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A priori estimates for quasilinear parabolic systems

with quadratic nonlinearities in the gradient

Arina A. Arkhipova, Jana Stará

Abstract. We derive local a priori estimates of the Hölder norm of solutions to
quasilinear elliptic systems with quadratic nonlinearities in the gradient. We
assume higher integrability of solutions and smallness of its BMO norm but
the Hölder norm is estimated in terms of BMO norm of the solution under
consideration, only.

Keywords: quasilinear parabolic systems, quadratic nonlinearities, regularity,
Morrey, VMO spaces

Classification: 35J60

1. Introduction

In this paper we study regularity of weak solutions of systems

(1) ut − div
(

a(z, u)∇u
)

+ b(z, u,∇u) = 0; z ∈ Q,

where Q = Ω × (0, T ), Ω is a bounded domain in R
n, n ≥ 2, and T > 0 is an

arbitrary fixed positive number. By ut we denote the time derivative of a function

u : Q → R
N , N > 1, and by ∇u = {uixα

}i≤Nα≤n its gradient with respect to the
space variables.

We assume that a(z, η) and b(z, η, ξ) satisfy the following conditions:

• (H1) There are positive constants λ,Λ such that

(

a(z, η)ξ, ξ
)

= a
αβ
ij (z, η)ξiαξ

j
β ≥ λ|ξ|2, ξ ∈ R

nN ,(2)

|(a(z, η)p, q)| ≤ Λ|p||q|, p, q ∈ R
nN ,(3)

for all (z, η) ∈ Q× R
N .

• (H2) The coefficients aαβij (., u) ∈ VMO(Q) for every u ∈ R
N , i, j ≤ N ,

α, β ≤ n and, moreover, denoting

q2(R) = sup
zo∈Q,u∈RN ,r∈(0,R]

∫

Qr(zo)

|a(z, u) − (a(z, u))r,zo |2 dz,

Both authors were partially supported by Centro Ennio de Giorgi, the first author by RFFI
08-01-00748 and the second author also by GAČR 201/09/0917.
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we have

(4) q2(R) → 0 for R → 0.

• (H3) For every z ∈ Q and u, v ∈ R
N it holds

(5) |a(z, u)− a(z, v)| ≤ ω(|u− v|2),

where ω is a nondecreasing, bounded and concave function on [0,∞) with
lims→0+ ω(s) = 0.

• (H4) Functions b(z, η, ξ) are measurable in z for η ∈ R
N , ξ ∈ R

nN , and
continuous in (η, ξ) for a.a. z ∈ Q. Moreover

(6) |b(z, η, ξ)| ≤ bo|ξ|
2 + b1, (z, η) ∈ Q× R

N , ξ ∈ R
nN ,

with some constants bo > 0, b1 ≥ 0.1

We consider a weak solution u ∈ V = L2((0, T );W 1
2 (Ω)) of system (1) which

satisfies the identity

(7)

∫

Q

(−uϕt + (a(z, u)∇u,∇ϕ) + b(z, u,∇u)ϕ)dz = 0; ∀ϕ ∈ C∞
0 (Q).

The regularity problem for elliptic and parabolic systems with strongly non-
linear terms in the gradient was studied in [1]–[6], [15], [17], [23], [24]. Partial
regularity of bounded weak solutions of (1) was proved under the smallness as-
sumption

(8) 2bo‖u‖∞,Q < λ.

More precisely, Hölder continuity of u in a neighborhood of a point zo ∈ Q was
proved provided that (8) is valid and

(9) lim inf
R→0+

1

Rn

∫

QR(zo)

|∇u|2 dz < ǫ2o

for an ǫo small enough depending on the data only (here and later on QR(zo) is
a parabolic cylinder, see the notation at the end of Introduction).

It follows from the above mentioned results that smoothness of bounded weak
solution u in a neighborhood of zo holds under the assumption

(10) oscQR(zo) u < θ

for a small enough positive θ and R = R(zo) > 0 (instead of (8), (9)).
Unfortunately, description (10) of regular points does not allow to obtain rea-

sonable estimates of the set Σ of singular points of the considered solution u.
As it is known, an appropriate estimate of Σ helps to study the solvability of
systems (1) (see [9]).

1It is sufficient to assume that b1 ∈ Lq(Q) for a q > n+2

2
.
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Condition (10) was relaxed in [3], [4] to the assumption

(11) [u]L2,n+2(QR(zo)) < θ,

where θ ≪ 1 and where [u]L2,n+2(QR(zo)) denotes the seminorm of u in Cam-

panato space L2,n+2(QR(zo)). (Relaxations of the same type were obtained for
corresponding elliptic systems in [2], [5], [6].)

A priori local Lp estimate (for p > 2) of the gradient of u was obtained in
[3] under the assumption (11). In [4] Hölder continuity of u with respect to the
parabolic metric δ and the estimate

(12) ‖u‖
Cα(QτR(zo),δ)

≤ C
(

‖u‖2,QR , ‖∇u‖2,QR, R
−1, α

)

are proved for any α ∈ (0, 1) and some τ ∈ (0, 1) provided that condition (11)
holds with sufficiently small θ depending on the data only.

Note that a sufficient condition that ensures (11) can be expressed by the
requirement

(13) ‖∇u‖L2,n(QR(zo)) < θ1

with a small parameter θ1 (see Proposition 2.1 in [3]).
As it is known, the condition

(14) Φ(R, zo) =
1

Rn

∫

QR(zo)

|∇u|2 dz < θ

with small enough θ describes regular points zo of u for the simplest systems with
b = 0 in (1). This condition allows to estimate the Hausdorff measure of a singular
set of u. In this sense, condition (14) is an optimal assumption to estimate the
Hölder norm of u in the neighborhood of zo. Let us remark that the monotonicity

of the function Φ(r, ξo) in the argument r for any ξo ∈ QR(zo) ensures estimate
(13) with θ1 = cθ provided that assumption (14) holds. It means that description
(13) of regular points of u transforms the problem of the optimal description of
regular points to the possibility to state a monotonicity type estimate for the
function Φ(r, ξo). We also remark that a priori estimates of Cα norm of u were
obtained in [3], [4] under Dirichlet boundary conditions up to the lateral surface
of Q.

A priori estimate (12) was obtained in [4] for solutions u of system (1) from
the space W 1,2(Q). The existence of ut ∈ L2(Q) and strong energy estimate were
essentially exploited in the proof of (12) by the so called direct method. Actually,
parabolic systems with elliptic operators of variational structure were considered
in [4].

In this paper, we derive a local a priori estimate (12) under smallness condition
(11) for weak solutions u ∈ V = L2((0, T );W 1

2 (Ω)) under assumptions (H1)–(H4).
We also assume that the Lm-norm of the gradient of u, for some m > 2, is finite,
but the constant C in (12) does not depend on this norm. For the proof we apply
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the “A-caloric approximation” method. This method was introduced for parabolic
systems in [14] as a development of the “A-harmonic approximation” method for
elliptic systems (see [12], [13], [18]). (See [7], [25], [14] for its applications to
parabolic problems.)

Moreover, we relax in this paper the assumptions on the smoothness of the
matrix a(z, v), namely we do not require the continuity of a(z, v) in z. Recall that
regularity of weak solutions to linear systems with principle matrices in VMO-
space was studied by Chiarenza, Frasca, Longo (see [10]) or Huang (see [19]).
It follows from [21] that some smoothness of the principal matrix of parabolic
systems is necessary even in the linear case. Regularity of minimizers of certain
functionals under VMO smoothness of matrices a(z, v) in z was studied in [11],
[26]. Thus, it seems reasonable to study regularity of weak solutions to systems
satisfying assumption (H4).

We adopt the following notation:

BR(x0) = {x ∈ R
n : |x− x0| < R}, QR(z0) = BR(x0) × (t0 −R2, t0),

(u)R,z0 =
1

ωnRn+2

∫

QR(z0)

u(z) dz =

∫

QR(z0)

u(z) dz, ωn = measB1,

VR(z0) = L2

(

(t0 −R2, t0);W 1
2 (BR(x0))

)

, z0 = (x0, t0) ∈ R
n+1.

We will leave out zoand write QR, VR and (u)R if it does not cause misunder-
standing.

2. Auxiliary results

We start with a reformulation of the A-caloric lemma due to Duzaar and Min-
gione (see [14]). (Such a reformulation was proposed in the elliptic case by M. Gi-
aquinta (see Appendix in [13]).

Definition (A-caloric function). Let A be an nN×nN constant positive definite
matrix. A function h ∈ V is A-caloric if for any ϕ ∈ C1

0 (Q)
∫

Q

(

hϕt − (A∇h,∇ϕ)
)

dz = 0.

Lemma 1 (A-caloric approximation). Let 0 < λ < Λ and n,N ∈ N (with

n,N ≥ 2) be fixed. Then for any ε > 0 there exists a C(ε) = C(ε, n,N, λ,Λ) > 0
such that the following holds: for any bilinear form A on R

nN such that

(Aξ, ξ) ≥ λ|ξ|2,(15)

‖A‖ ≤ Λ,(16)

and for any u ∈ VR(zo) there exist an A-caloric h ∈ VR(zo) and ϕ ∈ C1
0 (QR(zo))

so that

‖∇ϕ‖L∞ ≤ 1,(17)
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∫

QR(zo)

(|h|2 +R2|∇h|2) dz ≤

∫

QR(zo)

(|u|2 +R2|∇u|2) dz,(18)

∫

QR(zo)

|u− h|2 ≤ ε

∫

QR(zo)

(

|u|2 +R2|∇u|2
)

dz(19)

+ C(ε)R2

∣

∣

∣

∣

∫

QR(zo)

(

uϕt − (A∇u,∇ϕ)
)

dz

∣

∣

∣

∣

2

.

Proof: Let us prove Lemma 1 for xo = 0, to = 0 and R = 1. The full as-
sertion then follows by a standard homotopy argument. For u 6= 0 set ũ =

u
(

∫

Q1
|u|2 + |∇u|2 dz

)−1/2

, Q1 = Q1(0), and fix an ε > 0. Then
∫

Q1
(|ũ|2 +

|∇ũ|2) dz ≤ 1 and if, moreover,

(20)

∣

∣

∣

∣

∫

Q1

(

ũψ̃t − (A∇ũ,∇ψ̃)
)

dz

∣

∣

∣

∣

≤ δ‖∇ψ̃‖L∞

for all ψ̃ ∈ C1
0 (Q1) and some δ = δ(ǫ), then ũ satisfies all assumptions of

Lemma 4.1 in [14]. Hence there is an A-caloric h̃ ∈ V1 such that

∫

Q1

(

|h̃|2 + |∇h̃|2
)

dz ≤ 1,

∫

Q1

|ũ− h̃|2 dz ≤ ε.

Setting h = h̃
( ∫

Q1
(|u|2 + |∇u|2) dz

)1/2
and ϕ = 0, we get the inequalities (17)–

(19).

If, on the contrary, the inequality (20) is not satisfied, there is a nonzero ψ̃ ∈
C1

0 (Q1) such that

∣

∣

∣

∣

∫

Q1

(

ũψ̃t − (A∇ũ,∇ψ̃)
)

dz

∣

∣

∣

∣

> δ‖∇ψ̃‖L∞ .

After changing (if necessary) the sign of ψ̃, we have

∫

Q1(zo)

(

ũψ̃t − (A∇ũ,∇ψ̃)
)

dz > δ‖∇ψ̃‖L∞ ,

and for ψ = ψ̃

‖∇ψ̃‖L∞
the inequality (17) is satisfied. Thus, also the inequalities

1

δ

∫

Q1

(ũψt − (A∇ũ,∇ψ)) dz > 1,

1

δ

∫

Q1

(uψt − (A∇u,∇ψ)) dz >

(
∫

Q1

(|u|2 + |∇u|2) dz

)1/2
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are valid. For this ψ and h = 0
∫

Q1

|u− h|2 dz =

∫

Q1

|u|2 dz ≤

∫

Q1

(|u|2 + |∇u|2) dz

<
1

δ2
|

∣

∣

∣

∣

∫

Q1

uψt − (A∇u,∇ψ) dz

∣

∣

∣

∣

2

,

and Lemma 1 holds with Cε = 1
δ2 , R = 1, z0 = 0. �

Corollary 1. Let the assumptions of Lemma 1 be satisfied and (u)QR(zo) = 0.

Then the assertion of Lemma 1 remains true and, moreover, the A-caloric function

h satisfying (18), (19) can be chosen so that (h)QR(zo) = 0 and (17) also holds.

Proof: For given A, u and ε find h̃, ϕ according to Lemma 1 and set h = h̃ −
(h̃)QR(zo). Then h has zero mean value over QR(zo). Relation (17) is obvious,
and (18), (19) follow from the inequalities

∫

QR(zo)

|h|2 dz ≤

∫

QR(zo)

|h̃|2 dz,

∫

QR(zo)

|u− h|2 dz ≤

∫

QR(zo)

|u− h̃|2 dz.

Here we used the fact that for any function u ∈ L2(Q) its integral mean value is
the minimizer of F (c) =

∫

Q |u− c|2 dz. �

Corollary 2. Let the assumptions of Lemma 1 be satisfied. Then for any ε > 0
there exists a positive constant C(ε) = C(ε, n,N, λ,Λ) such that the following

holds: for any bilinear form A on R
nN satisfying (15), (16) and for any u ∈ VR(zo)

there exist an A-caloric h ∈ VR(zo) and ϕ ∈ C1
0 (QR(zo)) satisfying (17) so that

(21)

∫

QR(zo)

(

|h− (h)R,zo |2 +R2|∇h|2
)

dz

≤

∫

QR(zo)

(

|u− (u)R,zo |2 +R2|∇u|2
)

dz,

(22)

∫

QR(zo)

|u− h|2 dz ≤ ε

∫

QR(zo)

(

|u− (u)R,zo |2 +R2|∇u|2
)

dz

+ C(ε)R2

∣

∣

∣

∣

∫

QR(zo)

(uϕt − (A∇u,∇ϕ)) dz

∣

∣

∣

∣

2

.

Proof: Apply Corollary 1 to the function ũ = u− (u)R,zo and find A-caloric h̃, ϕ

so that h̃ has mean value zero and they satisfy (17), (18), (19). Set h = h̃+(u)R,zo .

Then h is A-caloric. As (h)R,zo = (u)R,zo , inequality (18) for h̃ and ũ gives

∫

QR(zo)

(

|h− (h)R,zo |2 + R2|∇h|2
)

dz =

∫

QR(zo)

(

|h̃|2 +R2|∇h̃|2
)

dz
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≤

∫

QR(zo)

(

|u− (u)R,zo |2 +R2|∇u|2
)

dz.

Further, (19) for h̃ and ũ implies

∫

QR(zo)

|u− h|2 dz =

∫

QR(zo)

|ũ− h̃|2 dz

≤ ε

∫

QR(zo)

(

|u− (u)R,zo |2 +R2|∇u|2
)

dz

+ C(ε)

∣

∣

∣

∣

R

∫

QR(zo)

(

uϕt − (A∇u,∇ϕ)
)

dz

∣

∣

∣

∣

2

,

which accomplishes the proof. �

3. Main theorem

We start with the following remark.

Remark 1. Let b ≡ 0 in system (1). It is well known that there exists p0 =
p0(λ,Λ, n) > 2 such that ∇u ∈ Lp(Q

′), , Q′ ⊂⊂ Q, p ∈ [2, p0), for any solution
u ∈ V (Q) (see [8], [20]). It appears that an Lp estimate (p > 2) for the gradient
is also valid for system (1) with b 6= 0 provided that some smallness assumption
holds.

To describe this assumption we introduce the following definition:

Definition. Let θ and Ro be fixed positive numbers. We say that “u satisfies
condition Sθ,Ro” in a cylinder QR(zo) ⊂ Q provided that

• ∇u ∈ Lm(QR(zo)) with an exponent m > 2,

• [u]L2,n+2(QR(zo)) ≤ θ with some R = R(zo) ≤ Ro.

Theorem 1. Let assumptions (H1)–(H4) hold and let u ∈ V satisfy (7). Then

there exist parameters θ,Ro such that if u fulfills condition Sθ,Ro in a cylinder

QR(zo) with R ≤ Ro then u ∈ Cα(QτR(zo)) for some τ ∈ (0, 1), any α ∈ (0, 1)
and

(23) ‖u‖Cα(QτR(zo)) ≤ C1

(

‖u‖V , α,R
−1
)

.

The constant C1 does not depend on the norm ‖∇u‖m,QR . It neither depends on

the exponent m from condition Sθ,R0
provided that m ≥ p0 (see Remark 1).

Remark 2. Further, we consider u on QR(zo) satisfying Sθo,Ro with some θ0 we
specify below. Then

(24)

∫

Q

(

− uϕt + (a(z, u)∇u,∇ϕ) + b(z, u,∇u)ϕ
)

dz = 0
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holds for any test function ϕ ∈ W 1
2 (QR) ∩ L2,n+2(QR), spt ϕ ⊂ QR. Indeed,

L2,n+2(QR) →֒ Ls(QR) for any s <∞, and we have

∫

QR

|∇u|2|ϕ| dz ≤

(
∫

QR

|∇u|m dz

)2/m

.

(
∫

QR

|ϕ|
m

m−2

)

m−2

m

<∞.

Moreover, u ∈ VR(zo)∩Ls(QR(zo)) for any s <∞. Applying the Steklov average
approximations for the test functions ϕ in (24), one can prove that u has finite
norm

sup
(to−R2,to)

‖u(·, t)‖2,BR(xo) + ‖∇u‖2,QR(zo),

and u is a continuous in t function in L2(BR(xo))-norm. (See the details in
paragraph 4, Chapter 3, [22].)

Proposition 1. There exist θo, Ro such that if u satisfies condition Sθo,Ro in

QR(zo) and (24) then

(25)

(
∫

Qr

|∇u|p dz

)2/p

≤ C2

∫

Qar

(1 + |∇u|)2 dz, ∀Qar ⊂ QR(zo),

with any p ∈ (2,min(po,m)), where po = po(λ,Λ, n) > 2, a > 2 is an absolute

constant. The constant C2 depends on λ,Λ, n, b0, b1 and θo but does not depend

on ‖∇u‖m,QR.

Proposition 1 is a consequence of Theorem 2.1 in [3]. We should remark that
a priori estimate (25) was derived for smooth solutions in [3] but we take into
account Remark 2 and assert that the proof of Theorem 2.1 is valid under the
condition Sθo,Ro .

In what follows, θo is fixed by Proposition 1, and we assume further that

(26) [u]L2,n+2(QR(zo)) ≤ θ

holds with some θ ≤ θo that will be chosen later.
The smallness assumption (26) does not allow to derive Caccioppoli inequality

for u, but with the help of (25) we can prove

Proposition 2. Let u satisfy condition Sθ,Ro in QR(zo) and (24). Then the

inequality

(27)

∫

Qr(ζo)

|∇u|2 dz ≤
C3

r2

∫

Qa1r(ζo)

|u− (u)a1r|
2 dz

+ C4θ

∫

Qa1r(ζo)

|∇u|2 dz + c5r
n+4,

holds for all Qa1r(ζ
o) ⊂ QR1

(zo). Here R1 = R√
n
, a1 = 2a and a > 2 is fixed

in (25).
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Proof: We put ϕ = (u− (u)2r,ζo)h2 in (24), where h is a smooth cut-off function
supported in Q2r(ζ

o), h = 1 in Qr(ζ
o), and derive for u the inequality

∫

Qr(ζo)

|∇u|2 dz ≤
c

r2

∫

Q2r(ζo)

|u− (u)2r|
2 dz

+ c

(

∫

Q2r(ζo)

b0|∇u|
2|u− (u)2r,ζo | dz + b1

∫

Q2r(ζo)

|u− (u)2r,ζo | dz

)

.

Using Hölder and Young inequality we estimate the last term on the right hand
side:

(28)

∫

Q2r(ζo)

|u− (u)2r,ζo | dz ≤ c

(

1

r2

∫

Q2r(ζo)

|u− (u)2r,ζo |2 dz + rn+4

)

.

We explain now how to estimate the strongly nonlinear term I

I =

∫

Q2r(ζo)

|∇u|2|u− (u)2r,ζo |ξ2.

Estimates (25), (26) imply that the following chain of inequalities is valid:

(29)

I ≤

(

∫

Q2r(ζo)

|∇u|p dz

)2/p(
∫

Q2r(ζo)

|u− (u)2r,ζo |
p

p−2

)

p−2

p

|Q2r|

≤ C

(

∫

Q2ar(ζo)

|∇u|2 dz

)

.[u]Lp′,n+2(DR/
√

n(zo))

≤ C(p)

(

∫

Q2ar(ζo)

|∇u|2 dz

)

.[u]L2,n+2(DR/
√

n(zo))

≤ C(p)

(

∫

Q2ar(ζo)

|∇u|2 dz

)

.[u]L2,n+2(QR(zo))

≤ C(p)θ

(

∫

Q2ar(ζo)

|∇u|2 dz

)

.

Here p′ = p
p−2 and the parabolic cube DR1

(z0) ⊂ QR(zo). The inequality is valid

due to isomorphism of Ls,n+2(DR1
) and L2,n+2(DR1

) for different s > 1. Due to
(28), (29) we arrive at (27). �

Now we can exclude in (27) the term with θ.
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Proposition 3. There exists θ1 ≤ θo such that the assumptions of Proposition 2
with θ ≤ θ1 ensure that the inequality

(30)

∫

Qr(ζo)

|∇u|2 dz ≤
C6

r2

∫

Qlr(ζo)

|u− (u)lr,ζo |2 dz + c7r
n+4

holds with an absolute constant l > 2.

Proof: We rewrite (27) changing cylinders Qr by parabolic cubes Dr and apply
parabolic version of Lemma 0.5 of [16]. �

Remark 3. From (30) and (26) it follows that

(31)
1

rn

∫

Qr(ζo)

|∇u|2 dz ≤ C8

∫

Qlr(ζo)

|u− (u)lr,ζo |2 dz + C8r
4,

and thus also

(32) ‖∇u‖2
L2,n(QR2

(z0)) ≤ C8(θ
2 +R4), R2 = τR,

with a τ ∈ (0, 1). We put

(33) C8(θ
2 +R4

o) = κ2(θ,Ro) → 0 for θ,Ro → 0.

Hence

(34) ‖∇u‖L2,n(QR2
(z0)) ≤ κ(θ,Ro), R2 = τR < Ro.

Proof of Theorem 1: Let R3 = R2

2 , ζo ∈ QR3
(zo), r ≤ R3

l , where l > 2 is
fixed in (30). Then Qr(ζ

o) ⊂ QR3
(zo). Put A = (a(z, uo))r,ζo , uo = (u)r,ζo and

estimate

Lr(ζ
o) =

∣

∣

∣

∣

∫

Qr(ζo)

(

uϕt − (A∇u,∇ϕ)
)

dz

∣

∣

∣

∣

for all ϕ ∈ C1
0 (Qr(ζ

o)) with Cϕ = ‖∇ϕ‖∞,Qr(ζo) ≤ 1. (Note that it implies that
maxQr(ζo) |ϕ| ≤ Cϕr.) Hence, (6) and (34) supply the inequalities

Lr(ζ
o) ≤ Cϕ

{
∫

Qr(ζo)

|a(z, u) − a(z, uo)||∇u| dz

+

∫

Qr(ζo)

|a(z, uo) −A||∇u| dz

+ bor
1+n/2

(
∫

Qr(ζo)

|∇u|2 dz

)1/2(
1

rn

∫

Qr(ζo)

|∇u|2 dz

)1/2

+ b1r
n+3

}

≤ Cϕ

{

[

ω1/2(θ) + q(Ro) + boκ(θ,Ro)
]

r1+n/2
(
∫

Qr(ζo)

|∇u|2 dz

)1/2

+ Crn+3

}

.
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We put

(35) T (θ,Ro) = cCϕ
[

ω1/2(θ) + q(Ro) + boκ(θ,Ro)
]

,

and we get

(36) Lr(ζ
o) ≤ T (θ,Ro)r

1+n/2

(
∫

Qr(ζo)

|∇u|2 dz

)1/2

+ Crn+3.

From Corollary 2 and (36) it follows that for u there is an A-caloric h in Vr(ζ
o)

such that

(37)

∫

Qr(ζo)

|u− h|2 dz ≤ ε

∫

Qr(ζo)

(

|u− (u)r|
2 + r2|∇u|2

)

dz

+ C(ε)

(

T 2(θ,Ro)r
2

∫

Qr(ζo)

|∇u|2 dz + r4
)

.

Now we use Campanato’s inequality for h and ρ ≤ r < 1, (37), (21) and
Proposition 3 to get

Φ(ρ, ζo) = Φ(ρ) =

∫

Qρ(ζo)

|u− (u)ρ|
2 dz

≤ 2

∫

Qρ(ζo)

|h− (h)ρ|
2 dz + 2

∫

Qρ(ζo)

|u− h− ((u)ρ − (h)ρ) |
2 dz

≤ 2

∫

Qρ(ζo)

|h− (h)ρ|
2 dz + 2

∫

Qρ(ζo)

|u− h|2 dz

≤ C
(ρ

r

)n+4
∫

Qr(ζo)

|h− (h)r|
2 dz + 2

∫

Qr(ζo)

|u− h|2 dz

≤ C
(ρ

r

)n+4
∫

Qr(ζo)

|h− (h)r|
2 dz + 2ε

∫

Qr(ζo)

(

|u− (u)r|
2 + r2|∇u|2

)

dz

+ 2C(ε)T 2(θ,Ro)r
2

∫

Qr(ζo)

|∇u|2 dz + Crn+4.

After rearranging the formula we get

Φ(ρ) ≤ C

(

(ρ

r

)n+4

+ 2ε

)
∫

Qr(ζo)

(

|u− (u)r|
2 + r2|∇u|2

)

dz(38)

+ 2C(ε)

[

T 2(θ,Ro)r
2

∫

Qr(ζo)

|∇u|2 dz + Crn+4

]

≤ C

(

(ρ

r

)n+4

+ 2ε

)

Φ(r)

+

[

C

(

(ρ

r

)n+4

+ 2ε

)

+ 2C(ε)T 2(θ,Ro)

]

r2
∫

Qr(ζo)

|∇u|2 dz + Crn+4
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≤ C

(

(ρ

r

)n+4

+ 2ε

)

Φ(r)

+

[

C

(

(ρ

r

)n+4

+ 2ε

)

+ 2C(ε)T 2(θ,Ro)

]

(

Φ(lr) + rn+4
)

+ Crn+4.

As (38) is evidently true for ρ ∈ (r, lr] and

Φ(r) =

∫

Qr(ζo)

|u− (u)r|
2 dz ≤

∫

Qr(ζo)

|u− (u)lr|
2 dz

≤

∫

Qlr(ζo)

|u− (u)lr|
2 dz = Φ(lr),

we “rename” lr by r and simplify the constants to obtain

(39) Φ(ρ) ≤ C9

[

(ρ

r

)n+4

+
{

ε+ C(ε)T 2(θ,Ro)
}

]

Φ(r) + C(ε)rn+4,

for all ζo ∈ QR3
(zo) and 0 < ρ ≤ r ≤ R3. By Campanato’s algebraic lemma, for

any α ∈ (0, 1) there exists an ǫ0 = ǫ0(C9, n, α) > 0 so that

(40) Φ(ρ, ζo) ≤ C10ρ
n+2+2α

[

Φ(r, ζo)

rn+2+2α
+ 1

]

provided that

(41) C9{ε+ C(ε)T 2(θ,Ro)} < ǫ0.

Now, we can fix ε ≤ ǫ0
2C9

and then fix θ ≤ θ1 and Ro (we reduce Ro if needed) to
supply the inequality

(42) C9C(ε)T 2(θ,Ro) <
ǫ0

2
.

From (40) it follows that

(43)
[u]2L2,n+2+2α(QR3

(zo)) ≤ C11(‖∇u‖2,QR(zo), R
−1, α),

〈u〉Cα(QR3
(zo)) ≤ C12(‖∇u‖2,QR(zo), R

−1, α),

provided that u satisfies condition Sθ,Ro in QR(zo), R ≤ Ro for the chosen θ

and Ro. Note that the constants C11, C12 depend on α and do not depend on
‖∇u‖m,QR . �
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[3] Arkhipova A., Quasireverse Hölder inequalities in parabolic metric and their applications,
Amer. Math. Transl. (2) 220 (2007), 1–25.

[4] Arkhipova A., New a priori estimates for nondiagonal strongly nonlinear parabolic systems,
Banach Center Publ. 81 (2008), 13–30.
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