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Abstract. In this note we give a negative answer to Zemánek’s question (1994) of whether
it always holds that a Cesàro bounded operator T on a Hilbert space with a single spectrum
satisfies lim

n→∞
‖T n+1 − T

n‖ = 0.
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1. Introduction

The famous Katznelson-Tzafriri theorem [7] states that if T is a power-bounded
operator on a complex Banach space X, then the difference T n+1 − T n tends to 0
uniformly (when n → ∞) if (and only if) the peripheral spectrum of T is a subset
of the set {1}. We note that J. Esterle had proved the result when the spectrum
is {1} (see [5]). This theorem plays a key role in operator theory and operator
ergodic theory. A systematic and comprehensive study emphasizing its connection
with stability theory can be found in [3] and [4].
Taking the Esterle-Katznelson-Tzafriri theorem as a starting point, it seems natu-

ral to ask whether the power boundedness requirement of this theorem can be relaxed.
First, Allan [1] asked whether the condition n−1‖T n‖ → 0, when n → ∞, (with the
above spectral property) might lead one to directly infer this theorem. One can easily
see the necessity of this condition. A negative answer and many interesting examples
related to this problem were provided by Tomilov and Zemánek in their paper [11]
using an operator matrix construction. However, they left open the following prob-
lem: if T is a Cesàro bounded operator in a Hilbert space and its spectrum is just

This study was supported by the Marie Curie “Transfer of Knowledge” programme,
project TODEQ.
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the set {1}, does it follow that lim
n→∞

‖T n − T n+1‖ = 0? We note that this question

originally goes back to Zemánek’s paper on the Gelfand-Hille theorems [13]. Here,
applying the matrix construction outlined in [11], we will prove that the answer to
Zemánek’s question is also negative. In our counterexample, convergence holds in
the strong operator topology instead of the norm topology, which can be proved by
exploiting D. Tsedenbayar’s earlier result [12] on the classical Volterra operator.

2. Preliminary results

Let X be a complex Banach space. We say that a bounded, linear operator T

on X is Cesàro bounded if

sup
n>1

∥

∥

∥

∥

1

n

n
∑

k=1

T k

∥

∥

∥

∥

< ∞.

We can construct Cesàro bounded operators from power-bounded operators by
building on the following matrix construction that was studied in [11]. Let us choose
a power-bounded operator T on X, i.e. sup

n>1
‖T n‖ < ∞, and let us consider the

operator

T :=

(

T T − I

O T

)

on X ⊕ X. The powers of T can be derived by a simple computation:

T n =

(

T n nT n−1(T − I)

O T n

)

.

In the following lemma we summarize some of the basic properties of the T operator,
which were described in [11].

Lemma 2.1. The operator T has the following properties:
(i) σ(T ) = σ(T );

(ii) lim
n→∞

n−1‖T n‖ = 0 if and only if lim
n→∞

‖T n+1 − T n‖ = 0;

(iii) T is Cesàro bounded if and only if T is power-bounded;
(iv) for a fixed m ∈ N, we have that lim

n→∞
‖T n(T − I)m‖ = 0 if and only if

lim
n→∞

‖T n(T − I)m‖ = 0 and lim
n→∞

n‖T n(T − I)m+1‖ = 0.

Next, let V denote the classical Volterra operator on L2(0, 1); that is,

V f(x) :=

∫ x

0

f(s) ds if 0 < x < 1 and f ∈ L2(0, 1).

1092



Recall that V is compact and σ(V ) = {0}. Let us now define an operator

T :=

(

I − V −V

O I − V

)

.

Our main result here is the following theorem which addresses the question presented
in [11, Problem 3] of whether it always holds that a Cesàro bounded Hilbert space
operator T with a single spectrum {1} satisfies ‖T n+1 − T n‖ → 0 (n → ∞). Our
counterexample is a further study of the examples from [11].

Theorem 2.2. The operator T is a Cesàro bounded operator with ‖T n‖/n → 0,

n → ∞, on L2(0, 1)⊕L2(0, 1) and with σ(T ) = {1}, but lim
n→∞

‖T n+1−T n‖ = 0 does

not hold.

To prove this theorem, we need an estimate of values of certain Laguerre polyno-
mials and a preliminary lemma that we will present here.
First, recall the definition of the nth generalized Laguerre polynomials with α pa-

rameter (α > −1):

Lα
n(x) =

Γ(n + α + 1)

Γ(n + 1)

n
∑

k=0

(−1)k

(

n

k

)

xk

Γ(k + α + 1)
.

The classical formula presented below is the so-called Fejér’s formula, which tells us
what the asymptotic behaviour of the Laguerre polynomials is (for a proof, see [10]).

Theorem 2.3. For L
(α)
n (x) with a real parameter α > −1 and ε > 0, we have

L(α)
n (x) = π

−1/2ex/2x−α/2−1/4nα/2−1/4 cos(2
√

nx − απ/2 − π/4) + O(nα/2−3/4)

if x > 0, where the bound for the remainder holds uniformly in [ε, 1].

The next lemma is a technical one that we will require in order to give an asymp-
totic form of the terms appearing in our proof.

Lemma 2.4. Let β be a real number, and −∞ 6 a < b 6 ∞. If {an} is a
sequence of positive numbers tending to ∞ as n → ∞ and f ∈ L1[a, b], then

lim
n→∞

∫ b

a

f(x) cos2(anx + β) dx =

(
∫ b

a

f(x) dx

) (

1

π

∫

π

0

sin2(x) dx

)

.

We should mention here that this lemma can be proved in a much more general
context, and we refer the reader to [8] for its proof.
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3. The counterexample

First, it is a well-known fact that I − V is a power-bounded operator on L2(0, 1)

because it is similar to (I + V )−1, which was noted by T.V. Pedersen and reported
by Allan [2]. Actually, the resolvent (I +V )−1 has norm 1 (see [6]). Lemma 2.1 now
readily implies that

T =

(

I − V −V

O I − V

)

is Cesàro bounded with a single spectrum {1}. A comprehensive study on the powers
of the operator I − V in general Lp spaces can be found in [8].
To demonstrate that ‖T n+1 − T n‖ does not converge to 0, it is sufficient to show

by Lemma 2.1 (iv) that the following proposition holds. At the same time, it is
worth mentioning here that this result answers another question from the paper [11,
Problem 1].

Proposition 3.1. For the Volterra operator V on L2(0, 1), we have that

lim inf
n→∞

‖n(I − V )nV 2‖ > 0.

P r o o f. Let us define the function series

fn(x) := nxχ(0,1/
√

n)(x), 0 < x < 1, n = 1, 2, . . . ,

where χ(0,1/
√

n) denotes the characteristic function of the interval (0, 1/
√

n). We
shall check that n‖(I − V )nV 2fn‖2‖fn‖−1

2 does not converge to 0 (n → ∞), which
will prove the proposition.
First, we can readily see that

V fn(x) =

∫ x

0

fn(s) ds =

{

1
2nx2 if 0 < x 6 1/

√
n,

1
2 if 1/

√
n 6 x < 1,

and we recall that the well-known formula holds if f ∈ L2(0, 1):

V nf(x) =

∫ x

0

(x − s)n−1

(n − 1)!
f(s) ds for n ∈ N.

Evidently, ‖fn‖2 = n1/4/
√

3. Then a simple calculation gives

n(I − V )nV 2n−1/4fn(x)

= n3/4
n

∑

k=0

(

n

k

)

(−1)kV k+2fn(x) = n3/4
n

∑

k=0

(

n

k

)

(−1)k

∫ x

0

(x − s)k

k!
V fn(s) ds

= n3/4

∫ x

0

L(0)
n (x − s)V fn(s) ds,

using the definition of the nth Laguerre polynomial with α = 0.
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Next, pick an ε ∈ (0, 1/5). Then, if x > 1/
√

n + ε, we may compute the integral

∫ x

0

L(0)
n (x − s)V fn(s) ds

=
1

2

∫ 1/
√

n

0

L(0)
n (x − s)ns2 ds +

1

2

∫ x

1/
√

n

L(0)
n (x − s) ds.

First, we can calculate the second term of the sum. In fact,

∫ x

1/
√

n

L(0)
n (x − s) ds =

n
∑

k=0

(−1)k

(

n

k

)

1

k!

∫ x

1/
√

n

(x − s)k ds(1)

=

n
∑

k=0

(−1)k

(

n

k

)

1

k!

1

k + 1
(x − 1/

√
n)k+1

=
1

n + 1
(x − 1/

√
n)L(1)

n (x − 1/
√

n).

We now turn to the first integral in the above sum. Integrating twice by parts,
we get

∫ 1/
√

n

0

(x − s)ks2 ds = − (x − 1/
√

n)k+1

n(k + 1)
− 2(x − 1/

√
n)k+2

√
n(k + 1)(k + 2)

− 2(x − 1/
√

n)k+3

(k + 1)(k + 2)(k + 3)
+

2xk+3

(k + 1)(k + 2)(k + 3)
.

From the definition of the generalized Laguerre polynomials, it is a straightforward
matter to show that

∫ 1/
√

n

0

L(0)
n (x − s)ns2 ds =

n
∑

k=0

n(−1)k

(

n

k

)

1

k!

∫ 1/
√

n

0

(x − s)ks2 ds(2)

= − (x − 1/
√

n)

n + 1
L(1)

n (x − 1/
√

n)

− 2
√

n(x − 1/
√

n)2

(n + 1)(n + 2)
L(2)

n (x − 1/
√

n)

− 2n(x − 1/
√

n)3

(n + 1)(n + 2)(n + 3)
L(3)

n (x − 1/
√

n)

+
2nx3

(n + 1)(n + 2)(n + 3)
L(3)

n (x).
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Adding (1) and (2) together, we find that

∫ x

0

L(0)
n (x − s)V fn(s) ds = −

√
n(x − 1/

√
n)2

(n + 1)(n + 2)
L(2)

n (x − 1/
√

n)

− n(x − 1/
√

n)3

(n + 1)(n + 2)(n + 3)
L(3)

n (x − 1/
√

n)

+
nx3

(n + 1)(n + 2)(n + 3)
L(3)

n (x).

The application of the reverse triangle inequality gives for every n large enough
that

n3/4‖(I − V )nV 2fn‖2

>

(
∫ 1/4

ε+1/
√

n

(

n3/4

∫ x

0

L(0)
n (x − s)V fn(s) ds

)2

dx

)1/2

>

(
∫ 1/4

ε+1/
√

n

(

n3/4
√

n(x − 1/
√

n)2

(n + 1)(n + 2)
L(2)

n (x − 1/
√

n)

)2

dx

)1/2

−
(

∫ 1/4

ε+1/
√

n

(

n3/4n(x − 1/
√

n)3

(n + 1)(n + 2)(n + 3)
L(3)

n (x − 1/
√

n)

)2

dx

)1/2

−
(

∫ 1/4

ε+1/
√

n

(

n3/4nx3

(n + 1)(n + 2)(n + 3)
L(3)

n (x)

)2

dx

)1/2

.

Let us apply Fejér’s asymptotic formula (see Theorem 2.3) for L
(2)
n (x). Then the

first term above is asymptotically equal to

1√
π

(
∫ 1/4−1/

√
n

ε

exx
√

x cos2(2
√

nx − 5π/4) dx

)1/2

.

Performing the change of variable y =
√

x and applying Lemma 2.4, we find that
the integral tends to

√

2M

π

(
∫ 1/2

√
ε

y4ey2

dy

)1/2

,

when n → ∞, where M := π
−1

∫

π

0 sin2 y dy = (2π)−1.

We can apply a similar argument to L
(3)
n (x) to show that the second and third

terms above are asymptotically equal to

1√
π

(
∫ 1/4−1/

√
n

ε

exx2√x cos2(2
√

nx − 7π/4) dx

)1/2
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and
1√
π

(
∫ 1/4

ε+1/
√

n

exx2√x cos2(2
√

nx − 7π/4) dx

)1/2

,

respectively. Making a change of variable (y =
√

x) and applying Lemma 2.4 once
again, we see that these integrals converge to

√

2M

π

(
∫ 1/2

√
ε

y6ey2

dy

)1/2

when n → ∞. Since y4ey2 − 4y6ey2

> 0 on the interval (
√

ε, 1/2), the above sum
appearing in the reverse triangle inequality is strictly positive; i.e., for n is large
enough we have

n3/4‖(I − V )nV 2fn‖ >

√

2M

π

[(
∫ 1/2

√
ε

y4ey2

dy

)1/2

−
(

∫ 1/2

√
ε

4y6ey2

dy

)1/2]

> 0.

Thus there exists a positive constant C such that

lim inf
n

n‖(I − V )nV 2fn‖2

‖fn‖2
> C,

which is what we intended to show. �

P r o o f of Theorem 2.2. Now the proof of the theorem follows immediately from
Lemma 2.1 and Proposition 3.1. �

Remark 3.2. During the preparation of this paper Prof. Yuri Tomilov informed
me that Stephen Montgomery-Smith had an unpublished note on the above problem.
Using Fourier methods, he sketched a proof that lim inf

t>0
t‖(e−V −I)2e−tV ‖ is positive.

This means that the operator

(

e−V e−V − I

O e−V

)

must be a good candidate for another counterexample to the question outlined in
Introduction. I am grateful to Prof. Yuri Tomilov for bringing this information to
my attention.

We have already seen that the operators T n+1 − T n do not converge to zero in
the uniform operator norm. However, we can easily verify that the analogous strong
statement is true.
We should mention here that the first sharper asymptotic estimates on certain

Volterra operator pencils were given by D. Tsedenbayar [12]. These estimates led
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to improvements on an earlier result of T. Pytlik [9] (see also [8]). D. Tsedenbayar
proved for the Volterra operator V in L2(0, 1) that

‖(I − V )n+1 − (I − V )n‖ = O(n−1/2).

Then one can easily verify that there exists a constant C > 0 such that

sup
n>0

‖
√

n(I − V )nV ‖ 6 C

holds. Now, applying Tsedenbayar’s result, we can exploit his theorem which proves
the strong stability of the above sequence. Hence the following statement comes
immediately.

Proposition 3.3. For every f ∈ L2(0, 1), we have

lim
n→∞

√
n(I − V )nV f = 0.

P r o o f. Let us choose an f ∈ L2(0, 1). Since the sequence
√

n(I − V )nV

(n = 1, 2, . . .) is bounded in the operator norm and V is compact, we can select a
subsequence (ni)i and a g ∈ L2(0, 1) such that

V (
√

ni(I − V )niV f) =
√

ni(I − V )niV 2f → g if i → ∞.

Let us assume that g 6= 0. Pick an 0 < ε < 1
4‖g‖2. By the Esterle-Katznelson-

Tzafriri theorem, we have the uniform convergence lim
n→∞

V (I − V )n = 0. Then we

can choose an index m such that for every i > m both

‖V (I − V )if‖2 <
ε

C
and ‖√ni(I − V )niV 2f − g‖2 < ε

hold. Pick an arbitrary i > m. Applying the reverse triangle inequality again, we
may infer that for any sufficiently large k > i

‖√ni(I − V )niV 2f −
√

ni + k(I − V )ni+kV 2f‖2

>
∣

∣‖√ni(I − V )niV 2f −√
ni(I − V )ni+kV 2f‖2

− ‖√ni(I − V )ni+kV 2f −
√

ni + k(I − V )ni+kV 2f‖2

∣

∣

> ‖√ni(I − V )niV 2f‖2 − ‖√ni(I − V )niV 2(I − V )kf‖2

− k
√

ni +
√

ni + k
‖(I − V )kV 2(I − V )nif‖2

> ‖g‖2 − ε − C
ε

C
− C

ε

C

>
1

4
‖g‖2.
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But this inequality contradicts the convergence of the sequence {√ni(I−V )niV 2f}i.
This means that g = 0 must hold; that is,

lim
n→∞

√
n(I − V )nV 2f = 0

follows. Since the range of V is dense in L2(0, 1) and the operators
√

n(I − V )nV

are uniformly bounded, the statement readily follows. �

An immediate corollary of this stability proposition is that the operator sequence
(
√

n(I − V )nV )2 (n = 1, 2, . . .) is also strongly stable but not uniformly (see Propo-
sition 3.1).

Corollary 3.4. For every f ∈ L2(0, 1), we have

lim
n→∞

n(I − V )nV 2f = 0.

Combining this corollary with the above propositions, we obtain the following
result.

Corollary 3.5. For the operator T on L2(0, 1)⊕L2(0, 1), we have that T n+1−T n

tends to zero strongly and lim
n→∞

‖T n(T − I)2‖ = 0.

P r o o f. The Esterle-Katznelson-Tzafriri theorem implies that lim
n→∞

(I−V )nV =

0. From Lemma 2.1 and the previous corollary we readily obtain the strong conver-
gence result.
To prove the second statement, we recall that V is compact and hence from Corol-

lary 3.4 we get that lim
n→∞

n‖(I − V )nV 3‖ = 0. Now an application of Lemma 2.1

gives the statement. �

Question 1. Let T be a Cesàro bounded operator on a Hilbert space H such that
σ(T ) = {1}. Does it follow that (T n+1−T n)h → 0 (if n → ∞) holds for every h ∈ H?

Example 4.1 in [11] shows that the spectral assumption is essential here. We
note that open questions concerning local versions of the Esterle-Katznelson-Tzafriri
theorem for Cesàro bounded operators can be also found in [13, p. 378].
Finally we mention another question which is related to the Esterle-Katznelson-

Tzafriri theorem.

Question 2. Let T be a positive Cesàro bounded operator on a Hilbert space H
such that σ(T ) = {1}. Does it follow that ‖T n+1 − T n‖ → 0 if n → ∞?

Acknowledgement. I would like to thank Professor Jaroslav Zemánek for the
warm hospitality shown at the Banach Center in Warsaw, where the major part of
this paper was written.
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