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Abstract. Two-scale convergence is a powerful mathematical tool in periodic homogeniza-
tion developed for modelling media with periodic structure. The contribution deals with
the classical definition, its problems, the “dual” definition based on the so-called periodic
unfolding. Since in the case of domains with boundary the unfolding operator introduced by
D.Cioranescu, A.Damlamian, G.Griso does not satisfy the crucial integral preserving prop-
erty, the contribution proposes a modified unfolding operator which satisfies the property
and thus simplifies the theory. The properties of two-scale convergence are surveyed.
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1. Introduction

Two-scale convergence became a powerful tool in homogenization theory. It en-

ables us to overcome the problem of passing to the limit in a product of two weakly

converging sequences: If un ⇀ u∗ and vn ⇀ v∗ weakly, then what is the limit of

unvn? It can differ from u∗v∗ as the following simple example shows: In L2(0, 2π)

both sequences {un} and {vn} given by un(x) = vn(x) = sin(nx) converge weakly

to the zero function, but their product un vn converges weakly to the constant func-

tion 1
2 . It is caused by the fact that the local behavior of un and vn is lost in the

weak limit.

The problem appears in homogenization, which studies the behavior of solutions

uε to a sequence of equations of type −div(aε∇uε) = f with periodic coefficients

This research was supported by Grant No. 201/08/0874 of the Grant Agency of the Czech
Republic.
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aε(x) = a(x/ε) while the period ε→ 0. Indeed, the weak formulation of the problem

(1.1) Find uε ∈W 1,2
0 (Ω) s.t.

∫

Ω

aε∇uε∇v dx =

∫

Ω

fv dx ∀ v ∈W 1,2
0 (Ω)

contains coefficients aε that weakly converge and since the sequence of solutions uε

is bounded in W 1,2
0 (Ω), it contains a subsequence uε′

such that ∇uε′

also weakly

converge. The problem is to find a∗ such that lim
ε

(aε∇uε) = a∗∇
(
lim

ε
uε

)
.

The problems was first solved by a special choice of test functions vε, see e.g. [3],

and its substance was generalized to the so-called “div-rot” lemma by Murat and

Tartar. The two-scale convergence introduced by Nguetseng in [12] and further

developed in [1], [10], [9] and other, gives a straightforward approach; it simplifies

the proofs and derives the form of the homogenized problem simultaneously with

proving the convergence.

The two-scale limit of a sequence uε(x) of one variable x ∈ R
N is a function

u0(x, y) of two variables x, y ∈ R
N , where the additional variable y contains the

local behavior of uε. The classical definition converts the two-scale two-variable test

function v(x, y) into a one-variable function v(x, x/ε) and tests the convergence in

Lp(Ω), see Definition 3.1, which causes problems with the choice of the test function

space, see Section 3; thus two additional conditions for test functions were added.

The so-called “dual” approach to two-scale convergence based on the unfolding

operator, called in [2], [4] the dilation operator, helps to solve the problem of the

test function space. This alternative approach was announced in [5], described in

detail in [7] and further developed with proofs in [6]. It was also introduced in [11].

In contrast to the previous definition, where the test function was transformed, here

using the unfolding operator Tε the functions u
ε(x) are transformed into two-variable

functions ûε(x, y) and the convergence ûε to u0 is tested in Lp(Ω×Y ), see Section 4.

This approach yields also a natural definition of strong two-scale convergence and

simplifies the proofs by using the known properties of the Lp spaces.

The method works well in the whole RN , but the case of a domain Ω with boundary

∂Ω causes problems. The equality published in Proposition 1 of [5]

(1.2)

∫

Ω

u(x) dx =
1

|Y |

∫

Ω×Y

Tε(u)(x, y) dxdy

is not true in general due to boundary cells. This equality—the integral preserving

property of the unfolding operator—plays a crucial role in the theory. In [7] and [6]

the problem of the invalid equality (1.2) is solved by considering auxiliary sequences

of domains Λε containing the boundary cells only, extending Tε at Λε by zero and

introducing an “unfolding criterion for the integral”, see (4.4).
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The aim of the contribution is to introduce a modified periodic unfolding operator

(announced in [8] and called the two-scale transform) such that it satisfies the inte-

gral conserving property, i.e. equality (1.2). The definition of two-scale convergence

based on the modified unfolding operator makes it possible to simplify the two-scale

convergence theory and homogenization of particular equations. In the end basic

properties of the two-scale convergence are surveyed.

2. Preliminaries

In periodic homogenization the real parameter ε > 0 denotes the period of the

coefficients. A decreasing sequence of εn tending to zero will be called a scale. In

homogenization instead of n = 1, 2, 3, . . ., the sequences are indexed by εn, but the

n in uεn is usually omitted and the sequence is denoted simply by uε. Usually

the scale is not mentioned in definitions of two-scale convergence, but the two-scale

convergence strongly depends on the chosen scale.

The basic cell denoted by Y is usually the unit cube 〈0, 1)N . More generally, it

can be an N -dimensional interval or any parallelepiped. Then the cell Y is spanned

by an N -tuple of independent vectors b1, . . . , bN ∈ R
N , i.e.

Y = {λ1b1 + . . .+ λN bN : 0 6 λi < 1, i = 1, . . . , N}.

The cell Y has the paving property, i.e. the collection {Yξ ≡ Y + ξ : ξ ∈ Ξ} of cells
Y shifted by a vector ξ from a set of shifts

Ξ = {ξ = k1b1 + . . .+ kNbN : k1, . . . , kN ∈ Z}

is a partition of RN : the shifted cells Yξ are disjoint and cover R
N .

The basic cell Y and the corresponding countable set of shifts Ξ define the unique

decomposition of a point y ∈ R
N into its “integral” part [y]—the shift ξ of the cell

Yξ containing y and its “fractional” part {y}—the local position of y in the cell:

(2.1) y = [y] + {y}, where [y] ∈ Ξ, {y} ∈ Y.

In the case when the basic cell Y is the unit cube, we have Ξ = Z
N and the

decomposition y = [y] + {y} of y ∈ R
N is the standard decomposition of each of its

components into the integral and fractional parts yi = [yi] + {yi} defined by [yi] ∈ Z

and 0 6 {yi} < 1.

A function u is called Y -periodic, if u(x + ξ) = u(x) for each ξ ∈ Ξ. In the case

when Y is the unique cube the Y -periodic function is periodic in the standard sense:
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u(y1 + k1, . . . , yN + kN ) = u(y1, . . . , yN ) holds for any ki ∈ Z. Let us denote the

space of Y -periodic functions by the subscript per, e.g. Lp
per(Y ).

Let Ω be a bounded domain with Lipschitz boundary ∂Ω and 1 6 p < ∞. Then
C(Ω) denotes the space of functions continuous on Ω, Lp(Ω) the Lebesgue space of

functions on Ω integrable with the p-th power and W 1,p(Ω) the Sobolev space. The

spaces of abstract functions will be denoted as usual, e.g. C(Ω, Lp
per(Y )).

Let us recall that a Y -periodic function a ∈ Lp
per (p < ∞) with the scale {ε}

defines a sequence of functions aε(x) = a(x/ε) which weakly converge to the constant

function a = |Y |−1
∫
Ω a(y) dy.

Let us consider the domain Ω and an ε-scaled paving, i.e. a collection of ε-scaled

εξ-shifted cells Y ε
ξ ≡ εYξ ≡ ε(Y + ξ). The intersection of Ω with the ε-scaled paving

determines the “inner cells” denoted by Y ε
ξ , which are subsets of Ω, and the boundary

cells Y ε
ξ , whose interiors intersect the boundary ∂Ω; their parts in Ω will be denoted

by Ỹ ε
ξ = Y ε

ξ ∩ Ω. In accordance with [6] the union of these “uncomplete” boundary

cells will be denoted by Λε.

3. Classical definition

The standard definition of two-scale convergence can be stated as follows:

Definition 3.1. A sequence of functions uε is said to (weakly) two-scale converge

to a limit u0 ∈ Lp(Ω × Y ) (1 < p <∞) with respect to the scale {ε} if

(3.1)

∫

Ω

uε(x)ϕ
(
x,
x

ε

)
dx→

∫

Ω

∫

Y

u0(x, y)ϕ(x, y) dy dx

as ε → 0 for all admissible test functions ϕ(x, y) from a space V of functions Y -
periodic in the variable y which is a subspace of Lq(Ω × Y ), q = p/(p− 1).

A sequence of functions uε(x) is said to strongly two-scale converge to a limit

u0(x, y) ∈ Lp(Ω × Y ) with respect to the scale {ε} if it converges two-scale weakly
and moreover

(3.2) ‖uε‖Lp(Ω) →
1

|Y |1/p
‖u0‖Lp(Ω×Y ).

The specification “with respect to the scale {ε}” is mostly omitted.
The space of admissible functions V can be e.g. Lp(Ω, C0

per(Y )) or C0(Ω, Lp
per(Y )).

The proper choice of V is a problem. It cannot be the whole Lp(Ω × Y ), since on

the left hand side of (3.1) the two-variable test function ϕ(x, y) is transformed into

one-variable function ϕ(x, x/ε). Taking into account that ϕ is periodic in y, the set of

points (x, x/ε) ∈ R
2N consists of a countable system of N -dimensional “segments”
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in Ω × Y . Even if a countable sequence of periods εk is taken, it is still a set of

measure zero in Ω×Y . But the elements of Lp(Ω×Y ) are classes of functions which

may differ on zero measure subsets. Thus some continuity of test functions must be

assumed.

The problem of choosing the optimal space of test functions has not been satisfac-

torily solved yet. Let us mention that if it is too small, e.g. V = C∞
0 (Ω × Y ), then

boundedness of uε in L
p(Ω) must be added, otherwise even an unbounded sequence

is admitted. For the test functions the Carathéodory conditions are often assumed

and the following two conditions are added:

∥∥∥ϕ
(
·, ·
ε

)∥∥∥
Lp(Ω)

6 ‖ϕ‖V ,
∥∥∥ϕ

(
·, ·
ε

)∥∥∥
Lp(Ω)

−→ 1

|Y |1/p
‖v‖Lp(Ω×Y ).

The sequence {uε} is often supposed to be bounded in the Lp-norm.

4. The “adjoint” definition using unfolding operator

The alternative approach is based on the unfolding or the so-called two-scale trans-

form which removes difficulties with the space of test functions: instead of transform-

ing the two-variable test function ϕ(x, y) to the one-variable function ϕ(x, x/ε) the

one-variable members uε(x) of the sequence are transformed into two-variable func-

tions ûε(x, y) and the limit is tested in Lp(Ω × Y ):

uε two-scale converges to u0 if ûε converges to u0 in Lp(Ω × Y ) weakly.

Thus both the limit u0 and the test function ϕ can be taken from the maximal spaces:

u0 in Lp(Ω × Y ) and ϕ in its dual space Lq(Ω × Y ). We need not take care of the

space V , of admissibility and compatibility of the test functions as in the classical
definition. It also enables us to introduce a natural definition of strong two-scale

convergence: if ûε converge to u0 in Lp(Ω × Y ) strongly.

The unfolding operator appeared in [2], where it was called the dilation operator

and was used for homogenization of periodic porous materials, and later e.g. in [4].

The notion of two-scale convergence based on periodic unfolding appeared in [5] and

[11]. It was further developed in [7] and [6].

The unfolding operator Tε converts a single variable function u on Ω into a two-

variable function û on Ω × Y . Using the decomposition (2.1) of y ∈ R
N into the

integral and fractional parts y = [y]+{y} and its scaling, the mapping tε : R
N ×Y →

R
N given by

(4.1) tε(x, y) = ε
[x
ε

]
+ εy x ∈ Ω = R

N , y ∈ Y
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will be used for introducing the corresponding unfolding operator Tε:

(4.2) Tε(u)(x, y) = u(tε(x, y)) (x, y) ∈ Ω × Y.

The mapping tε conserves the Lebesgue measure as follows: for a bounded measur-

able set M ∈ R
N the measure of M equals to measure of the inverse image t−1

ε (M)

divided by the measure of the cell Y :

|M | =
1

|Y | |t
−1
ε (M)|.

Thus the case when ∂Ω does not intersect the interior of the scaled cells Y ε
ξ , i.e.

the union of the boundary cell Λε is empty, the unfolding operator Tε conserves the

integral, i.e. the identity (1.2).

Nevertheless, the equality (1.2) with (4.2), as is stated in Proposition 1 of [5], is

not true in the case of a general domain when Λε has positive measure. Then even

it does not map Lp(Ω) into Lp(Ω× Y ). This is caused by the uncomplete boundary

cells Ỹ ε
ξ of Λε. In the paper [6] the definition (4.2) of the unfolding operator Tε was

changed in the uncomplete boundary cells (for notation see Section 2):

(4.3) Tε(u)(x, y) =

{
u(tε(x, y)) for x in inner cells Y ε

ξ ,

0 for x in boundary cells Ỹ ε
ξ .

The desired equality (1.2), which was true neither by unfolding defined neither by

(4.1), (4.2) nor by (4.1), (4.3), was replaced by an “equality in the limit” which was

valid for sequences uε satisfying the so-called unfolding criterion for integrals, see [6],

Proposition 2.6:

If the sequence uε satisfies
∫
Λε

|uε| dx→ 0 as ε→ 0, then

(4.4)

∫

Ω

uε dx− 1

|Y |

∫

Ω×Y

Tε(u
ε) dxdy → 0.
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5. Two-scale convergence with modified unfolding

The aim of this paper is to introduce a modified unfolding operator T ∗
ε , see also [8],

for which the desired equality (1.2) holds and thus the problems mentioned above

disappear. Instead of (4.3), the function uε is not transformed in the uncomplete

boundary cells:

(5.1) T ∗

ε (u)(x, y) =

{
u(tε(x, y)) for x in inner cells Y ε

ξ ,

u(x) for x in boundary cells Ỹ ε
ξ .

This modified unfolding operator conserves integral and even the norm in the case

of any domain:

(5.2)

∫

Ω

u dx =
1

|Y |

∫

Ω×Y

T ∗

ε (u) dxdy, ‖u‖Lp(Ω) =
1

|Y |1/p
‖T ∗

ε (u)‖Lp(Ω×Y ).

Thus the “dual” definition of two-scale convergence can be written in the following

form:

Definition 5.1. Let {ε} be a scale, {uε} a sequence in Lp(Ω), 1 < p < ∞ and
T ∗

ε the unfolding operator defined by (4.1), (5.1).

(a) We say that the sequence uε (weakly) two-scale converges in Lp(Ω) (with respect

to the scale {ε}) to the limit u0(x, y) ∈ Lp(Ω × Y ) if

ûε = T ∗

ε (uε) converges to u0 in Lp(Ω × Y ) weakly.

(b) We say that the sequence uε strongly two-scale converges in Lp(Ω) (with respect

to the scale {ε}) to u0(x, y) ∈ Lp(Ω × Y ) if

ûε = T ∗

ε (uε) converges to u0 in Lp(Ω × Y ) strongly.

Let us mention that it can be proved that all the definitions introduced above

are equivalent. The advantage of the modified definition is that due to the integral

conserving property the theory can be simplified, the proofs of the next section follow

directly from the Lp theory. No unfolding criterion for integrals is necessary, since

with the unfolding T ∗
ε the equality (1.2) holds.
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6. Survey of properties of the two-scale convergence

Let us survey the results which follow from Definition 5.1 and the Lp theory.

E x am p l e 6.1. Let f, g ∈ Lp(Ω) and let ψ ∈ L∞(Yper) be such that
∫

Y
ψ(y) dy =

0. Then the sequence {uε} defined by

uε(x) = f(x)ψ
(x
ε

)
+ g(x)

is bounded in Lp(Ω) and two-scale converges both weakly and strongly in Lp(Ω) with

respect to the scale {ε} to the limit

u0(x, y) = f(x)ψ(y) + g(x).

In Lp(Ω) the sequence converges weakly to g(x). The example shows that the local

oscillations of uε, which are lost in the weak limit, are conserved in the two-scale

limit. Nevertheless, if the scale {ε} is not “in resonance” with the period of the
sequence, e.g. uε = f(x)ψ(x/

√
2ε) + g(x), then uε two-scale converge only weakly to

the limit u0(x, y) = g(x), i.e. the local oscillations are also lost in the limit.

Theorem 6.2 (Properties of the two-scale convergences). Let {ε} be a scale,
{uε} a sequence in Lp(Ω) and u0 ∈ Lp(Ω × Y ). Then:

(a) Each weakly or strongly two-scale converging sequence is bounded in Lp(Ω).

(b) The weak or strong two-scale limit u0 is unique as an element of Lp(Ω × Y ).

(c) The weak or strong two-scale convergence of uε to u0(x, y) implies weak con-

vergence in Lp(Ω) of uε to the limit u∗(x) = |Y |−1
∫

Y u
0(x, y) dy.

(d) The relation between the convergences and the two-scale convergences in Lp(Ω)

can be summarized in the following diagram of implications:

strong =⇒ strong two-scale =⇒ weak two-scale =⇒ weak.

Theorem 6.3 (Compactness). Let {ε} be a scale and {uε} a bounded sequence
in Lp(Ω). Then there exist a subscale {ε′} ⊂ {ε} and a limit u0 ∈ Lp(Ω × Y ) such

that uε′

(weakly) two-scale converge to u0 with respect to the subscale {ε′}.
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Theorem 6.4 (Convergence result). Let a sequence {uε} strongly two-scale con-
verge to u0 and a sequence {vε} two-scale converge to v0, both with respect to

the same scale {ε}, the former in Lp(Ω) and the latter in Lq(Ω). The exponents

p, q, r > 1 are supposed to satisfy 1/p + 1/q = 1/r < 1. Then the product uεvε

two-scale converges to the limit u0v0 ≡ u0(x, y)v0(x, y) in Lr(Ω).

In particular, for any ϕ ∈ Ls(Ω) with s ∈ 〈1,∞〉 satisfying 1/p+1/q+1/s = 1 we

have

(6.1)

∫

Ω

uε(x)vε(x)ϕ(x) dx −→
∫∫

Ω×Y

u0(x, y)v0(x, y)ϕ(x) dxdy.

R em a r k 6.5. The last result enables us in many cases to solve the problem

introduced in the introduction: to pass to the limit of the product of two weakly

converging sequences if one of them is strongly two-scale converging.

Let us sketch passing to the limit in the homogenization problem (1.1). Since the

sequence of solutions uε is bounded in W 1,2
0 (Ω), components of its gradient ∇uε are

also bounded in L2(Ω) and due to Theorem 6.3 it contains a subsequence (∇uε′

)i

weakly two-scale converging with respect to the subscale {ε′}. Passing to the limit
as ε′ → 0 in (1.1) is possible due to Theorem 6.4 since aε is converging two-scale

strongly to a(y). If we prove that the limit is unique, the whole sequence converges.

7. Conclusion

The modified unfolding operator T ∗ enables us to introduce a natural definition of

the weak and the strong two-scale convergence, this Definition 5.1 is equivalent to the

previous ones. It simplifies the proofs of theorems on the two-scale convergence. In

many cases it enables to pass to the limits of product of weakly converging sequences,

see Theorem 6.4, particularly in the homogenization problems, where the coefficients

strongly two-scale converge and the bounded solutions weakly two-scale converge.

The modified definition simplifies proofs of the fundamental theorems of Section 6.
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