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Abstract. In this paper, we propose a mathematical model for flow and transport pro-
cesses of diluted solutions in domains separated by a leaky semipermeable membrane. We
formulate transmission conditions for the flow and the solute concentration across the mem-
brane which take into account the property of the membrane to partly reject the solute,
the accumulation of rejected solute at the membrane, and the influence of the solute con-
centration on the volume flow, known as osmotic effect.
The model is solved numerically for the situation of a domain in two dimensions, con-

sisting of two subdomains separated by a rigid fixed membrane. The numerical results
for different values of the material parameters and different computational settings are
compared.
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1. Introduction

Membranes play an important role in many applications. For example, biological

membranes act as selective barriers between or around living cells, artificial mem-
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gram of the Heidelberg Graduate School MathComp. P. Pustějovská was also supported
by the project LC06052 (Jindřich Nečas Center for Mathematical Modeling) financed
by MŠMT, by GAČR grant no. 201/09/0917 and grant SVV-2010-261316. J. Hron was
supported by the project LC06052 (Jindřich Nečas Center for Mathematical Modeling)
financed by MŠMT.
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branes are used for separation purposes in laboratory or in industry, like in dialysis,

water purification, seawater desalinization or removing of microorganisms from dairy

products. In this paper, we consider the flow of a volume (solvent) and a solute in

domains separated by a leaky semipermeable membrane which is modeled as an inter-

face allowing the solvent to go through, but reflects a high amount of the solute. We

consider the solution to be diluted, i.e. the mass concentration of the solute is low, and

thus, we assume that the solute concentration does not influence the solvent density.

The most commonly used driving forces of the flow through a semipermeable mem-

brane are pressure and concentration gradients. This process is known as filtration,

and in literature, see e.g. Kedem and Katchalsky [4], Patlak et al. [7], Cheng [1],

Kocherginsky [5], is described by two equations, one for the solute flux and one for

the volume flux. They involve three parameters which model the membrane proper-

ties: the filtration coefficient or hydraulic conductivity of the membrane, the solute

reflection coefficient (describing the property of the membrane to partly reject the

solute), and the solute permeability of the membrane. Although general, this ap-

proach describing the total volume fluxes through the membrane is limited due to

the fact that the effects of the processes considered are taken in average. This might

be sufficient, e.g. for experimental needs, however, if we want to model the flow of

the solvent and the transport of concentration in domains separated by a membrane,

we need suitable transmission conditions at the membrane which lead to well posed

models. In the case of reaction-diffusion processes in domains separated by a mem-

brane, effective transmission conditions were derived in Neuss-Radu and Jäger [6] by

means of multi-scale techniques, starting from a microscopic model of the processes

in the membrane, and letting the scale parameter (ratio between the thickness of the

membrane and the dimension of the domain) tending to zero. The flow of miscible

mixtures through a membrane could be also studied in the context of the theory of

mixtures, see e.g. Rajagopal and Wineman [8], and Tao et al. [10]. In this context,

the processes inside the membrane are resolved starting from the balance of mass,

momentum and energy. However, this approach has its own difficulties, namely the

specification of boundary conditions.

In this paper, we propose a mathematical model for flow and transport processes

in domains separated by a leaky semipermeable membrane. The model is formulated

on the macroscopic scale: the membrane is a fixed and rigid interface, separating the

flow domains. Thus, the processes inside the membrane are not resolved, however,

their effective contributions are included phenomenologically in the transmission con-

ditions. We consider the membrane to be symmetric, i.e. the transmission properties

of the membrane from both sides are the same.

The model presented here takes into account the free flow of the solvent through

the membrane, the accumulation of the rejected solute in the neighborhood of the

52



membrane, and the formation of the concentration polarization layer, as well as the

influences of the solute concentration on the volume flow, via the osmotic effect.

The transmission conditions at the membrane for the solvent consist in continuity

of the normal component of the solvent velocity, while the tangent component is set

to zero, and continuity of normal stresses. The vanishing of the tangential component

corresponds to no-slip in the tangential direction on the membrane. Other conditions,

like the partial slip condition in the tangential direction, see Hron et al. [5], could also

be imposed. In our model, the osmotic pressure is considered to be a component

of the fluid stress at the membrane. The transmission conditions for the solvent

velocity do not include the effects of the curvature of the membrane on the flow of

the solvent. However, a quantitative description of the curvature effects is up to now

an open question.

For the solute concentration, the transmission conditions consist in the continuity

of the normal fluxes, and the requirement that just a fraction of the convective flux

permeates through the membrane. The accumulation of the reflected solute at the

membrane leads to jumps in the solute concentration across the membrane.

The model is introduced gradually starting with the formulation of the equations

for the fluid flow and the transport of the solute in the bulk, together with the

transmission conditions for the situation when the osmotic effect is neglected. Thus,

the process of concentration buffering is modeled first, see Section 2 and Section 3.

In Section 4, the general model including the osmotic effect is formulated. Via the

osmotic pressure, which is a function of solute concentration, the flow equations for

the solvent are also coupled with the transport equation for the solute, yielding a fully

coupled model. In Section 5, the method used for the computation of the numerical

solution is described, while in Section 6 the numerical simulations are presented. The

simulations are done for several values of the system’s parameters: different values

for the membrane reflection coefficient, different functions for the inlet pressure, as

well as different dependencies of the osmotic pressure on the solute concentration are

considered. A comparison of the full model and the model without osmotic effect

yields the following important conclusion: in the case when the osmotic pressure is

included, the pressure difference across the bulk domain is reduced as the osmotic

pressure of the reflected solvent concentration increases, leading to a decline in the

permeate solvent flux through the membrane. This is in agreement with literature,

e.g. Cheng [1].

53



2. Formulation of the equations in the bulk domains

The mathematical model for the processes in the bulk domains consists of the

Navier-Stokes equations describing the flow of the diluted solution, together with

the convection-diffusion equation modeling the solute transport. This system of

governing equations takes the form

div v = 0,(2.1)

̺
∂v

∂t
+ ̺[gradv]v = − gradp + 2 div(µD),(2.2)

∂c

∂t
+ (grad c) · v = div(Dc grad c),(2.3)

where v is the velocity vector of the solvent, p the hydrodynamical pressure, c the

concentration of the solute and D the symmetric part of the velocity gradient, D =
1

2
(gradv + (gradv)T). The solution parameters: ̺ the density, µ the kinematic

viscosity and Dc the diffusivity are considered to be constant as we want to primarily

model the effects of the transport through the membrane.

We recast the equations (2.1)–(2.3) to non-dimensional variables, defined by

(2.4) X =
x

L∗
, V =

v

V ∗
, C =

c

C∗
, P =

p

P ∗
,

where L∗ and V ∗ are the characteristic length and velocity, respectively. The non-

dimensionalized concentration C takes values between (0, 1). Since diluted solutions

are considered, the values of C should be small, below 0.05. For consistency, we

choose

(2.5) P ∗ = ̺(V ∗)2.

From now on, for simplicity of notation, we use instead of capitals the small letters

for the non-dimensional variables. Thus, the system of the governing equations is

transformed to

div v = 0,(2.6)

∂v

∂t
+ [gradv]v = − gradp +

2

Re
div(D),(2.7)

∂c

∂t
+ (grad c) · v =

1

Pe
div(grad c),(2.8)

with standard notation for the Reynolds number Re = ̺L∗V ∗/µ, and the Péclet

number Pe = L∗V ∗/Dc.
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The system of governing equations (2.6)–(2.8) has to be complemented with initial

conditions, boundary conditions at the outer boundaries, and transmission conditions

at the separating membrane. As already pointed out in the introduction, the complex

processes inside the membrane will not be resolved. The membrane is modeled as a

fixed and rigid interface separating the bulk regions.

In the formulation of the transmission conditions across the membrane, the fol-

lowing aspects have been taken into account: first, the separating properties of the

membrane with respect to the solvent, which lead to the buffering of solute concen-

tration at the membrane, and second, connected with the first aspect, the influence

of the concentration accumulation on the volume flow, known as the osmotic effect.

Our model has features similar to other models existing in literature, see e.g. Kedem

and Katchalsky [4]. However, the important difference is that we do not formulate

equations only for the total volume fluxes across the membrane, as is done in the ex-

isting literature, but we give transmission conditions, which can be used to describe

the influence of the membrane on the processes in the bulk regions.

The transmission conditions across the membrane will be formulated in the next

two sections. However, let us remark already at this stage that due to the osmotic

effect induced by the presence of the membrane, the final model will be a fully

nonlinear coupled system.

3. Modeling of concentration buffering

In this section we discuss and model the effect of the concentration buffering at

the leaky semipermeable membrane which is characteristic e.g. for diluted polymeric

solutions with relatively small diffusivity (high Péclet number).

The effect of concentration buffering (sometimes called the concentration polariza-

tion) is caused by the free transport of the solvent through the membrane while the

solute carried by the solvent to the membrane is partially reflected by the membrane

and consequently accumulated in front of it.

First, we consider the 1D stationary case, where we can find the analytic solution

of the system. Next, we generalize the model to 2D.

3.1. 1D model

For the stationary case in 1D, due the incompressibility of the fluid, the system

of the N-S equations provides a unique constant solution of the velocity, which we

denote by u. The governing equation for the concentration reduces to an ordinary

differential equation where the known constant velocity u enters. Our domain of

interest is the interval 〈−1, 1〉 and we place the membrane at position x = 0. The
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solvent can go through the membrane freely, thus the velocity remains constant in

the whole domain. We set the solvent velocity in the direction of the positive axis.

We denote by c− the concentration on the interval 〈−1, 0〉, and by c+ the concen-

tration on the interval 〈0, 1〉, see Fig. 3.1. The governing model for concentrations c−

and c+ is given by

−1 6 x 6 0 0 6 x 6 1

−Dc
d2c−

dx2
+ u

dc−

dx
= 0, −Dc

d2c+

dx2
+ u

dc+

dx
= 0,(3.1)

c−(−1) = cin, −Dc
dc+

dx
(1) = 0,(3.2)

−Dc
dc−

dx
(0) + σuc−(0) = 0, −Dc

dc−

dx
(0) + uc+(0) = u(1 − σ)c−(0),(3.3)

where σ is called the membrane reflection coefficient and describes the property of

the membrane to be leaky semipermeable. More precisely, the parameter σ takes the

values between 0 and 1, and it specifies the fraction of the convective flux of the solute

molecules which is reflected back by the membrane. Accordingly, (1 − σ) specifies

the fraction being allowed to pass through the membrane. The ideal semipermeable

membrane (i.e. a membrane that perfectly separates solute from solvent) would be

then described by the reflection coefficient σ = 1.

u
Inner part Outer partc- c+

-1 0 1

Figure 3.1. 1D description of membrane surroundings. Membrane is placed at point x = 0.

The conditions for concentrations on the membrane imply the natural assumption

on the continuity of the solute fluxesDc(dc−/dx)(0)−uc−(0) = Dc(dc+/dx)−uc+(0)

across the membrane. The membrane condition for c− means that the σ fraction of

the convective flux is reflected back, and that there is no fraction of diffusive flux

through the membrane.

The analytic solution of system (3.1)–(3.3) is

(3.4) c−(x) = −
cin(1 − σ + σex u/Dc)

−1 + σ − σe−u/Dc

, c+(x) = −
cin(1 − σ)

−1 + σ − σe−u/Dc

.

The plotted solutions for different parameter values are given in Fig. 3.2. We

mention the formation of the concentration polarization layer, and the discontinuity

in the solute concentration at the membrane. As one can see, the influence of velocity

and diffusivity on the concentration polarization layer are of a similar effect: with
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higher velocity and lower diffusivity the boundary layer is more distinguishable and

steeper. This behavior qualitatively agrees with the experimental results found for

example in Scott et al. [9]. In the next subsection, the transmission conditions for

the concentration at the membrane are generalized to higher dimensional setting.

A -1.0 -0.5 0.0 0.5 1.0
x

0.001

0.002

0.003

0.004

0.005
c

u=1 Dc=1

B -1.0 -0.5 0.0 0.5 1.0
x

0.001

0.002

0.003

0.004

0.005
c

u=5 Dc=1

C -1.0 -0.5 0.0 0.5 1.0
x

0.001

0.002

0.003

0.004

0.005
c

u=1 Dc=0.1

D -1.0 -0.5 0.0 0.5 1.0
x

0.001

0.002

0.003

0.004

0.005
c

u=5 Dc=0.1

Figure 3.2. Concentration profiles for cin = 5× 10
−4 and σ = 0.9. Four plots for different

velocity and diffusivity setting: A) u = 1, Dc = 1, B) u = 5, Dc = 1, C) u = 1,
Dc = 0.1, D) u = 5, Dc = 0.1.

3.2. Generalization of the transmission conditions to higher dimensions

We consider a domain Ω consisting of two subdomains Ω+ and Ω− in Rn separated

by an interface Γm representing the membrane, see the 2-dimensional situation in

Fig. 3.3. Thus we have

Ω = Ω+ ∪ Γm ∪ Ω−.

The restrictions of functions defined on Ω to the subdomains Ω+ and Ω− are denoted

by the superscripts + and −, respectively.

The transmission conditions for the solvent flow at the membrane now consist of

the continuity of the normal component of the velocity, the no-slip condition in the

tangential direction with the respect to the membrane interface, and of the continuity
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of normal stresses

v
+ · τ = −v

− · τ = 0, v
+ · n+ = −v

− · n− = v · n+,(3.5)

[−(p− − p+)I +
2

Re
(D− − D+)]n− = 0n

−,(3.6)

where n+, n− are the outer unit normal vectors on Γm with respect to the do-

mains Ω+, Ω−, and τ is the tangential unit vector satisfying n+ · τ = n− · τ = 0.

Γ1

Γ2

Γ3

Γ4 Γm

Figure 3.3. 2D computational domain with dimensions 〈−5, 5〉 × 〈0, 1〉; boundaries Γ1 and
Γ3 are impermeable walls, Γ4 is the inlet and Γ2 is the outlet. Γm is the inner
boundary representing the zero-thickness membrane.

Concerning the transmission conditions for the solute concentration, we require

continuity of the normal fluxes across the membrane, and the condition modeling

the partial reflection of the solute at the membrane. If we assume that the velocity v

satisfies v · n− > 0, then these conditions have the form

−
1

Pe
grad c− · n− + σc−v · n− = 0,(3.7)

−
1

Pe
grad c+ · n+ + c+

v · n+ = −(1 − σ)c−v · n−.

The main disadvantage of this formulation is the directional dependence of the

conditions for the concentration. Since the buffering occurs in the case of outflow

while in the case of inflow the washout of concentration from the membrane is ob-

served, we have to known explicitly the direction of the flow. One of the possible

generalizations of the transmission conditions for concentration (3.7), assuming sym-

metric properties of the membrane from both sides, is

1

Pe
grad c− · n− = (σc−)v · n− + (1 − σ)(c− − c+)min(0, v · n−),(3.8)

1

Pe
grad c+ · n+ = (σc+)v · n+ + (1 − σ)(c+ − c−)min(0, v · n+).

It is easy to see that (3.8) reduces to (3.7) if v · n− > 0, and on the other hand, for

the case v ·n− 6 0 we obtain an analogous condition for the outflow in the opposite

direction.
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The complete model for higher dimensions thus consists of the equations (2.1)–

(2.3), together with the boundary conditions at the outer boundary, and the trans-

mission conditions (3.5), (3.6), and (3.8).

For the numerical simulation of the concentration buffering in two dimensions, we

use the following computational setting. We consider the domain from Fig. 3.3, with

the fixed and rigid membrane Γm. The domain Ω− on the left side of the membrane is

prolonged, since there the most interesting accumulation of concentration occurs. We

assume the pressure driven flow, where the fluid of a given concentration enters the

channel on the boundary Γ4, and the filtrate leaves the channel on the boundary Γ2.

The walls of the channels Γ1 and Γ3 are impermeable for both the concentration and

the velocity. The form of the boundary conditions at the outer boundaries is

Γ4 :
[

−pI + 2
1

Re
D]

n = −pinn, c = cin,(3.9)

Γ1, Γ3 : v = 0,
( 1

Pe
grad c + cv

)

· n = 0,(3.10)

Γ2 :
[

−pI + 2
1

Re
D]

n = 0n,
1

Pe
grad c · n = 0,(3.11)

where cin is a constant inlet concentration and pin is a constant or a periodical

function of time. The transmission conditions on the membrane are (3.5), (3.6), and

(3.8). Since we solve the time-dependent problem, we specify the initial conditions

as a rest state (v = 0 and c = 0).

The computational results are shown in Section 6.

4. Extension of the model by osmotic effect

In this section, we take into account the effect of the solute concentration on the

volume flow, via the osmotic pressure. In literature on filtration problems, this effect

is included in the transmembrane volume flux, see e.g. Kedem and Katchalsky [4]

where the following formula is derived from thermodynamical considerations:

(4.1) Jv = Lp(∆p − σ∆π).

Here, Lp is the filtration coefficient or hydraulic conductivity, ∆p is the pressure

difference across the membrane and ∆π is the difference in osmotic pressures across

the membrane ∆π = π(c+) − π(c−).

In our approach, the osmotic pressure π(c) is included in the normal stresses of

the fluid at the membrane. Thus, the transmission conditions for the flow have the
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form

v
+ · τ = −v

− · τ = 0, v
+ · n+ = −v

− · n− = v · n+,(4.2)
[

−(p− − p+)I + 2
1

Re
(D− − D+)

]

n
− = −(π(c−) − π(c+))n−.(4.3)

For the osmotic pressure of the solution, we use the representation

(4.4) π(c) = P1c + P2c
2,

where P1 and P2 are constants, see e.g. Cheng [1] and Coleman et al. [2].

The complete model describing the filtration problem in the domain Ω containing

the membrane Γm thus consists of the equations (2.1)–(2.3) on the subdomains Ω+,

and Ω−, together with the boundary conditions (3.9)–(3.11) at the outer boundary,

the transmission conditions (3.8) for the solute concentration, and the transmission

conditions (4.2), (4.3) for the flow. As one can see, the equations for the flow and

the transport equation for the solvent are now fully coupled via the transmission

condition (4.3).

For numerical simulations of the model including the osmotic effect, we consider

the setting from Subsection 3.2. The results are compared for the transmission model

without and with the osmotic pressure effect in Section 6.

5. Numerical method

We use the standard Galerkin finite element method to solve the PDE system con-

sisting of equations (2.6)–(2.8) on the domain introduced in Fig. 3.3 and of boundary

conditions (3.9)–(3.11). The standard weak formulation of the system is derived sep-

arately on the two subdomains Ω+ and Ω−, where the coupling between them is

provided through the requirement of continuous velocity on the membrane and the

transmission conditions (4.3) and (3.8).

The time discretization is done by the Crank-Nicholson scheme. The discretization

in space is done by the finite element method. By Th we denote a set of quadrilat-

erals covering our domain Ω. We assume that Th is regular in the usual sense and

the membrane Γm coincides with the edges of the mesh. Since the fluid is incom-

pressible, we have to choose a pair of finite element spaces known to be stable for

problems with the incompressibility constraint. One possible choice is the conforming

biquadratic/discontinuous linear approximation pair Q2/P disc
1 .

While the velocity is required to be continuous on the membrane and can be

approximated by globally continuous functions, the concentration is allowed to be

discontinuous on the membrane and thus has to be splitted into two continuous
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variables c+ and c− defined on Ω+ and Ω−, respectively. The global concentration

variable is defined as

(5.1) c(x) =

{

c+(x) if x ∈ Ω+,

c−(x) if x ∈ Ω−.

The concentrations c+, c− can be approximated by either Q2 or Q1 finite element

spaces.

The spaces for the unknowns (v, p, c) ∈ (V, P, C) are approximated in the case of

the Q2, P
disc
1 , Q2 finite elements as

Vh = {vh ∈ [C(Ω)]2, vh|T ∈ [Q2(T )]2 ∀T ∈ Th, vh = 0 on Γ1},(5.2)

Ph = {ph ∈ L2(Ω), ph|T ∈ P1(T ) ∀T ∈ Th},(5.3)

Ch = {ch ∈ C(Ω+) ∪ C(Ω−), ch|T ∈ Q2(T ) ∀T ∈ Th}.(5.4)

Let us denote by vn
h the approximation of v(tn), by cn

h the approximation of c(t
n),

and by pn
h the approximation of p(tn).

The nonlinear discrete system can be written in the form

(Mv +
τ

2
Av(v

n+1

h )
)

v
n+1

h + τBT pn+1

h = F (vn
h , cn

h, cn+1

h ),(5.5) Bv
n+1

h = 0,
(Mc +

τ

2
Ac(v

n+1

h )
)

cn+1

h = G(vn
h , cn

h, vn+1

h , cn+1

h )

where Mv and Mc represent the corresponding mass matrices, B is the discrete di-
vergence operator, Av(vh) and Ac(vh) are the operators representing the convection

and diffusion parts of the corresponding equations and F , G are the remaining terms

coming from the previous time level and from the boundary conditions. This can be

written still in a more compact way as

(5.6) F(X) = 0,

where X = (vn+1

h , pn+1

h , cn+1

h ) is the unknown vector in the time step n. The sys-

tem (5.6) is solved using the quasi-Newton iteration method of the form

(5.7) X
k+1 = X

k − ωk
[ ∂F

∂X
(Xk)

]

−1

F(Xk),

where the parameter ωk ∈ [0, 1] is the damping factor improving the convergence of

the quasi-Newton method.
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The block structure of the Jacobian matrix ∂F/∂X is

(5.8)
∂F

∂X
(X) =





� � �

� 0 0

� 0 �



 ,

and the matrix is approximated by finite differences from the residual vector F(X)

(5.9)
[ ∂F

∂X

]

ij
(X) ≈

[F ]i(X + εej) − [F ]i(X − εej)

2ε
,

where ej are the unit basis vectors in R
d.

One iteration of the used method can be summarized in the following steps:

1. Let Xn be a starting guess.

2. Set the residuum vector Rn = F(Xn) and the Jacobian matrixA =
∂F

∂X
(Xn).

3. Solve for the correction δ: Aδ = R
n.

4. Find the optimal step length ω.

5. Update the solution Xn+1 = Xn − ωδ.

This numerical approach works well for moderate values of Reynolds and Péclet

numbers, which is our case. For high values of Reynolds or Péclet number, i.e. the

convection dominated problem, one would have to modify the discretization by in-

cluding some suitable stabilization terms.

6. Numerical simulations

Numerical solutions of the model are computed for the computational setting

described in Subsection 3.2 for Reynold’s number Re = 1 and Péclet number Pe =

100. In each set of plots, we compare the model without the osmotic effect with the

full transmission model. Hereby, we consider linear or quadratic osmotic pressure

dependence on concentration, and two different values of the reflection coefficient σ.

The following physical quantities are plotted:

• the distribution of solute concentration in the domain Ω, see Fig. 6.1,

• the values of the hydrodynamical pressure on the central cut-line 〈−5, 5〉 ×

[0, 0.5], see Fig. 6.2,
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• the time evolution of the concentration, pressure, and the total flux, at the

middle point of the membrane [0, 0.5], see Figs. 6.3–6.6.

A

Concentration
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

B

Concentration
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

C

Concentration
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

D

Concentration
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

Figure 6.1. Concentration distribution at steady state. Four plots for different parameter
settings; without osmotic pressure: A) σ = 0.9, P1 = P2 = 0; with osmotic
pressure: B) σ = 0.9, P2 = 0, C) σ = 0.5, P2 = 0, D) σ = 0.9, P2 = 5 · P1.

Fig. 6.1 presents the steady state of the concentration distribution in the whole

domain. As one can see, the shape of the concentration layer strongly differs. In the

case of simulation without inclusion of osmotic pressure (case A), the concentration
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Figure 6.2. Hydrodynamic pressure on centerline at steady state. Four plots for different
parameter settings; without osmotic pressure: A) σ = 0.9, P1 = P2 = 0; with
osmotic pressure: B) σ = 0.9, P2 = 0, C) σ = 0.5, P2 = 0, D) σ = 0.9,
P2 = 5 · P1.
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Figure 6.3. Time evolution of concentration at midpoint of the membrane (MP) for different
parameter combinations; without osmotic pressure: A) σ = 0.9, P1 = P2 = 0;
with osmotic pressure: B) σ = 0.9, P2 = 0, C) σ = 0.5, P2 = 0, D) σ = 0.9,
P2 = 5 · P1.

at the membrane is higher towards the walls, than in the middle part. This is caused

by the non-decelerated parabolic velocity profile. In the middle part, the velocity is

higher than close to the walls, thus it carries away more of the concentration. This

phenomenon is not observed for the cases where the velocity at the membrane rapidly
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Figure 6.4. Time evolution of hydrodynamical pressure at midpoint of the membrane (MP)
for different parameter combinations; without osmotic pressure: A) σ = 0.9,
P1 = P2 = 0; with osmotic pressure: B) σ = 0.9, P2 = 0, C) σ = 0.5, P2 = 0,
D) σ = 0.9, P2 = 5 · P1.
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Figure 6.5. Time evolution of total solvent flux through Γm for different parameter com-
binations; without osmotic pressure: A) σ = 0.9, P1 = P2 = 0; with osmotic
pressure: B) σ = 0.9, P2 = 0, C) σ = 0.5, P2 = 0, D) σ = 0.9, P2 = 5 · P1.
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drops like in the settings of B) and D), as can be seen in Fig. 6.5 and Fig. 6.6. For

the settings C) and D) with low reflection coefficient and quadratic osmotic pressure

dependence, a small concentration layer is created compared to the setting with

higher σ and linear dependence of osmotic pressure, settings A) and B).
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Figure 6.6. Time evolution of various quantities for periodic pressure inlet pin = p0(1 +
sin(pt/20)), σ = 0.9, P2 = 0; A) concentration on MP, B) pressure on MP,
C) total solvent flux through Γm. Dotted profile represent the frequency of the
pressure inlet oscillations.

Profiles of hydrodynamical pressure are presented in Fig. 6.2. In the case of com-

putational setting without osmosis, the equations for velocity and concentration are

not fully coupled and thus the hydrodynamical pressure is a solution of the classical

Navier-Stokes equations, and has a linear profile. For the settings including osmosis

jumps in pressure occur. As one can see in the case of small σ, the concentration

layer at the membrane is not so significant, see Fig. 6.3, and thus it does not evoke
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high difference in the osmotic pressures which could act against the fluid pressure, see

Fig. 6.4. In the case of the quadratic osmotic pressure dependence on the concentra-

tion, the compensation of the pressures occurs even though the drop in concentration

is not so high as for the case in Fig. 6.3B.

Figs. 6.3–6.5 present the time evolution of individual physical quantities at the

middle point of the membrane. Since the values of the concentration and of the

pressure are discontinuous at the membrane, we plot the traces of these functions

from both sides of the membrane; the solvent flux is continuous across the membrane.

At the beginning of the computation, there are no jumps since at that time no

concentration layer at membrane has been created. During this time the solvent

flux is constant and highest. After the creation of the concentration layer, the flux

decreases corresponding to the induced hydrodynamical pressure drop.

The last set of graphs in Fig. 6.6 shows the solution for computation with time

periodic inlet pressure pin = p0(1 + sin(πt/20)). As one can see, after a short ini-

tial phase, the solution becomes periodic with the same frequency as the enforcing

pressure condition. In this setting we can observe that the solvent flux changes its

direction at the time when the forcing pressure is lowest. This is the manifestation

of the osmotic effect, since the concentration on the left-hand side of the membrane

is higher than the concentration on the right-hand side, which creates the pressure

force acting against the inflow pressure.
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