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ON THE ASYMPTOTIC BEHAVIOR AT INFINITY OF SOLUTIONS

TO QUASI-LINEAR DIFFERENTIAL EQUATIONS

Irina Astashova, Moskva
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Abstract. Sufficient conditions are formulated for existence of non-oscillatory solutions
to the equation

y(n) +
n−1∑

j=0

aj(x)y
(j) + p(x)|y|k sgn y = 0

with n > 1, real (not necessarily natural) k > 1, and continuous functions p(x) and aj(x)
defined in a neighborhood of +∞. For this equation with positive potential p(x) a criterion
is formulated for existence of non-oscillatory solutions with non-zero limit at infinity. In
the case of even order, a criterion is obtained for all solutions of this equation at infinity to
be oscillatory.
Sufficient conditions are obtained for existence of solution to this equation which is

equivalent to a polynomial.

Keywords: quasi-linear ordinary differential equation of higher order, existence of non-
oscillatory solution, oscillatory solution

MSC 2010 : 34C15, 34C10

1. Introduction

Consider the differential equation

(1.1) y(n) +

n−1
∑

j=0

aj(x)y(j) + p(x)|y|k sgn y = 0
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with n > 1, real (not necessarily natural) k > 1 and continuous functions p(x) and

aj(x) defined in a neighborhood of +∞.
A nontrivial solution to (1.1) is called oscillatory if it has arbitrarily large zeros.

A solution to (1.1) defined in a neighborhood of +∞ is called non-oscillatory if it
is ultimately one-signed.

The problem of existence of non-oscillatory solutions and of all solutions to be

oscillatory was investigated in detail for equation (1.1) in the case aj(x) ≡ 0, j =

0, . . . , n − 1. For n = 2, F. Atkinson [1] proved the well-known criterion for all

solutions to be oscillatory.

For more general non-linear second-order equations, theorems similar to that of

F.Atkinson were obtained by S.A.Belohorec [5], I. T.Kiguradze [7], J.W.Masci and

J. S.W.Wong [16], P.Waltman [21], J. S.W.Wong [22]. For third- and fourth-order

non-linear equations, the oscillatory problem was investigated by I.V. Astashova [2],

V. A.Kondratiev and V. S. Samovol [11], T.Kusano and M.Naito [12], D. L. Lovelady

[15], V. R.Taylor, Jr. [19]. The result of F.Atkinson was generalized for the higher-

order equation (1.1) in the case aj(x) ≡ 0, j = 0, . . . , n − 1, by I. T.Kiguradze [8].

Equations like (1.1) with some coefficients aj(x) 6= 0 were investigated in [6], [10],

[14]; some of these papers considered more general non-linearities.

Sufficient conditions were obtained by I.M. Sobol [18] which guarantee the ex-

istence of a solution to (1.1) with p(x) = 0 which is equivalent to a polynomial.

I. T.Kiguradze [8] proved the same result for (1.1) with aj(x) ≡ 0, j = 0, . . . , n − 1.

2. Results

2.1. Oscillatory properties of solutions.

Theorem 2.1. Suppose the functions p(x) and aj(x) in (1.1) satisfy the conditions

∫

∞

x0

xn−1 |p(x)| dx < ∞,(2.1)

∫

∞

x0

xn−j−1 |aj(x)| dx < ∞, j = 0, . . . , n − 1.(2.2)

Then for any h 6= 0 there exists, in a neighborhood of +∞, a non-oscillatory
solution y(x) to (1.1) tending to h as x → ∞ and having derivatives satisfying the
conditions

(2.3)

∫

∞

x0

xj−1
∣

∣y(j)(x)
∣

∣ dx < ∞, j = 1, . . . , n.
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Theorem 2.2. Let the function p(x) be positive and let the functions aj(x),

j = 0, . . . , n − 1, satisfy (2.2).

Then the following conditions are equivalent:

(i) p(x) satisfies (2.1),

(ii) there exists, in a neighborhood of +∞, a non-oscillatory solution to (1.1) that

does not tend to 0 as x → ∞.

Theorem 2.3. Oscillatory criterium. Let n be even, the function p(x) positive,

and let the functions aj(x), j = 0, . . . , n − 1, satisfy (2.2).

Then the following conditions are equivalent:

(i)
∫

∞

x0

xn−1p(x) dx = ∞,

(ii) all solutions to (1.1) defined in a neighborhood of +∞ are oscillatory.
R em a r k 1. This theorem generalizes the results of works [1], [8]. Detailed proofs

of Theorems 2.1, 2.2, 2.3 can be found in [4]. Note that Theorem 2.1 is an auxiliary

result wich can be also considered as a particular case of Corollary 8.2 from the

monograph [9].

2.2. Existence of solution tending to polynomial.

Theorem 2.4. Suppose the functions p(x) and aj(x) in (1.1) satisfy conditions

(2.2) and

(2.4)

∫

∞

x0

x(n−1)(k+1)|p(x)| dx < ∞.

Then for any constants C0, . . . , Cn−1 there exists, in a neighborhood of +∞, a non-
oscillatory solution y(x) to (1.1) satisfying

(2.5) y(x) =
n−1
∑

j=0

Cjξj(x) + o(1) as x → +∞,

where ξj = xjj!−1(1 + o(1)) are fundamental solutions to (1.1) with p(x) ≡ 0.

R em a r k 2. Note that Theorem 1 in [8], for Equation (1.1) with aj(x) ≡ 0 and

p(x) satisfying some weaker conditions, in particular

(2.6)

∫

∞

x0

x(n−1)k|p(x)| dx < ∞,

provides existence of solutions equivalent to xj , j = 0, . . . , n− 1. However, solutions

y(x) =
n−1
∑

j=0

Cjx
j + o(1) with arbitrary Cj need not exist in this case.
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E x am p l e. Consider the equation

y′′ =
y2

√
x7

.

We have
∫

∞

x0

x(n−1)k|p(x)| dx =

∫

∞

x0

x−3/2 dx < ∞.

So, according to [8] there exist, near +∞, solutions y1(x) ∼ 1 and y2(x) ∼ x.

However, Theorem 2.4 cannot guarantee existence of a solution y(x) = x+1+o(1),

since
∫

∞

x0

x(n−1)(k+1)|p(x)| dx =

∫

∞

x0

x−1/2 dx = ∞.

Suppose such a solution exists. Then y(x) ∼ x, whence y′′ ∼ x−3/2 and y′ =

C1 − 2x−1/2 + o(x−1/2) with C1 = 1 due to y(x) ∼ x.

So, y(x) = C0 + x − 4x1/2 + o(x1/2), which contradicts to y(x) = x + 1 + o(1).

R em a r k 3. Note that for Equation (1.1) with aj(x) 6= 0, existence of a solution,

admitting the asymptotic representation

(2.7) y(x) =
n−1
∑

j=0

Cjx
j(1 + o(1))

can be proved by using Corollary 8.2 from the monograph [9] if conditions (2.6),

(2.2) are fulfilled, and
n−1
∑

j=0

|Cj | 6= 0.

Properties (2.7) and (2.5) differ. For example, in the case n = 2, the solutions

behaving as−ξ1(x)+ξ2(x)+o(1) and ξ1(x)+ξ2(x)+o(1), which exist by Theorem 2.4,

must be different. On the contrary, the solutions behaving as (x + x2)(1 + o(1)) and

(−x + x2)(1 + o(1)), which are particular cases of (2.7), may occur to be just the

same function.

3. Proofs

Lemma 3.1. The operator

L =
dn

dxn
+

n−1
∑

j=0

aj(x)
dj

dxj
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with all functions aj(x) satisfying (2.2) can be represented in a neighborhood of +∞
as the nth quasi-derivative operator, i.e.

L : y 7→
(

rn
d

dx

(

rn−1
d

dx

(

. . . r1
d

dx
(r0y) . . .

)))

,

with positive functions r0, . . . , rn all tending to 1 as x → +∞.

By the lemma, equation (1.1) can be rewritten in a neighborhood of +∞ as

(3.1) y[n](x) + p(x)|y|k sgn y = 0

with y[j] denoting the j-th quasi-derivative of a function y(x):

y[j] =
(

rj
d

dx

(

rj−1
d

dx

(

. . . r1
d

dx
(r0y) . . .

)))

.

Thus, y[0](x) = r0(x)y(x) and y[i](x) = ri(x)(y[i−1](x))′, i = 1, . . . , n.

Such a representation for linear operators is described by G.Polya [17], Ch. I. de

la Vallée-Poussin [20], A. Levin [13].

Now, the coefficients of the quasi-derivative operator are constructed so that their

limits, as x → +∞, are equal to 1, which is used in the proof of Theorem 2.4. Similar
representation on finite segments was obtained and used in [3].

Lemma 3.2. There exist fundamental solutions ξj(x), j = 0, . . . , n − 1, to the

equation y[n] = 0 satisfying the following properties:

ξ
[i]
j (x) = 0 if j < i < n,

ξ
[i]
j (x) = 1 if i = j,

ξ
[i]
j (x) =

xj−i

(j − i)!
(1 + o(1)) as x → +∞ if i < j.

P r o o f. Trying to solve the equation y[n] = 0, let us prove by backward induction

over i = n − 1, . . . , 0 that the i-th quasi-derivative of its general solution is

y[i](x) =

n−1
∑

j=i

Cjξij(x)

with arbitrary constants Cj and functions ξij(x), i 6 j < n, such that

ξii(x) ≡ 1,

ξij(x) =
xj−i

(j − i)!
(1 + o(1)) as x → +∞,

ri+1(x)(ξij(x))′ = ξi+1,j(x).
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Since y[n](x) = rn(x)(y[n−1](x))′ = 0, we obtain that y[n−1](x) must be constant.

This provides the first induction step.

If for some i > 0 the statement needed is proved, then due to the equality y[i](x) =

ri(x)(y[i−1])′(x) we have, with some a ∈ R,

y[i−1](x) = Ci−1 +

∫ x

a

∑n−1
j=i Cjξij(t)

ri(t)
dt

= Ci−1 · 1 +

n−1
∑

j=i

Cj

∫ x

a

ξij(t) dt

ri(t)
=

n−1
∑

j=i−1

Cjξi−1,j(x),

where ξi−1,i−1(x) ≡ 1 and, for j > i, ξi−1,j(x) =
∫ x

a
ξij(t) dt/ri(t). The last function

satisfies

lim
x→+∞

ξi−1,j(x)

xj−(i−1)
= lim

x→+∞

ξij(x)

ri(x)(j − i + 1)xj−i
=

1

(j − i + 1)(j − i)!
=

1

(j − (i − 1))!
,

thus completing the induction step. To prove the lemma, it remains just to put

ξj(x) = ξ0,j(x)/r0(x) and to notice that ξ
[i]
j (x) = ξij(x) if i 6 j and ξ

[i]
j (x) = 0

otherwise. �

Lemma 3.3. Suppose f(x) is a continuous function defined in a neighborhood of

+∞. Then the general solution to the equation y[n](x) = f(x) is

y(x) =
n−1
∑

j=0

(

Cj +

∫ x

a

f(t)bj(t)t
n−j−1 dt

)

ξj(x)

with some a ∈ R, arbitrary constants C0, . . . , Cn−1, the fundamental solutions ξj(x)

to the homogeneous equation described in Lemma 3.2, and bounded functions bj(x)

expressible in terms of the coefficients ri(x) and the quasi-derivatives of ξi(x).

P r o o f. By variation of constants, the function

(3.2) y(x) =

n−1
∑

j=0

gj(x)ξj(x)

is a solution to the equation considered if the functions gj(x) satisfy the system

(3.3)

n−1
∑

j=0

g′j(x)ξ
[i−1]
j (x) = 0, i = 1, . . . , n − 1,

n−1
∑

j=0

g′j(x)ξ
[n−1]
j (x) =

f(x)

rn(x)
.
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In more detail, first we prove by induction over i = 0, . . . , n − 1 that, due to (3.3),

the quasi-derivatives of the function y(x) defined by (3.2) has the following form:

y[i](x) =
n−1
∑

j=0

gj(x) ξ
[i]
j (x).

The first step is trivial. If for some i < n − 1 the last equality is proved, then we

have

y[i+1](x) = ri+1(x)
n−1
∑

j=0

g′j(x)ξ
[i]
j (x) +

n−1
∑

j=0

gj(x) ri+1(x)
(

ξ
[i]
j (x)

)

′

with the first sum vanishing due to (3.3) and the second coinciding with the needed

expression
n−1
∑

j=0

gj(x)ξ
[i+1]
j (x).

In the same way, due to (3.3) and the equation ξ
[n]
j (x) = 0, we have

y[n](x) = rn(x)

n−1
∑

j=0

g′j(x)ξ
[n−1]
j (x) +

n−1
∑

j=0

gj(x)ξ
[n]
j (x) = f(x).

Now, let us solve system (3.3). Since ξ
[i]
j (x) = 0 for j < i < n, the system

is triangular and the derivatives g′j(x) can be proved to have the needed form

f(x)bj(x)xn−j−1 , step by step for j = n − 1, . . . , 0.

We begin from the last equation of (3.3), which gives g′n−1(x) = f(x)/rn(x). Thus,

we can take 1/rn(x) as the bounded function bn−1(x).

If for some i > 0 the needed expressions for g′j(x), j > i, are already obtained,

then

g′i(x) = −
n−1
∑

j=i+1

g′j(x)ξ
[i]
j (x) = −

n−1
∑

j=i+1

f(x)bj(x)xn−j−1 ξ
[i]
j (x)

= f(x)

(

−
n−1
∑

j=i+1

bj(x)ξ
[i]
j (x)xi−j

)

xn−i−1.

Since ξ
[i]
j (x) = xj−i(j − i)!

−1
(1 + o(1)), the last expression in the big parentheses

is bounded and may be taken as bi−1(x). The rest of the proof is evident. �

Now we can prove Theorem 2.4.

P r o o f. Consider the set Vac of all continuous functions v(x) defined on [a,∞)

such that sup
{

|v(x)| x1−n : x > a
}

6 c. If we define the norm ‖v(x)‖ by the left-
hand side of the last inequality, then Vac becomes a Banach space.
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Consider the mapping F : Vac → Vac such that

F (v)(x) =

n−1
∑

j=0

(

Cj −
∫ +∞

x

p(t)|v|k( sgn v)bj(t)t
n−j−1 dt

)

ξj(x)

with the bounded functions bj(x) participating in Lemma 3.3.

The integrals converge since their integrands are O(|p(t)|tK ) with K = (n− 1)k +

n − j − 1 6 (n − 1)(k + 1).

As for the inclusion F (Vac) ⊂ Vac, it holds if a > 1 and n(ckBδ + Cmax) 6 c with

B = sup{|bj(x)| : x > a, j = 0, . . . , n − 1},

δ =

∫

∞

a

|p(t)| t(n−1)(k+1) dt,

Cmax = max {|Cj | : j = 0, . . . , n − 1} .

The last inequality holds if we put c = (n+1) Cmax and choose a big enough making

δ sufficiently small to provide n(n + 1)k Ck
max B δ 6 Cmax. Furthermore, we can

make F become a contraction mapping, i.e. provide the inequality ‖F (v)−F (w)‖ 6

θ‖v − w‖ for some θ < 1 and all v, w ∈ Vac.

Indeed, for x > a and a big enough we have |ξj(x)| < 2xn−1 and, since
∣

∣|X |k sgnX − |Y |k sgnY
∣

∣ 6 |X − Y | · k max{|X |, |Y |}k−1, we have

x1−n|F (v)(x) − F (w)(x)| 6 2Bn

∫ +∞

x

|v(t) − w(t)| k
(

ctn−1
)k−1 |p(t)|tn−1 dt

6 2Bnkck−1‖v − w‖
∫ +∞

x

|p(t)|t(n−1)(k+1) dt 6 2Bnkck−1‖v − w‖δ.

So, all we need to make F a contraction mapping is to increase a so that δ could

become sufficiently small.

The unique fixed point of F , which must exist, is a solution to (3.1) having the

form y(x) =
n−1
∑

j=0

Cjξj(x) + ε(x) with

ε(x) = −
n−1
∑

j=0

ξj(x)

∫ +∞

x

p(t)|y|k( sgn y)bj(t)t
n−j−1 dt.

Now we have to prove that ε(x) = o(1) as x → +∞. Since y = O
(

xn−1
)

, we have

ε(x) = O

( n−1
∑

j=0

ξj(x)

∫ +∞

x

|p(t)| t(n−1)(k+1)−j dt

)

.
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Further, since |t|−j 6 |x|−j for t > x > a > 1, we obtain

ε(x) =

∫ +∞

x

|p(t)| t(n−1)(k+1) dt · O
( n−1

∑

j=0

ξj(x)

xj

)

= o(1).

�
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