk)

(1) − r̃
(1)
k 〉 − 〈r(2)k , r

(2)
k 〉 (32)

and

〈P−1Kpk, pk〉H = pTk

[
AA−1

0 − I 0
BA−1

0 −I

] [
p̂
(1)
k

p̂
(2)
k

]

= 〈(Kpk)
(1), A−1

0 (Kpk)
(1)〉 − 〈p(1)k , (Kpk)

(1)〉 − 〈p(2)k , (Kpk)
(2)〉

(33)

where the indices in r
(1)
k and r

(2)
k and other vectors stand for the blocks corresponding

to the components of the saddle point matrix, and the vector r̃k corresponds to the
unpreconditioned residual. It can now easily be seen that we never explicitly need
A0 or S0 as the matrices are usually not given, e. g. A−1

0 represents a multigrid
operator. We can now easily compute line 6 in Algorithm 2. It has to be noted that
both (32) and (33) require the computation of a product with K which should be
avoided. Therefore, we will use the relation

Kpk+1 = Krk+1 + βKpk

to only compute one matrix vector product per iteration. As a result the Bramble–
Pasciak cg method only needs one more multiplication with the matrix B in com-
parison to minres with block-diagonal preconditioning.
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4.2. With bound constraints

We now want to present a numerical scheme to solve problem (5). The method
we want to analyze here is a primal-dual active set method introduced in [3]. For
reasons of convenience, we use a new Lagrange multiplier µ instead of µa and µb

which is defined as follows

µ := µa − µb = βMu+Mλ. (34)

Then we get for the optimal control

(u∗)i





= (ua)i if (µ)i > 0

∈ Uad if (µ)i = 0

= (ub)i if (µ)i < 0.

(35)

The quantity u∗ − µ is an indicator whether a constraint is active or inactive and
based on this an active set strategy can be implemented. For a general introduction
to active set methods we refer to [11, 20] and in the particular case of a primal-dual
active set strategy for PDE constrained optimization we refer to [3, 18, 28].

In more detail, we define the active sets as

A+ = {i ∈ {1, 2, . . . , N} : (u∗ − µ)i > (ub)i} (36)

A− = {i ∈ {1, 2, . . . , N} : (u∗ − µ)i < (ua)i} (37)

AI = {1, 2, . . . , N} \ (A+ ∪ A−) (38)

and note that the following conditions have to hold in each step of an iterative
procedure

My(k) −M ȳ −KTλ(k) = 0 (39)

−Ky(k) +Mu(k) = d (40)

βMu(k) +Mλ(k) − µ(k) = 0 (41)

µ(k) = 0 on A(k)
I (42)

u(k) = ua on A(k)
− (43)

u(k) = ub on A(k)
+ . (44)

The full numerical scheme is summarized in Algorithm 3.

1: Choose initial values for u(0), y(0). λ(0) and µ(0)

2: for k = 1, 2, . . . do

3: Set the active sets A(k)
+ , A(k)

− and A(k)
I as given in (36), (37) and (38)

4: if k > 1, A(k)
+ = A(k−1)

+ , A(k)
− = A(k−1)

− , and A(k)
I = A(k−1)

I then
5: STOP (Algorithm converged)
6: else
7: Solve (39) to (44)
8: end if
9: end for

Algorithm 3. Active set algorithm.
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Solving (39), (40) and (41) results in the linear system




M 0 −K
0 βM M

−K M 0






y(k)

u(k)

λ(k)


=




M ȳ
µ(k)

0


 . (45)

Using a technique given in [9, 27] the linear system (45) can be reduced to the
following linear system




M 0 −K

0 βMA(k)
I ,A(k)

I MA(k)
I ,:

−K M :,A(k)
I 0







y(k)

uA(k)
I

λ(k)


=



M ȳ

−βMA(k)
I ,A(k)

+ ub − βMA(k)
I ,A(k)

− ua

−M :,A(k)
+ ub −M :,A(k)

− ua




(46)

using the fact that the control is known on both A(k)
− and A(k)

+ . Once, the system

(46) is solved, we can update the Lagrange multipliers associated with the sets A(k)
+

and A(k)
−

µA(k)
+ = βMA(k)

+ ,A(k)
I uA(k)

I + βMA(k)
+ ,A(k)

+ ub + βMA(k)
+ ,A(k)

− ua +MA(k)
+ ,:λ(k)

µA(k)
− = βMA(k)

− ,A(k)
I uA(k)

I + βMA(k)
− ,A(k)

+ ub + βMA(k)
− ,A(k)

− ua +MA(k)
− ,:λ(k).

(47)

The linear system (46) can now be solved using either the block-diagonal or block-
triangular preconditioners presented in Section 4.1 as this represents an uncon-
strained problem on the free variables represented in AI . In [9] multigrid approaches
are presented in order to solve (46). It has to be noted that in comparison to the un-
constrained problem the cost per iteration for one iteration of the active set method
corresponds to solving the unconstrained problem. But the active set method bene-
fits in subsequent steps from having a good initial guess which reduces the number
of iterations needed to solve the linear system in later iterations.

A convergence criterion for the method is given in [3], i. e., if the active sets
stay unchanged in two consecutive steps the method has found a local minimum
and the algorithm can be terminated. In [16, 27] it is demonstrated that the active
set method presented here is a semi-smooth Newton method that under certain
conditions gives superlinear convergence. Stoll and Wathen [27] showed that this
method can also be derived when we start from a projected gradient approach with
Newton acceleration as given in [4]. A projected gradient method with steepest
descent direction can also be used but the cost is comparable to the active set
method for each iteration step but the convergence is much slower (see [27]).

5. NUMERICAL RESULTS

We illustrate our method using the following example. Let Ω = [0, 1]m, where
m = 2, 3, and consider the problem

min
y,u

1

2
‖y − ȳ‖2L2(Ω) +

β

2
‖u‖2L2(Ω)
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s.t. −∇2y = u in Ω (48)

y = ȳ on Γ (49)

where

ȳ =

{
−x1 exp

(
−
(
(x1 − 1

2 )
2 + (x2 − 1

2 )
2
))

if (x1, x2) ∈ [0, 1]2

−x1 exp
(
−
(
(x1 − 1

2 )
2 + (x2 − 1

2 )
2 + (x3 − 1

2 )
2
))

if (x1, x2, x3) ∈ [0, 1]3.

The bounds ua and ub are defined as follows

ua =

{
−0.35 if x1 < 0.5
−0.4 otherwise

and

ub =

{
−0.1 exp

(
−
(
x2
1 + x2

2

))
if (x1, x2) ∈ [0, 1]2

−0.1 exp
(
−
(
x2
1 + x2

2 + x2
3

))
if (x1, x2, x3) ∈ [0, 1]3.

Figure 1 illustrates the the desired state. We discretize the optimality system using
Q1 finite elements using dealii [1]. The tolerance for both methods is given by 10−6

where we check for both methods the unpreconditioned relative residual.

(a) Desired state in 2D (b) Desired state in 3D

Fig. 1. Desired state ȳ.

Figure 2 shows the state and the control in two dimensions for the optimal control
problem with control constraints for β = 10−2.

For the active set method, Bergounioux et al. [3] use different start-up conditions.
We employ only that which proved best for the examples analyzed in [3], namely





u(0) = ub

Ky(0) = Mu(0)

KTλ(0) = My(0) −M ȳ

µ(0) = βMu(0) +Mλ(0).

(50)
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(c) Control (d) State

Fig. 2. Control and state for β = 10−2.

We now want to introduce the overall setup that is used for our computations.
For A0 we will use 10 steps of the Chebyshev semi-iterative method. The Schur
complement is approximated by S0 = K̂M−1K̂T where K̂ represents two V cycles
of the ML AMG [10] with 10 steps of a Chebyshev smoother. As a basis for our
computations we use dealii [1] a C++ framework for finite element calculations.

Table 1. Iteration numbers and CPU times

for different mesh sizes in two dimensions.

N BPCG MINRES AS(BPCG) t(BPCG) t(MINRES) t(AS)
289 8 12 3(21) 0.02 0.03 0.07
1089 8 10 3(23) 0.08 0.09 0.26
4225 8 12 4(37) 0.32 0.44 1.56
16641 9 13 4(44) 1.62 2.17 8.23
66049 10 16 4(52) 8.7 13.03 46.46
263169 12 21 4(61) 43.54 71.93 227.18
1050625 15 38 4(88) 222.9 528.04 1305.17

Table 1 shows the results in two dimensions obtained for different mesh sizes. The
number of Bramble–Pasciak cg and minres iterations and CPU times are shown,
as well as the number of outer active set iterations together with the total number
of Bramble–Pasciak cg solves needed for the linear systems within the active set
method, and the CPU times in this case. Table 2 shows the equivalent data in three
dimensions.
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Table 2. Iteration numbers and CPU times

for different mesh sizes in three dimensions.

N BPCG MINRES AS(BPCG) t(BPCG) t(MINRES) t(AS)

125 7 9 2(13) 0.01 0.01 0.02
729 7 10 2(14) 0.08 0.11 0.18
4913 7 10 2(15) 0.64 0.83 1.5
35937 7 10 3(21) 6.15 8 19.7
274625 7 10 3(22) 52.19 68.58 173.94
2146689 7 12 4(32) 445.05 693.98 2128.25

Figure 3 shows the iterations numbers of minres, the Bramble–Pasciak cg,
and the total number of Bramble–Pasciak cg iterations for a number of smaller
matrices (N = 729, 4913, 35937) and different β values. All results are for the
previously described setup in three dimensions. It can be seen that the iteration
numbers are constant with respect to mesh-size but go up once the regularization
parameter β is decreasing.

Fig. 3. Iterations for minres, Bramble–Pasciak cg, and the total number of

Bramble–Pasciak iterations for the active set method.

6. CONCLUSION

In this paper we have illustrated how all-at-once methods can be employed to solve
problems from PDE-constrained optimization. In particular, we showed that both
problems with and without control constraints lead to linear systems in saddle point
form and we presented efficient preconditioning strategies for both problems. We
have discussed implementation issues that arise from using available finite element
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packages as well as looking at different boundary conditions as part of the state
equation. We illustrated the efficiency and competitiveness of our approach.
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