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BOUNDS OF MODULUS OF EIGENVALUES

BASED ON STEIN EQUATION

Guang-Da Hu and Qiao Zhu

This paper is concerned with bounds of eigenvalues of a complex matrix. Both lower and
upper bounds of modulus of eigenvalues are given by the Stein equation. Furthermore, two
sequences are presented which converge to the minimal and the maximal modulus of eigen-
values, respectively. We have to point out that the two sequences are not recommendable
for practical use for finding the minimal and the maximal modulus of eigenvalues.

Keywords: eigenvalues, lower and upper bounds, Stein equation

Classification: 65F10, 65F15

1. INTRODUCTION

Spectral radiuses of different types of matrices such as nonnegative matrices [13],
nonnegative irreducible matrices [4, 10, 11], H-matrices [8], product of matrices [2]
and component-wise product of matrices [12], have been investigated. However, to
authors’ knowledge, for arbitrary matrix, there are few results presented to estimate
the eigenvalues by the lower and upper bounds of their modulus. This is the origin
of this paper.

Recently, by applying the relationship between the weighted logarithmic matrix
norm and Lyapunov equation [5, 6], a bound of the maximal real part of any real
matrix was obtained in [7]. Following the ideas employed in [5], [6] and [7], a upper
bound of the spectral radius of any real matrix is given in [14] on the basis of the
relationship between the weighted matrix norm and the discrete Lyapunov equation
(Stein equation). Furthermore, an iterative scheme to estimate the spectral radius
of any real matrix is also obtained in [14]. In this paper, along the line of [14], both
lower and upper bounds of modulus of eigenvalues are given by the Stein equation.
Furthermore, two sequences are presented which converge to the minimal and the
maximal modulus of eigenvalues, respectively. We have to point out that the two
sequences are not recommendable for practical use for finding the minimal and the
maximal modulus of eigenvalues because they are many times more expensive than
the standard method for finding eigenvalues (QR method), see Chapter 7 of [3].
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2. PRELIMINARIES

In this paper, (·, ·) denotes an inner product on C
n and ‖ ·‖ the corresponding inner

product norm. Let H be a positive definite matrix. The function (·, ·)(H) defined on
C

n by (x, y)(H) = y∗Hx is said to be weight H inner product in order to distinguish
from the standard inner product (x, y)(I) = y∗x, where I is the unit matrix. For
any matrix F, F ∗ stands for the conjugate transpose, λi(F ) the i− th eigenvalue,
the spectral radius ρ(F ) = maxi |λi(F )|, and vex(F ) the vex-function of matrix F
which is the vector formed by stacking the columns of F into one long vector. The
symbol ⊗ stands for the Kronecker product [9].

In this section, several definitions and lemmas are given. They will be used to
prove main results of this paper.

Let matrix A = [aij ] ∈ C
n×n. Several important examples of matrix norms

defined on C
n×n are as follows. The maximum column sum matrix norm ‖ · ‖1, the

maximum row sum matrix norm ‖ · ‖∞ and the spectral norm ‖ · ‖2 are

‖A‖1 = max
1≤j≤n

n
∑

i=1

|aij |,

‖A‖∞ = max
1≤i≤n

n
∑

j=1

|aij |,

and

‖A‖2 =
√

λmax(A∗A),

respectively. The above three formulas can be found in [9].

Lemma 2.1. (Lancaster [9]) If A ∈ C
n×n, then, for any matrix norm ‖ · ‖,

ρ(A) ≤ ‖A‖. (1)

Definition 2.2. (Lancaster [9]) A matrix A ∈ C
n×n is said to be stable with

respect to the unit circle if all its eigenvalues λi(A)(1 ≤ i ≤ n) lie inside the unit
circle, that is, |λi(A)| < 1 for all 1 ≤ i ≤ n.

Lemma 2.3. (Lancaster [9]) Let A, V ∈ C
n×n and let V be positive definite. The

matrix A is stable with respect to the unit circle, if and only if there is a positive
definite matrix H satisfying Stein equation

H − A∗HA = V. (2)

Definition 2.4. (Hu and Liu [6]) For any vector x, any matrix A and any positive
definite matrix H , the weight H norm of x and weight H norm of A are defined,
respectively, by

‖x‖(H) =
√

x∗Hx, ‖A‖(H) = max
x 6=0

‖Ax‖(H)

‖x‖(H)
. (3)
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For a stable matrix, we can obtain a weight H matrix norm which is less than 1
by the following lemma.

Lemma 2.5. If a matrix A ∈ C
n×n is stable, then there is a weight H matrix norm

such that

‖A‖(H) =

√

1 − 1

ρ(H)
, (4)

where the positive definite matrix H satisfies the following Stein equation

H − A∗HA = I. (5)

P r o o f . Because of the condition ρ(A) < 1, according to Lemma 2.3, there is a
positive definite matrix H satisfying A∗HA − H = −I. By Definition 2.4, we can
get that

‖A‖2
(H) = max

x 6=0

‖Ax‖2
(H)

‖x‖2
(H)

= max
x 6=0

x∗A∗HAx

x∗Hx

= max
x 6=0

x∗(H − I)x

x∗Hx
= max

x 6=0
(1 − x∗x

x∗Hx
) = 1 − 1

ρ(H)

which implies the assertion (4). �

From the above lemma, we can immediately obtain the following lemma.

Lemma 2.6. For matrix A ∈ C
n×n, there is a weight H matrix norm such that

‖A‖(H) = γ

√

1 − 1

ρ(H)
. (6)

where the constant γ > ρ(A) and the positive definite matrix H satisfies the following
Stein equation

H − Ã∗HÃ = I, (7)

where Ã = A/γ.

Remark 2.7. For A 6= 0, we have ρ(H) > 1 from formula (6) and ‖A‖(H) 6= 0.
Here H satisfies Eq. (7). Hence we obtain that

‖H‖m ≥ ρ(H) > 1,

where m = 1, 2 and ∞.

Remark 2.8. When A is a real matrix, the above Lemmas 2.5 and 2.6 are given
in [14].
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3. MAIN RESULTS

In this section, the main results of this paper are presented. From Lemmas 2.5 and
2.6, we have the following results.

Theorem 3.1. Let A ∈ C
n×n.

1. If A is stable, then there is a weight H matrix norm such that

ρ(A) ≤ ‖A‖(H) ≤
√

1 − 1

‖H‖1
, (8)

where H satisfies Eq. (5) in Lemma 2.5.

2. If A is unstable, and ρ(A) < ‖A‖1, then there is a weight H matrix norm such
that

ρ(A) ≤ ‖A‖(H) ≤ ‖A‖1

√

1 − 1

‖H‖1
, (9)

where H satisfies Eq. (7) and γ = ‖A‖1 in Lemma 2.6.

P r o o f . From formula (4),

‖A‖(H) =

√

1 − 1

ρ(H)
.

By Lemma 2.1, ρ(H) ≤ ‖H‖1. We obtain that

ρ(A) ≤ ‖A‖(H) =

√

1 − 1

ρ(H)
≤

√

1 − 1

‖H‖1
.

Formula (8) is proved. Similarly, formula (9) can be derived. The proof is completed.
�

Remark 3.2. The spectral radius of positive definite matrix H is equal to its max-
imal eigenvalue.

Now we discuss the lower bound of modulus of eigenvalues. Assume that the
eigenvalues of A are λ1, λ2, . . . , λn. If detA 6= 0, the eigenvalues of A−1 are 1

λ1
, 1

λ2
, . . .

. . . , 1
λn

, respectively. This result implies that we can get the lower bound of modulus

of eigenvalues of A by estimating the spectral radius of A−1.

Theorem 3.3. Let A ∈ C
n×n. Assume that δ < min1≤i≤n |λi(A)| for some δ > 0,

then there is a weight L matrix norm such that

‖A−1‖(L) =
1

δ

√

1 − 1

ρ(L)
≤ 1

δ

√

1 − 1

‖L‖1
, (10)



Bounds of Modulus of Eigenvalues 659

where the positive definite matrix L satisfies the following Stein equation

A∗LA − δ2L = A∗A. (11)

Furthermore,

min
1≤i≤n

|λi(A)| ≥ δ
√

1 − 1
ρ(L)

≥ δ
√

1 − 1
‖L‖1

. (12)

P r o o f . Since |λi(A)| > δ, then 1/|λi(A)| < 1/δ. Since 1/λi(A) is the eigenvalues
of A−1 for i = 1, 2, . . . , n, we get

1

|min1≤i≤n λi(A)| = ρ(A−1) <
1

δ
, (13)

From Lemma 2.6, we have

ρ(A−1) ≤ ‖A−1‖(L) =
1

δ

√

1 − 1

ρ(L)
, (14)

where L satisfies the Stein equation

L − Ã∗LÃ = I, (15)

here Ã = A−1δ is stable.
By Eq. (15), we have the Stein equation

A∗LA − δ2L = A∗A. (16)

By Eqs. (13) and (14), we have

min
1≤i≤n

|λi(A)| ≥ δ
√

1 − 1
ρ(L)

≥ δ
√

1 − 1
‖L‖1

. (17)

�

By Lemma 2.6 and Theorems 3.1 and 3.3, we have the following result to estimate
modulus of eigenvalues.

Theorem 3.4. For matrix A ∈ C
n×n, if the conditions of Lemma 2.6 and Theorem

3.3 are satisfied, then

δ
√

1 − 1
‖L‖1

≤ |λi(A)| ≤ γ

√

1 − 1

‖H‖1
, i = 1, 2, . . . , n, (18)

where γ = 1 if A is stable.

Remark 3.5. In [14], the lower bound of modulus of eigenvalues is not considered.
By the lower bound, more information on eigenvalues can be known.
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In the following, two sequences are presented which converge to the minimal and
the maximal modulus of eigenvalues, respectively. Before the proof of this result,
we discuss briefly how to solve the Stein equation. For a stable matrix A, the Stein
equation (4) has a unique solution [9] which will be used in the sequel. An efficient
computational method for solving the Stein equation is provided in [1].

Theorem 3.6. Let A ∈ C
n×n, the following two sequences can be used to estimate

the upper and lower bounds of modulus of its eigenvalues, respectively.

1. There are a sequence of positive definite matrices {Hk} and a sequence of
numbers {αk} as follows:

α0 = ‖A‖1, (19)

α2
0H1 − A∗H1A = α2

0I, (20)

α1 = α0

√

1 − 1
‖H1‖1

, (21)

...

α2
kHk+1 − A∗Hk+1A = α2

kI, (22)

αk+1 = αk

√

1 − 1
‖Hk+1‖1

, (23)

such that for i = 1, . . . , n,

|λi(A)| ≤ αk, and lim
k→∞

αk = ρ(A) = max
1≤i≤n

|λi(A)|. (24)

2. If A is nonsingular, there are a sequence of positive definite matrices {Lk} and
a sequence of numbers {βk} as follows.

β0 = 1/‖A−1‖1, (25)

A∗L1A − β2
0L1 = A∗A, (26)

β1 = β0/
√

1 − 1
‖L1‖1

, (27)

...

A∗Lk+1A − β2
kLk+1 = A∗A, (28)

βk+1 = βk/
√

1 − 1
‖Lk+1‖1

, (29)

such that for i = 1, . . . , n,

|λi(A)| ≥ βk and lim
k→∞

βk = min
1≤i≤n

|λi(A)|. (30)

P r o o f . It is known that α0 = ‖A‖1 ≥ ρ(A). If α0 = ρ(A), then the maximum of
modulus of eigenvalues is obtained and the theorem is proved. Otherwise, α0 > ρ(A)
and ρ( A

α0
) < 1. Let γ = α0 in Lemma 2.6, we obtain

‖A‖(H1) = α0

√

1 − 1

ρ(H1)
≤ α0

√

1 − 1

‖H1‖1
,
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since ρ(H1) ≤ ‖H1‖1. Here H1 satisfies

α2
0H1 − A∗H1A = α2

0I

which is equivalent to Eq. (7) in Lemma 2.6 for γ = α0.
From the properties of the matrix norm, we have

ρ(A) ≤ ‖A‖(H1) ≤ α0

√

1 − 1

‖H1‖1
= α1.

If α1 = ρ(A), then the maximal module of eigenvalues is obtained and the theorem
is obtained. Otherwise, we obtain the positive definite matrix H2 such that

‖A‖H2
= α1

√

1 − 1

ρ(H2)
≤ α0

√

1 − 1

‖H2‖1
= α2,

where H2 satisfies the Eq. (7) in Lemma 2.6 for γ = α1.
We can repeat the above process for k ≥ 2, then the theorem is proved if

ρ(A) = αk, or Eqs. (22) and (23) hold if ρ(A) < αk. Thus, we only need to prove
limk→∞ αk → ρ(A) under the condition ρ(A) < αk for all k ≥ 0. In the case, {αk}
is a monotone decreasing sequence and has a limit since it is bounded. Let α be
the limit of αk as k → ∞. Assume that α 6= ρ(A), then we can get ρ(A) < α since
ρ(A) < αk for k ≥ 0. Thus, the Stein equation

H − Ã∗HÃ = I

where Ã = A/α, and its equivalent one

G∞x = c

have unique solutions H > 0 and x, respectively, where

G∞ = I − ÃT ⊗ Ã∗, x = vex(H), c = vex(I).

Similarly, since ρ(A) < αk for k ≥ 0, the following equivalent equations

Hk+1 − Ãk

∗
Hk+1Ãk = I

and
Gkxk = c

have unique solutions Hk+1 > 0 and xk, respectively, where

Ãk = A/αk, Gk = I − Ãk

T ⊗ Ãk

∗
, xk = vex(Hk+1).

Since limk→∞ αk = α, limk→∞ Gk = G∞. It follows that limk→∞ xk = x and
limk→∞ Hk = H . From (23), we have

α = α

√

1 − 1

ρ(H)
.
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which contradicts the assumption α 6= ρ(A). Clearly, the assertion 1 is proved.
The proof of the assertion 2 is as follows. Notice that

min
1≤i≤n

|λi(A)| ≥ 1/‖A−1‖1.

Let δ = 1/‖A−1‖1 in Theorem 3.3. The proof of the assertion 2 is similar to the
assertion 1. Thus, the proof is completed. �

Remark 3.7. For computing the modulus of eigenvalues, the computational effort
of the sequences in Theorem 3.6 is many times more expensive than the standard
method (QR method) for finding eigenvalues, see Chapter 7 of [3]. Hence the two
sequences in Theorem 3.6 are not recommendable for practical use for finding the
minimal and the maximal modulus of eigenvalues. In this paper, we only emphasize
the theoretical aspect of the results derived.

The following result shows the partial order relations among the weight matrices
in Theorem 3.6. The partial order relation Hk+1 > Hk means that the matrix
(Hk+1 − Hk) is positive definite.

Theorem 3.8. Let detA 6= 0. For the two sequences of positive definite matrices
{Hk} and {Lk} in Theorem 3.6, if αk+1 < αk and βk+1 > βk, then for any k ≥ 0,

Hk+1 > Hk (31)

and
Lk+1 > Lk. (32)

P r o o f . We only give the proof of (31), since the proof of (32) is similar. From
Theorem 3.6, we see that

α2
k−1Hk − A∗HkA = α2

k−1I,

α2
kHk+1 − A∗Hk+1A = α2

kI,

they can be rearranged to

Hk − 1

α2
k−1

A∗HkA = I,

Hk+1 −
1

α2
k

A∗Hk+1A = I.

From above two equations, we have that

(Hk+1 − Hk) − A∗

αk

(Hk+1 − Hk)
A

αk

=

(

1

α2
k

− 1

α2
k−1

)

A∗HkA. (33)

Since αk < αk−1 and detA 6= 0, then
(

1

α2
k

− 1

α2
k−1

)

A∗HkA > 0. (34)
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By Lemma 2.3 and (34), since the matrix A
αk

is stable, (33) implies

Hk+1 − Hk > 0.

The proof is completed. �

4. CONCLUSION

Both lower and upper bounds of modulus of eigenvalues are given by the Stein equa-
tion. Furthermore, two sequences are presented which converge to the minimal and
the maximal modulus of eigenvalues, respectively. We only emphasize the theoret-
ical aspect of the results derived. The results are not recommended for practical
computations.
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