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Abstract. A graph is called weakly perfect if its chromatic number equals its clique
number. In this note a new class of weakly perfect graphs is presented and an explicit
formula for the chromatic number of such graphs is given.
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1. INTRODUCTION

Throughout the note by a graph G we mean a finite undirected graph without
loops or multiple edges. For undefined terms and concepts the reader is referred
to [4]. A k-coloring of the vertices of G is an assignment of k colors to the vertices of
G in such a way that no two adjacent vertices receive the same color. The chromatic
number of G, denoted by x(G), is the smallest number k such that G admits a k-
coloring. A survey of the most famous graph coloring methods can be found in [2]. A
clique in G is a set of pairwise adjacent vertices of G. A clique of the maximum size is
called a mazimum cliqgue. The cligue number of G, denoted by w(G), is the number
of vertices of a maximum clique in G. The parameters x(G) and w(G) have been
extensively studied by many authors. Nevertheless, finding the chromatic number
and the clique number of a graph is long known to be an NP-hard problem (see [1]).

It is easy to see that x(G) = w(G), because every vertex of a clique should get
a different color. It is also easy to see that x(G) may be larger than w(G). For
example, x(Cs) = 3 > 2 = w(Cs), where C5 is a cycle of length 5. Therefore, it
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is natural to consider the case in which x(G) is equal to w(G). In this direction, a
graph G is called weakly perfect provided x(G) = w(G). It is known that deciding
whether x(G) = w(G) is an NP-complete problem (see [3]).

In this note a new class of weakly perfect graphs are presented. Moreover, we give
an explicit formula for the chromatic number of such graphs. The procedure of the
proof of our main result may lead to an algorithm for coloring of such graphs.

2. MAIN RESULT

Let p be a prime number and let k£ be a positive integer. We define a graph,
denoted by G(p*), based on numbers and their sums. The vertices of G(p*) are the
elements of [p*] = {1,...,p*} and distinct vertices 2 and y are defined to be adjacent
if and only if ged(x + y,p) = 1.

The graphs G(3) and G(4) are shown in Figure 1. Also the graph G(9), as il-
lustrated in Figure 2, shows that when the number of vertices is large, it is not so
easy to find the chromatic number of the graph G(p*). The main result of this note
provides that all graphs G(p*) are weakly perfect and gives an explicit formula for
the chromatic number of such graphs.

3 1 2

Figure 1. The graphs G(3) and G(4)

Theorem 2.1. Let p be a prime number and let k be a positive integer. Then
the graph G(p*) is a weakly perfect graph. Moreover, we have

2 if p=2,

kY — o kyy —
(G(Y) = w(G") {pkl(p_l) P,

In order to prove Theorem 2.1, we start with a couple of lemmas.

Lemma 2.2. Let p > 2 be a prime number and let k be a positive integer. If
H = {ip| 1 <i < p* 1}, then there exists a maximum clique C' in G(p*) such that
CnNH={p*}.

Proof. Since the sum of every two elements of H is a multiple of p, H is a
set of pairwise nonadjacent vertices. Thus for every clique B in the graph G (p*) we
have |[IBN H| < 1.
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We claim that for every maximum clique B in G(p*) we have [BN H| = 1. In
order to prove the claim, by contrary, suppose that there exists a maximum chque B
in G(p*) such that BNH =0. Let i with 1 < p*~1 be given. For every z € B we
have ged(x, p) = 1 and so we obtain that gcd(x—f—zp, p) = 1. Thus z is adjacent to ip.
Therefore every element of B is adjacent to ip and so B U {ip} is a clique in G(p¥).
But this is a contradiction with our choice of B as a maximum clique. Therefore the
claim holds.

Now choose B as a maximum clique in G(p*) with |B N H| = 1. Suppose that
BN H = {Ip}, for some [ with 1 <1 < p*~'. If we consider C' = (B \ {Ip}) U {p*},
then C' is a maximum clique in G(p*) such that C N H = {p*}. O

Lemma 2.3. Let p > 2 be a prime number and let k be a positive integer. Then
we have w(G(p*)) = p*~t(p—1)/2 + 1.

Proof. Let Bi={(i—1)p+1,....,(0—p+(p—1)/2},1 <i<p;Fl. We
claim that B = By U...U By—1 U {p*} is a clique in G(p*). In order to show this,
let x € B; and y € B; be two distinct vertices, 1 < 7,j < p*~1. We may write
z=@G(—-1p+sandy = (j — )p+t, where 1 < s,t < (p—1)/2, and so we
conclude that x +y = (i+j—2)p+s+t. Since2< s+t <p—1,ged(s+t,p) =1
and thus ged(z + y,p) = 1. Therefore x and y are adjacent. On the other hand,
ged(z+p*,p) = 1 and so p* is adjacent to 2. Therefore every two distinct vertices of
B are adjacent and so the claim holds. It is obvious that B has size p*~*(p—1)/2+1.

k—1 X

Now suppose that C is a maximum clique in G(p*) with size larger than p
(p —1)/2 + 1. By Lemma 2.2, we may assume that p* € C. We may partition
the set [p¥] into the sets A, .. .y Apr—1, where for every ¢ with 1 <4 < PPl A =
{(i —1)p+1,...,ip}. Suppose that for every | with 1 < [ < p*~! — 1 we have

|A;iNCl < (p—1)/2 as well as [Ap-1 NC| < (p—1)/2 4+ 1. Then we obtain that
ICl=[(A1NC)U...U(Ap-1_1NC)U (Ap-1 N C)|

= |A1 ﬁC| + ...+ |Apk—1,1 ﬁC| —+ |Apk—1 ﬁC|

<@ =D -1/2+(p-1)/2+1

=p"tp-1)/2+1.
This is a contradiction with our choice of C' and, therefore, either there exists [ with
1 <1< pF~' —1suchthat |[A,NC|>(p—1)/20r |[Ap-—1NC|>(p—1)/2+1.

Suppose that there exists [ with 1 <1 < p¥~1 — 1 such that |4, NC| > (p—1)/2.

We now consider A; = {(I—1)p+i,(I—1)p+ (p—14)}, 1 <i< (p—1)/2. One may
easily see that A; can be partitioned into disjoint subsets Ay, ... ,A(p,l)/g and {lp}.
Since p* € C and p* is not adjacent to Ip, we obtain that Ip is not in C. Therefore

(A NC)U...U (A 1y2N0O)| > (p—1)/2
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and so we obtain that
AN Cl+ ...+ Ay 1y2NC| > (p—1)/2.

Thus there exists i with 1 < i < (p — 1)/2 such that |4; N C| > 2. In other words,
C has at least two elements contained in A;, for some ¢ with 1 < i < (p —1)/2.
Therefore there exist z,y € C such that x = (I — 1)p+iand y = (I — 1)p+ (p —9).
Since x +y = (21 — 1)p, x is not adjacent to y. But this is a contradiction with our
choice of C' as a clique. By a similar argument the case [A,x-1 NC| > (p—1)/2+1
also leads to a contradiction. Thus there is no maximum clique in G(p*) with size
larger than p*~1(p —1)/2 + 1.

Therefore B is a maximum clique in G(p*) and so we conclude that w(G(p*)) =
pFlp—1)/2+1. O

Proof of Theorem 2.1.  First, suppose that p = 2. Let X be the set of odd
numbers in [2¥] and Y be the set of even numbers in [2¥]. Therefore X and Y
partition the vertex set of G(2¥) into two subsets. It is clear that no pair of distinct
elements of X or Y are adjacent. Therefore G(2¥) is a bipartite graph and so
(G(28) = w(G(2H) = 2.

Second, suppose that p > 2. Consider H = {ip | 1 < i < p*~'}. Therefore, by
Lemma 2.2, there exists a maximum clique C in G(p*) such that C N H = {p¥}. We
may partition the set [p*] into the sets Hf ={(i—Vp+j,ip—3j}, 1 <i<pt
1<j7<(p—1)/2, and H. One may easily show that the sets Hg, 1<i<pht,
1<7<(p—1)/2, and H are sets of pairwise nonadjacent vertices. Now color all of
the vertices in the set Hij by the color (7, ) and also color the vertices of H by the
color p. Therefore we have a (p*~!(p—1)/2 + 1)-coloring of G(p*), since the number
of the sets H} is equal to p*~*(p — 1)/2. Therefore x(G(p*)) < p* ' (p —1)/2 + 1.
Thus Lemma 2.3 implies that x(G(p*)) < w(G(p*)). On the other hand, x(G(p*)) >
w(G(p*)). Therefore we obtain that

X(G(P") =w(GE") =p" " (p-1)/2+1,

as requested. ([

Theorem 2.1 shows that the chromatic number of the graph G(9) is equal to four.
In Figure 2 we illustrate this point. Here the different bullets indicate the presence
of the different colors.
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Figure 2. The graph G(9) and its 4-coloring
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