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Abstract. We homogenize a class of nonlinear differential equations set in highly heteroge-
neous media. Contrary to the usual approach, the coefficients in the equation characterizing
the material properties are supposed to be uncertain functions from a given set of admissible
data. The problem with uncertainties is treated by means of the worst scenario method,
when we look for a solution which is critical in some sense.
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1. Introduction

Modeling the real world phenomena usually exhibits a sort of uncertain behavior—

there is a difference between reality and the solution of a mathematical model, a dif-

ference between an exact and numerical solution, we work with experimentally ob-

tained input data that are loaded by errors, etc.

In this paper we focus on solving problems with uncertain input data. By inputs

we understand coefficients in the equations, the right hand side, boundary values,

etc. Our considerations are embedded in the framework of homogenization theory.

Homogenization is a mathematical method designed for modeling highly heteroge-

neous media such as composite materials, porous media, etc. It enables us to com-

pute macroscopic (effective) properties from the knowledge of the microstructure.

The method provides a quite easy and powerful tool, however its practical use is

restricted to the case of periodic structures.

As a model problem we choose a nonlinear monotone type elliptic boundary value

problem. We assume that the coefficients in the equation characterize a composite
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material with a fine periodic structure. For the sake of simplicity we restrict ourselves

to the case of the two-phase composite, where the inclusions form a periodic structure

in the matrix. The shape of the inclusion is supposed to be uncertain, but controlled

by a finite number of parameters determining e.g. a circle/ball, rectangle/box, etc.

Some bounds for these parameters are given.

We adopt the worst scenario method, see [7], for solving the problems with un-

certain input data. Considering a model problem (differential or integral equation,

variational inequality, etc.), the main idea of the method consists in defining a func-

tional over a suitable set of data (the so-called admissible data set). This functional

can be dependent on both the data and the solution of the model problem and it is

a criterion which evaluates a physical quantity from a certain point of view. In par-

ticular, it says which data are “bad” or “good”. The maximization of the functional

yields the “worst case”. It means that the strategy of the method is to stay always

on the safe side, looking for “dangerous” data. Here we are motivated by the effort

to find some “critical” shapes of the inclusion in the composite with respect to the

functional representing the value of the homogenized solution or its gradient in some

crucial places of the domain.

The paper is a continuation of [12], where linear problems were studied, and is

organized as follows. After some preliminaries, the model problem is introduced in

Section 2. Section 3 discusses the related homogenized problem. These two sections

present the known results and therefore the proofs are omitted here. Section 4 is

devoted to the worst scenario method including the main result on the existence of

a solution of the worst scenario problem with respect to the given functional. Some

concluding remarks close the paper in Section 5.

2. Model problem

Throughout the paper, d is the dimension of the problem, Ω is a domain in R
d

with Lipschitz boundary, (·, ··) denotes the scalar product on two elements from R
d

and | · | =
√

(·, ·) is the usual Euclidean norm. If S is a subset of Rd, then |S| means

the d-dimensional Lebesgue measure. The Lebesgue space L2(Ω) and its vector-

valued analogue L2(Ω;Rd) equipped with the norms ‖u‖L2(Ω) = (
∫
Ω u2 dx)1/2 and

‖u‖L2(Ω;Rd) = (
∫
Ω
|u|2 dx)1/2 are used. We employ the Sobolev space W 1,2

0 (Ω) of

functions with zero traces on ∂Ω. The norm is ‖u‖W 1,2
0 (Ω) = (

∫
Ω u2 + |∇u|2)1/2. Let

Y = [0, 1)d be the unit cube. A function u defined on R
d is said to be Y -periodic

if u(y + k) = u(y), ∀y ∈ Y , ∀k ∈ Z
d. The Banach spaces of Y -periodic functions

are denoted by X#(Y ). A function v ∈ X#(Y ) is Y -periodic and, moreover, v ∈

Xloc(R
d), i.e. v ∈ X(Q) for every compact subset Q ⊂ R

d. Here we use the Sobolev

spaceW 1,2
# (Y ) (a function from this space has the same traces almost everywhere on
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the opposite sides of Y ). Additionally, we assume that every u ∈ W 1,2
# (Y ) has the

zero mean value over Y , i.e.
∫

Y u dy = 0. The norm is introduced as ‖u‖W 1,2

#
(Y ) =

‖u‖W 1,2(Y ) = (
∫

Y u2 + |∇u|2)1/2.

We consider a class of monotone-type nonlinear elliptic boundary value problems,

where the domain Ω is filled by a two-phase composite (composed of the inclusion

and the matrix) with a periodic structure such that the periodicity cell contains

one fibre of the inclusion only. The geometry (shape) of the fibre is assumed to be

uncertain in the sense that it can vary with a vector of parameters p, where some

bounds on p are given (e.g. the cylinder can vary with p = (p1, p2), where p1 denotes

the radius of the base and p2 denotes the height).

More precisely, let m > 1 be a positive integer and Uad a set of admissible param-

eters defined as

Uad = [pl
1, p

u
1 ] × [pl

2, p
u
2 ] × . . . × [pl

m, pu
m],

where 0 < pl
i < pu

i , i = 1, . . . , m are suitable real constants (constraints). Let p ∈ Uad

represent the geometrical parameters of a fibre and let Yp denote the occupied set.

Moreover, we assume that Yp is a domain in R
d (i.e. an open and simply connected

set) satisfying Y p ⊂ Y , ∀p ∈ Uad.

Further, we introduce a function ap(y, ξ) : R
d ×R

d → R
d with the following prop-

erties:

ap(y, ξ) = a1(ξ) on Yp, ap(y, ξ) = a2(ξ) on Y \ Yp, a1(ξ) 6= a2(ξ),

ap(y + k, ξ) = ap(y, ξ), ∀y ∈ Y, ∀k ∈ Z
d, ∀ξ ∈ R

d,

(ai(ξ) − ai(η), ξ − η) > αi|ξ − η|2, ∀ξ, η ∈ R
d, i = 1, 2,

|ai(ξ) − ai(η)| 6 Li|ξ − η|, ∀ξ, η ∈ R
d, i = 1, 2,

where αi, Li are positive constants. Overall, the function ap is constant in the first

variable y on both Yp and Y \ Yp, is Y -periodic in y and satisfies the strong mono-

tonicity and Lipschitz continuity conditions in the second variable ξ, i.e. we have

(ap(y, ξ) − ap(y, η), ξ − η) > α|ξ − η|2, ∀y ∈ Y, ∀ξ, η ∈ R
d,(2.1)

|ap(y, ξ) − ap(y, η)| 6 L|ξ − η|, ∀y ∈ Y, ∀ξ, η ∈ R
d,(2.2)

where α = min
i

αi and L = max
i

Li.

The basic idea of the homogenization approach consists in considering a sequence

of problems of the same type with diminishing period (one term is considered to be

the original problem). This sequence is controlled by a sequence of small positive

parameters εn → 0+ as n → ∞ (as usual, we omit the subscript n in what follows).
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The detailed explanation can be found e.g. in [3], [5]. Here we deal with the following

sequence representing a nonlinear conservation law:

(2.3) Aε
p(u

ε) ≡ −div(aε
p(x,∇uε)) = f in Ω,

uε ∈ W 1,2
0 (Ω),

where aε
p(x, ξ) ≡ ap(x/ε, ξ) and ap(y, ξ) satisfies the above conditions. This kind of

problem models many physical phenomena, e.g. in heat conduction, electrostatics,

magnetostatics, etc. Typically, the vector a can have the form a := ã(|∇u|2)∇u

(a constitutive law based on the material properties).

The solvability of the problem (2.3) follows from the theory of monotone operators,

see e.g. [14]. The properties (2.1), (2.2) guarantee the strong monotonicity and

Lipschitz continuity of the operator Aε which, in particular, implies the existence

and uniqueness of the solution. More precisely, the following assertion holds.

Theorem 2.1. Let p ∈ Uad. Then there exists a unique solution uε(p) ∈ W 1,2
0 (Ω)

of the problem (2.3) for every f ∈ L2(Ω) (or more generally, f ∈ (W 1,2
0 (Ω))⋆ ≈

W−1,2(Ω)). Moreover, we have an apriori estimate ‖uε‖W 1,2
0 (Ω) 6 K, where the

constant K does not depend on ε and p.

Although the existence and uniqueness of solution can be obtained also under

weaker monotonicity and continuity assumptions, the introduced properties are em-

ployed in the proofs in Section 4.

3. Homogenized problem

In this section we introduce the homogenized problem to (2.3) and recall the corre-

sponding convergence theorem. In homogenization, several concepts have been intro-

duced so far. Besides the asymptotic expansion method [3], G, H and Γ-convergence

[6], [10], the two-scale convergence method (and its generalizations) [1], [9], [13]

seem to be the most powerful tools in homogenization theory. Using one of these

approaches we can introduce:

Definition 3.1. The homogenized problem related to the sequence (2.3) is de-

fined as

(3.1)
A0

p(u
0) ≡ −div(bp(∇u0)) = f in Ω,

u0 ∈ W 1,2
0 (Ω),

where the coefficient bp : R
d → R

d is given by

(3.2) bp(ξ) =

∫

Y

ap(y, ξ + ∇wξ(y)) dy

396



and the function wξ ∈ W 1,2
# (Y ) is a solution of the so-called local problem

(3.3) −div(ap(y, ξ + ∇wξ(y))) = 0 in Y, ∀ξ ∈ R
d.

Note that the homogenized problem is not completely separated into a global and

a local part as in the linear case, i.e. it is actually a two-scale problem (ξ acts as

a parameter in (3.3)).

Theorem 3.1. Let p ∈ Uad and let uε(p) be the solution of the problem (2.3).

Then there exist unique solutions wξ(p) and u0(p) of the problems (3.1) and (3.3)

such that

uε ⇀ u0 in W 1,2
0 (Ω),

aε
p(x, ξ) ⇀ bp(ξ) in L2(Ω;Rd),

as ε → 0+. Moreover, the coefficient b : R
d → R

d satisfies the estimates

(bp(ξ) − bp(η), ξ − η) > α|ξ − η|2, ∀ξ, η ∈ R
d,(3.4)

|bp(ξ) − bp(η)| 6
C2

L

α
|ξ − η|, ∀ξ, η ∈ R

d,

where α, L are the same constants as in (2.1) and (2.2).

In literature, the additional assumption a(y, 0) = 0 is usually employed, which

simplifies proofs a bit. Otherwise, we can follow the proof presented e.g. in [5].

The key step of the proof techniques deals with the fact that the product of two

weakly converging sequences need not converge to the product of their limits, so we

cannot immediately pass to the limit in the weak formulation of the problem. While

classical approaches overcome this problem by a special choice of test functions, the

two-scale convergence approach enables us to pass to the two-scale limit in the weak

formulation (information on oscillations of the original functions is preserved via

the second variable y). In other words, the two-scale convergence method is self-

contained, as the output of the convergence analysis we obtain also the homogenized

problem, however, it is in the non-separated (two-scale) form. At this place, it is

worth mentioning that there is an alternative two-scale method, the so-called periodic

unfolding method. It was originally introduced in [2] and later developed in [4], see

also [11].

Some other variants of monotonicity assumptions have also been studied. An over-

view and guide to literature on homogenization of monotone operators can be found

e.g. in [8].
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4. Worst scenario method

In this section we formulate the worst scenario problem related to problem (3.1).

The criterion functional is usually chosen with respect to the aim of interest and upon

the expert decision. It can be defined quite arbitrarily, however, certain continuity

assumptions must be satisfied, for details see [7]. In our considerations the following

property is satisfactory.

Let Φ: Uad ×W 1,2
0 (Ω) → R be a functional satisfying: taking arbitrary sequences

{pn} ⊂ Uad, {vn} ⊂ W 1,2
0 (Ω) such that pn → p in R

m (the limit p is in Uad since

Uad is a compact set in R
m) and vn → v in W 1,2

0 (Ω) as n → ∞, we have

(4.1) Φ(pn, vn) → Φ(p, v).

A typical example of such functional is Φ(u0(p)) = |Ω̃|−1
∫
Ω̃

u0(p) dx, i.e. the

average value of the homogenized solution u0 (representing e.g. the temperature)

over Ω̃, where Ω̃ is a subdomain of Ω—usually a critical place in the material (e.g.

the placement of a measuring probe). This choice is motivated by the question: what

data yield the highest values of the solution (temperature) in the exposed places?

Now, we are in a position when the admissible data set and the criterion functional

are given, so we can formulate the worst scenario problem:

(4.2) Find p̂ ∈ Uad such that Φ(p, u0(p)) 6 Φ(p̂, u0(p̂)), ∀p ∈ Uad.

Let us note that similarly we can formulate the minimization analogue.

Before introducing the existence theorem to problem (4.2) we prove the following

continuity property:

Lemma 4.1. Let {pn} ⊂ Uad be a sequence such that pn → p in R
m as n → ∞.

Then u0(pn) → u0(p) in W 1,2
0 (Ω), where u0(pn) and u0(p) are the solutions of the

problem (3.1) for the parameter pn and p, respectively.

P r o o f. For lucidity, let us denote by an(y, ξ) ≡ apn
(y, ξ), wn ≡ wξ(pn) and

w ≡ wξ(p) the solutions of the local problem (3.3) with the parameters pn and p,

respectively. First, let us prove the boundedness of the sequence {wn} in W 1,2
# (Y ).

From Lipschitz continuity (2.2) we have

(4.3) |ap(y, ξ)| − |ap(y, 0)| 6 |ap(y, ξ) − ap(y, 0)| 6 L|ξ| ⇒ |ap(y, ξ)| 6 c + L|ξ|

for all p ∈ Uad, where c = max
y∈Y

|ap(y, 0)| (note that this maximum is indeed inde-

pendent of p). Using the strong monotonicity condition (2.1), the weak formulation
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of the problem (3.3), the Cauchy-Bunjakovski inequality, (4.3) and the inequality

|ab| 6 1
2θ−1a2 + 1

2θb2, we may write

α‖ξ + ∇wn‖
2
L2

#
(Y ;Rd) 6

∣∣∣∣
∫

Y

(an(y, ξ + ∇wn) − an(y, 0), ξ + ∇wn) dy

∣∣∣∣

=

∣∣∣∣
∫

Y

(an(y, ξ + ∇wn), ξ) dy −

∫

Y

(an(y, 0), ξ + ∇wn) dy

∣∣∣∣

6

∫

Y

|(an(y, ξ + ∇wn), ξ)| dy +

∫

Y

|(an(y, 0), ξ + ∇wn)| dy

6 |ξ|

∫

Y

|an(y, ξ + ∇wn)| dy + c

∫

Y

|ξ + ∇wn| dy

6 |ξ|c + (|ξ|L + c)

∫

Y

|ξ + ∇wn| dy

6 |ξ|c +
θ

2
(|ξ|L + c)2 +

1

2θ
‖ξ + ∇wn‖

2
L2

#
(Y ;Rd),

i.e. (
α −

1

2θ

)
‖ξ + ∇wn‖

2
L2

#
(Y ) 6 |ξ|c +

θ

2
(|ξ|CL + c)2,

where θ is a suitable large constant. Hence, with help of inequality |a| 6 |a + b|+ |b|

and the Poincaré-Wirtinger inequality (we recall that the function wn has the zero

mean value over Y ), we see that ‖wn‖W 1,2

#
(Y ) 6 cξ. It means that there exists an

element w̃ ∈ W 1,2
# (Y ) such that, up to a subsequence, wn′ ⇀ w̃ in W 1,2

# (Y ). Using

again (2.1) we have

α‖∇wn′ −∇w‖2
L2

#
(Y ;Rd)

6

∣∣∣∣
∫

Y

(an′(y, ξ + ∇wn′) − an′(y, ξ + ∇w),∇wn′ −∇w) dy

∣∣∣∣

=

∣∣∣∣
∫

Y

(an′(y, ξ + ∇wn′),∇wn′ −∇w) dy

︸ ︷︷ ︸
=0

−

∫

Y

(an′(y, ξ + ∇w),∇wn′ −∇w) dy

∣∣∣∣

=

∣∣∣∣
∫

Y

(an′(y, ξ + ∇w),∇wn′ −∇w̃) dy +

∫

Y

(an′(y, ξ + ∇w),∇w̃ −∇w) dy

∣∣∣∣.

Further, an(y, ξ + v) → a(y, ξ + v) in L2
#(Y ;Rd), ∀v ∈ L2(Y ;Rd), ∀ξ ∈ R

d. This is

a consequence of the fact that every an(y, ξ) differs from a(y, ξ) in the variable y only

on the set of a measure converging to zero as n → ∞ while in the second variable

the growth of this difference is controlled by the Lipschitz continuity conditions

on functions a1 and a2. It means that the first integral on the right-hand side

converges to zero, since it contains the product of a strongly and a weakly converging
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sequence in L2
#(Y ;Rd). The second integral converges to

∫
Y

(a(y, ξ + ∇w),∇w̃ −

∇w) dy which equals to zero due to the definition of a solution w. Hence, we have

proved that ∇wn′ → ∇w in L2
#(Y ;Rd). On the other hand, we know that ∇wn′ ⇀

∇w̃ in L2
#(Y ;Rd) so that by uniqueness of the limit we have ∇w = ∇w̃ a.e. in

L2
#(Y ;Rd). Since w is the unique weak solution of the problem (3.3), the entire

sequence converges.

Finally, let us denote by un := u0(pn) and u := u0(p) the weak solutions of the

homogenized problem (3.1). In a way similar to the above, we show that the sequence

of solutions un is bounded with help of property (3.4), i.e.

α‖∇un‖
2
L2(Ω;Rd) 6

∣∣∣∣
∫

Ω

(bn(∇un) − bn(0),∇un) dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

fun dx −

∫

Ω

(bn(0),∇un) dx

∣∣∣∣
6 (M‖f‖L2(Ω) + c)‖∇un‖L2(Ω;Rd),

where M is a constant from Friedrich’s inequality and c is a bound of coefficients

bn at the point 0. This proves that the solutions un are bounded in W 1,2
0 (Ω) and

thus there exists an element ũ ∈ W 1,2
0 (Ω) such that, up to a subsequence, un′ ⇀ ũ

in W 1,2
0 (Ω). It remains to prove that ∇u = ∇ũ a.e. in L2(Ω;Rd). The definition

(3.2) and an arguing analogous to the case of the sequence {an(y, ξ)} yields that

bn(v) → b(v) in L2(Ω;Rd) for every v ∈ L2(Ω;Rd). Then by (3.4)

α‖∇un′ −∇u‖2
L2(Ω;Rd)

6

∣∣∣∣
∫

Ω

(bn′(∇un′) − bn′(∇u),∇un′ −∇u) dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

f(un′ − u) dx −

∫

Ω

(bn′(∇u),∇un′ −∇u) dy

∣∣∣∣

=

∣∣∣∣
∫

Ω

f(un′ − u) dx −

∫

Ω

(bn′(∇u),∇un′ −∇ũ) dx −

∫

Ω

(bn′(∇u),∇ũ −∇u) dx

∣∣∣∣.

The first integral converges to
∫
Ω f(ũ − u) dx, the second converges to zero, since it

contains the product of a strongly and a weakly convergent sequence, and the third

converges to −
∫
Ω(b(∇u),∇ũ − ∇u) dx = −

∫
Ω f(ũ − u) dx, which yields ∇ũ = ∇u

a.e. in L2(Ω;Rd). Since the solution u is unique, the entire sequence converges and

the proof is complete. �

Now we are ready to prove the existence theorem for the worst scenario problem.
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Theorem 4.1. There exists a solution of the problem (4.2).

P r o o f. Let p ∈ Uad and let us denote J(p) ≡ Φ(p, u0(p)), i.e. J(p) is a function

defined on Uad. Taking an arbitrary sequence {pn} ⊂ Uad such that pn → p as

n → ∞, Lemma 4.1 yields u0(pn) → u0(p) in W 1,2
0 (Ω) and due to the property (4.1)

we also have J(pn) → J(p). It means that J(p) is continuous and since Uad is a

compact subset in R
m, there exists a maximizing element p̂ ∈ Uad . �

It should be emphasized that we have the existence of solution only. The unique-

ness can certainly be achieved if J(p) is strictly concave on Uad, but intuitively, it is

not clear under which conditions this is true (we recall that J(p) is constructed via

the functional Φ depending on the solution u0(p) of the homogenized problem and

we do not have enough information on the behavior of u0 with respect to p).

5. Remarks

The worst scenario method extends the solvability of mathematical models in

the sense of taking uncertain inputs into account. Such situation is natural, the

input data are usually mined by experiments and consecutive solving of an inverse

(identification) problem. A certain amount of errors in both steps can be expected.

The method expresses the requirement to stay on the safe side and therefore is

sometimes too pessimistic. On the other hand, compared with stochastic methods,

it does not require the probabilistic information about the data distribution. For

comprehensive discussions on the worst scenario method and its comparison with

stochastic methods, we refer to the monograph [7].

The aim of interest was to find some critical shapes of the inclusion in a compos-

ite material. This knowledge can help the designer to adjust the overall material

properties properly. Of course, different configurations can be expected depending

upon the choice of the criterion functional. Some numerical experiments are the

subject of further research. Whether the method can be applicable also in the case

of non-periodic structures remains an open question.

We have not discussed the finite dimensional approximations of the introduced

problems yet. The standard procedure consists in formulation of the corresponding

problems on the finite-dimensional subspaces Vδ ⊂ W 1,2
# (Y ) and Vh ⊂ W 1,2

0 (Ω),

where δ and h are the discretization parameters, e.g. those from the finite element

method. Then also the solution of the worst scenario method depends on δ and h.

We note that here the situation is simplified since we avoid the approximation of

the set Uad—it is already a subset of the finite-dimensional space Rm. The last step

consists in the convergence analysis of the approximate solutions p̂δ,h → p̂ in R
m,

and u0
δ,h(p̂δ,h) → u0(p̂) in W 1,2

0 (Ω) as δ, h → 0+.
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A c k n ow l e d gm e n t. The author is grateful to the anonymous referee for com-

ments and suggestions which helped to improve this paper.
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