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Abstract
Our aim is to demonstrate how the apparatus of groupoid terms (on

two variables) might be employed for studying properties of parallelism
in the so called (n, k)-quasigroups. We show that an incidence structure
associated with a medial quasigroup of type (n, k), n > k ≥ 3, is either
an affine space of dimension at least three, or a desarguesian plane. Con-
versely, if we start either with an affine space of order k > 2 and dimension
m, or with a desarguesian affine plane of order k > 2 then there is a medial
quasigroup of type (km, k), m > 2 such that the incidence structure natu-
rally associated to a quasigroup is isomorphic with the starting one (the
simplest case k = 2 can be examined separately but is of little interest).
The proofs are mostly based on properties of groupoid term functions, ap-
plied to idempotent medial quasigroups (idempotency means that x·x = x
holds, and mediality means that the identity (xy)(uv) = (xu)(yv) is sat-
isfied).

Key words: Quasigroup, idempotent groupoid term, mediality, in-
cidence structure, parallelism, affine space, desarguesian affine plane.
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1 Introduction

We consider here a particular type of block designs, or incidence structures,
admitting a high degree of “regularity”. Recall that the so-called Steiner sys-
tem S(�,m, n) is an n-element set S together with a set of m-element subsets,
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called blocks or lines, with the property that each �-element subset is contained
in exactly one block. Steiner systems were in fact introduced already by Kirk-
man (1847), and triple systems S(2, 3, n) were studied independently by Steiner
(1853) which brought the name. As well known, Steiner systems can be in-
terpreted also as algebraic structures. Each Steiner triple system determines
either an idempotent commutative quasigroup on S with juxtaposition as a bi-
nary operation defined by aa = a for all a ∈ S, and ab = c whenever {a, b, c}
is a triple, or an sloop on S ∪ {e}, e �∈ S, see e.g. [8] (where a lot of colloquial
results can be found) and the references therein. On the othe hand, there are
algebraic structures which yield a Steiner system. We pay attention to such
Steiner systems of type S(2, k, n) arising from idempotent medial quasigroups
of particular kind. We prove that each of them corresponds either to an (at
least three-dimensional, hence desarguesian) affine space (n > k2, k > 2, in this
case necessarily n = km) or to a desarguesian affine plane (n = k2, k > 3).

2 Preliminaries

Recall some terminology and notation. If (Q, ·) is a groupoid we say that an
element q ∈ Q is idempotent if q · q = q. The groupoid is idempotent if all
its elements are idempotent, i.e. the identity x · x = x holds, and is said to be
medial, or entropic [12], [20], [21], if the following identity holds:

(x · y) · (u · v) = (x · u) · (y · v), (1)

or xy ·uv = xu ·yv (if juxtaposition is preferred to composition with the product
written explicitely).

2.1 Quasigroups of type (n, k) and incidence structures

Definition 2.1 Under a quasigroup of type (n, k), n ≥ k ≥ 2 we understand an
idempotent quasigroup Q = (Q, ·) of order n in which any two distinct elements
a, b of Q generate a subquasigroup 〈a, b〉 of order k.

In short, we speak about (n, k)-quasigroups (in [16], [17] they are called
Ak

n-algebras).
Recall that a quasigroup is idempotent if it satisfies the identity x · x = x,

and medial (sometimes also entropic or abelian, [9], if it satisfies the identity
(xy)(uv) = (xu)(yv).
In [22], (n, k)-quasigroups were introduced for k = 3, 4. This concept was

generalized for arbitrary k in [16], where the relationship to finite regular planes
and construction of algebras from commutative groups for particular k was dis-
cussed. In [25], a class of quasigroups (idempotent, generated by two elements
and doubly homogeneous) is constructed from finite nearfields; the elements of
the class are in fact (n, k)-quasigroups in our terminology. In [17], a class of
(n, k)-quasigroups is constructed from a special kind of an algebra with two
binary operations, generalizing the right Veblen-Wedderburn systems. In [18],
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the theory of medial (n, k)-quasigroups was developed, parallel subquasigroups
were studied, and some geometric interpretation was announced, particularly
the relationship to (desarguesian) affine spaces was suggested, more or less with-
out proves. We give here a revision of the theory of medial (n, k)-quasigroups
in a unified manner, using up-to-date terminology of incidence structures and
employing idempotent groupoid term functions, and give full proves of all state-
ments.

Under an incidence structure we understand here an ordered pair (P,L)
where P is a set of elements called points and L is a non-empty set of non-
empty subsets of P called lines.
Given a quasigroup Q of type (n, k) let LQ denote the set of all subquasi-

groups of order k. Let us call elements from LQ lines. In a natural way, an
incidence structure

IQ = (Q,LQ) (2)

is associated to Q. It can be checked that each line of IQ contains just k points,
there are just n−1

k−1 lines passing through any point, and there is just one line
through any pair of distinct points (e.g. [16]). If n = k2 we get an affine plane of
order k. Briefly, points of Q contained in the same line will be called collinear.

2.2 Idempotent groupoid terms

Let F(x, y) = (W ({x, y}), (·)) denote the absolutely free algebra of type (2)
with a single operation symbol “·” (called also the term algebra, or the word
algebra) over the two-element set {x, y} (cf. [10, p. 84], [4, p. 80]). Consider the
variety V of idempotent groupoids and denote by IdV the set of all identities
on the alphabet {x, y} satisfied in V . Since IdV is a congruence relation on
F(x, y) we can form the quotient algebra T = F(x, y)/IdV which is called the
relatively free algebra with respect to V (cf. [10, p. 92], [4, p. 98]), or simply the
free idempotent groupoid. Note that the carrier set of T consists of equivalence
classes, each of which can be represented by such a term in variables x, y in
which subsequent variables are not equal. For simplicity, such representants of
elements of the carrier set of T will be called idempotent groupoid terms here.
So from now on, let T denote a free idempotent groupoid (of idempotent

groupoid terms) on two free generators x, y.
Given an idempotent quasigroup Q = (Q, ·) and a term t(x, y) from T let

tQ denote the term function corresponding to t in Q defined as a mapping

tQ : Q×Q → Q, (a, b) 	→ t(x := a, y := b).

Due to idempotency of Q, tQ(a, a) = a for every term function tQ, t ∈ T and
every a ∈ Q.

Lemma 2.2 Let Q = (Q, ·) be a medial quasigroup of type (n, k), n ≥ k ≥ 2,
and t, t′ terms from T . Then for all a, b, c, d ∈ Q the equalities

tQ(a, b) · tQ(c, d) = tQ(ac, bd), (3)
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a · tQ(c, d) = tQ(ac, ad), (4)

tQ(a, b) · c = tQ(ac, bc), (5)

tQ(a ·t′Q(c, d), b·t′Q(c, d)) = tQ(a, b) ·t′Q(c, d) = t′Q(tQ(a, b) ·c, tQ(a, b) ·d), (6)
t′Q(tQ(a, b), tQ(c, d)) = tQ(t′Q(a, c), t′Q(b, d)) (7)

are valid.

Proof We proceed by induction on the complexity of terms. If t is a variable
term (x or y) then (3) is trivially true. Let t1, t2 satisfy (3). Then the compound
term t = t1 · t2 has the same property, since by mediality and the induction
assumption,

tQ(a, b) · tQ(c, d) = (tQ1 (a, b) · tQ2 (c, d))(tQ1 (a, b) · tQ2 (c, d))
= (tQ1 (a, b) · tQ1 (c, d))(tQ2 (a, b) · tQ2 (c, d))
= tQ1 (ac, bd) · tQ2 (ac, bd) = tQ(ac, bd).

If a = b the equality (3) takes the form (4) (we used tQ(a, a) = a). If c = d
we get (5). Similarly for (6). The equality (7) can be proved by induction on
complexity of the term t again, with t′ being a fixed term. If t is a variable the
equality is trivial. So let t1, t2 be terms satisfying (7), and let us consider the
composed term t = t1t2. According to induction assumption and (3),

tQ(t′Q(a, c), t′Q(b, d)) = tQ1 (t
′Q(a, c), t′Q(b, d)) · tQ2 (t′Q(a, c), t′Q(b, d))

= t′Q(tQ1 (a, b), t
Q
1 (c, d)) · t′Q(tQ2 (a, b), tQ2 (c, d))

= t′Q(tQ1 (a, b), t
Q
2 (a, b)) · t′Q(tQ1 (c, d), tQ2 (c, d)) = t′Q(tQ(a, b), tQ(c, d)).

�

3 Medial quasigroups of type (n, k) via term functions

3.1 Representation of lines

Note that in a medial quasigroup Q of type (n, k) (which is idempotent by
definition), a line L determined by a pair of distinct points a �= b from Q
consists exactly of points of the form tQ(a, b), t ∈ T ,

L = {tQ(a, b) | t ∈ T}. (8)

In general, we can introduce a groupoid of type (n, k) as a groupoid of order
n in which subgroupoids generated by two elements are of order k. Such two-
generated subgroupoids in a groupoid D can be called lines again, and a line
given by a pair a, b of distinct points consists just of the points of the form
sD(a, b) where s runs through groupoid terms on two variables.
If Q = (Q, ·) is a quasigroup with a selected element e we say that (Q, e) is

a pointed quasigroup, and e will be called here a starting element of Q.
Let Q = (Q, ·) be a pointed medial quasigroup of type (n, k), n ≥ k ≥ 2,

and e a starting element.
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Definition 3.1 We say that two lines L,L′ of the incidence structure IQ are
parallel (which we denote by L ‖ L′), if and only if under any choice of points
a, b, a′, b′ with a �= b, a′ �= b′, a ∈ L, b ∈ L, a′ ∈ L′, b′ ∈ L′, the points

e, (e/a)b, (e/a′)b′ (9)

are collinear. The binary relation ‖ is called parallelism.

We must verify that our definition of parallelism depends neither on a choice
of the points a, b ∈ L and a′, b′ ∈ L′ nor on the starting element. For this
purpose, the equalities from Lemma 2.2 appear to be useful.

3.2 Parallelism in medial (n, k)-quasigroups

Lemma 3.2 Parallelism of lines in pointed medial (n, k)-quasigroups is cor-
rectly defined.

Proof Suppose that 〈a, b〉 ‖ 〈c, d〉 for a �= b, c �= d which means (e/a)b ∈
〈e, (e/c)d〉. Let a′, b′ be distinct points on 〈a, b〉 and c′, d′ distinct points on
〈c, d〉. Thus there are terms α, β, γ, δ ∈ T such that a′ = αQ(a, b), b′ =
βQ(a, b), c′ = γQ(c, d), d′ = γQ(c, d). Since (e/a)b ∈ 〈e, (e/c)d〉 we have
〈e, (e/a)b〉 = 〈e, (e/c)d〉. Therefore 〈a′, b′〉 = 〈αQ(a, b), βQ(a, b)〉, 〈c′, d′〉 =
〈γQ(c, d), δQ(c, d)〉, and according to Lemma 2.2,

(e/a′)b′ = (e/αQ(a, b))βQ(a, b) = αQ(e/a, e/b) · βQ(a, b)
= αQ((e/a) · βQ(a, b), (e/b) · βQ(a, b))
= αQ(βQ((e/a)a, (e/a)b), βQ((e/b)a, (e/b)b))
= αQ(βQ(e, (e/a)b), βQ((e/b)a, e)).

By mediality and idempotency,

((e/a)(e/b)) · (ab) = ((e/a)a)((e/b)b) = e · e = e

while by right and left distributivity,

((e/a)(e/b))·(ab) = [((e/a)a)((e/a)b)]·[((e/b)a)((e/b)b)] = [e((e/a)b)]·[((e/b)a)e].

Therefore
(e((e/a)b)) · (((e/b)a)e) = e.

From e((e/a)b) ∈ 〈e, (e/a)b〉 we get ((e/b)a)e ∈ 〈e, (e/a)b〉, and finally (e/b)a ∈
〈e, (e/a)b〉. Consequently,
(e/a′)b′ = (e/αQ(a, b))·βQ(a, b) = αQ(βQ(e, (e/a)b), βQ((e/b)a, e))) ∈ 〈e, (e/a)b〉.
Analogously we get

(e/c′)d′ = (e/γQ(c, d)) · δQ(c, d) = γQ(δQ(e, (e/c)d), δQ((e/d)c, e)) ∈ 〈e, (e/c)d〉
so that 〈e, (e/c′)d′〉 = 〈e, (e/c)d〉 = 〈e, (e/a)b〉 = 〈e, (e/a′)b′〉, and (e/a′)b′ ∈

〈e, (e/c′)d′〉 which means 〈a′, b′〉 ‖ 〈c′, d′〉. That is, parallelism of lines does
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not depend on a particular choice of point pairs determining the lines under
consideration. �

Two lines contained in the same subquasigroup of type (k2, k) may be called
complanar.

Lemma 3.3 Let Q = (Q, ·) be a pointed medial (n, k)-quasigroup, n ≥ k ≥ 2.
Let t ∈ T and a, b ∈ Q. Then

e/tQ(a, b) = tQ(e/a, e/b). (10)

Proof Obviously (e/tQ(a, b)) · tQ(a, b) = e. According to Lemma 2.2,

tQ(e/a, e/b) · tQ(a, b) = tQ((e/a)a, (e/b)b) = tQ(e, e) = e.

We obtain the equality

(e/tQ(a, b)) · tQ(a, b) = tQ(e/a, e/b) · tQ(a, b).

By right cancellation, e/tQ(a, b) = tQ(e/a, e/b). �

As expected, parallelism is an equivalence relation.

Proposition 3.4 Let Q = (Q, ·) be a medial (n, k)-quasigroup, n ≥ k ≥ 2.
Then the relation of parallelism on the set LQ of lines is an equivalence relation.

Proof Parallelism is reflexive. Given a, b ∈ Q the points e, (e/a) · b, (e/a) · b
are collinear, hence 〈a, b〉 ‖ 〈a, b〉 is valid. Further, if a, b, c, d ∈ Q are points
such that a �= b, c �= d then the collinearity of e, (e/a) · b, (e/c) · d is equivalent
to 〈a, b〉 ‖ 〈c, d〉 as well as to 〈c, d〉 ‖ 〈a, b〉 which proves symmetry. To prove
transitivity let a1, b1, a2, b2, a3, b3 ∈ Q be points such that a1 �= b1, a2 �= b2,
a3 �= b3, and 〈a1, b1〉 ‖ 〈a2, b2〉 ‖ 〈a3, b3〉. So we have collinear triples e, (e/a1)·b1,
(e/a2) · b2 and e, (e/a2) · b2, (e/a3) · b3. Consequently e, (e/a1) · b1, (e/a3) · b3
is a collinear triple, and 〈a1, b1〉 ‖ 〈a3, b3〉. �

An element of the factor-set LQ/ ‖ will be is called a parallelism class. Each
parallelism class determines a decomposition of the carrier set Q:

Proposition 3.5 Any element of the factor-set LQ/ ‖ determines a decompo-
sition of Q into pairwise disjoint pairwise parallel lines such that for any point
a ∈ Q there is just one line of the class passing through a.

Proof First show that there exists at most one line through the point c parallel
to 〈a, b〉. Indeed, assume parallel lines 〈a, b〉, 〈a, c〉 where a �= b, a �= c, c �∈ 〈a, b〉.
Then b �= c, (e/a)b �= (e/a)c, and e, (e/a)b, (e/a)c are collinear points. This
means that there exists a term t ∈ T such that e = tQ((e/a)b, (e/a)c). By
the Lemma 2.2, tQ((e/a)b, (e/a)c) = (e/a) · tQ(b, c) so that e = (e/a)tQ(b, c),
and consequently tQ(b, c) = a which expresses collinearity of the points a, b, c,
a contradiction.
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Now let a, b, c ∈ Q, a �= b. Let us verify existence of a line through the
point c parallel to the line 〈a, b〉. In fact, denote d := (e/c)\((e/a) · b); so
(e/c)d = (e/a)b. It can be checked that e �= (e/a)b (the equality e = (e/a)b
would imply e/a = e/b, and hence a = b). Trivially, the triple e, (e/a)b, (e/c)d
is collinear. It implies 〈a, b〉 ‖ 〈c, d〉. �

If t ∈ T we use the notation tQ(c, 〈a, b〉) := {tQ(c, p) | p ∈ 〈a, b〉)}; more
generally, tQ(c,Q′) := {tQ(c, p) | p ∈ Q′} for any nonempty subset Q′ ⊆ Q.

Lemma 3.6 Let Q = (Q, ·) be a pointed medial (n, k)-quasigroup, n > k ≥ 2,
and a, b, c ∈ Q such that a �= b and c �∈ 〈a, b〉. Let t ∈ T be such a term that
〈a, b〉 → Q, p 	→ tQ(c, p) is not a constant mapping. Then tQ(c, 〈a, b〉) ∈ LQ,
and tQ(c, 〈a, b〉) ‖ 〈a, b〉 holds.

Proof Since tQ(c, p) · tQ(c, q) = tQ(c, pq) by Lemma 2.2, the set tQ(c, 〈a, b〉)
is a subquasigroup of order l, 1 ≤ l ≤ k, and consequently of order k. So
tQ(c, 〈a, b〉) ∈ LQ. Take elements tQ(c, a), tQ(c, b) as generators, and investigate
the point triple e, (e/a) · b, (e/tQ(c, a)) · tQ(c, b). By Lemma 3.3, e/tQ(c, a) =
tQ(e/c, e/a), and by Lemma 2.2, tQ(e/c, e/a) · tQ(c, a) = tQ((e/c)c, (e/a)a) =
tQ(e, e) = e. Also, (e/a) · b �= e (if (e/a) · b = e then e/a = e/b and a = b, a
contradiction). Thus the point triple under consideration consists of e, (e/a)b,
a, and the points are collinear. Therefore 〈a, b〉 and tQ(c, 〈a, b〉) are parallel
lines. �

3.3 How term functions characterize parallelism

Parallelism of lines in (n, k)-quasigroups is characterized in the language of term
functions as follows.

Proposition 3.7 Let Q = (Q, ·) be a pointed medial (n, k)-quasigroup with
n > k ≥ 2, L and L′ distinct parallel lines in IQ, and a, b, c collinear pairwise
distinct points such that a ∈ L, b ∈ L′. Then there is a term t ∈ T such that
tQ(c, L) = L′.

Proof Under our assumptions there exists a term t ∈ T such that b = tQ(c, a).
The mapping L → Q, p 	→ tQ(c, p) cannot be constant. Indeed, if in the
contrary, tQ(a, d) = b would hold for a point d ∈ L\{a} then the points a, d
would lie on the same line 〈b, c〉, fig. 1, which contradicts the obvious fact that
〈a, d〉 = L �= 〈b, c〉. �

Proposition 3.8 Let Q = (Q, ·) be a medial (n, k)-quasigroup with n > k ≥ 2.
The lines L,L′ ∈ LQ are parallel if and only if there exists a point c ∈ Q and a
term t ∈ T such that tQ(c, L) = L′.

Proof If L ‖ L′ with a ∈ L, a′ ∈ L′ it is sufficient to choose c = a′/a and
t = x·y. To check it we verify that the mapping L → Q, p 	→ (a′/a)p is injective,
and then apply Lemma 3.6.
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L L′

b

c

d

a

L L′

a′

c

d

a

Fig. 1 Fig. 2

Note that our mapping is a reduction (to L) of the left translation La′/a by
a′/a, and hence is injective. If L = L′ we are done. Assume L �= L′, and choose
a point c ∈ 〈a, a′〉\{a, a′}. Then also a′ ∈ 〈c, a〉, and there is a term t ∈ T such
that t(c, a) = a′. Now the mapping L → Q, p 	→ t(c, p) cannot be constant
since in the opposite case, for any point d �= a on L, both points a, d would
lie simultaneously on L as well as on 〈a, a′〉 �= L (fig. 2); a contradiction. Since
according to Lemma 3.6, tQ(c, L) is a (unique) line through a′ parallel to L it
must coincide with L′.
Vice versa, let L,L′ ∈ LQ, and let there exist c ∈ Q, t ∈ T such that

tQ(c, L) = L′. Denote a′ := tQ(c, a), b′ := tQ(c, b) for distinct a, b ∈ L. The
mapping L → L′, p 	→ tQ(c, p) must be bijective, so that a′ �= b′. Now the points
e, (e/a)b, (e/a′)b′ are collinear since according to Lemmas 3.3, 2.2, (e/a′)b′ =
(e/tQ(c, a))·tQ(c, b) = tQ(e/c, e/a)·tQ(c, b) = tQ((e/c)c, (e/a)b) = tQ(e, (e/a)b).
Hence the lines L and L′ are parallel. �

4 Characterization of incidence structures associated to
medial (n, k)-quasigroups

Proposition 4.1 Let Q = (Q, ·) be a medial (n, k)-quasigroup, n > k ≥ 3,
possessing generators a, b, c ∈ Q such that a �= b, c �∈ 〈a, b〉. Then the cardinality
of Q is n = k2.

Proof Denote L = 〈a, b〉, L′ = 〈a, c〉 (fig. 3). If x ∈ L, then xL′ is a line parallel
to L′ (which follows by left distributivity of the quasigroup multiplication, or
also directly by Lemma 3.6). Note that L′∩xL′ �= ∅ for all x ∈ L\{a} (suppose y0
is a common point of L′ and xL, then y0 = xy1 for some y1 ∈ L′; hence x ∈ L′

since L′ is a subquasigroup; a contradiction). Furthermore, the assumption
x1L

′ ∩ x2L
′ �= ∅ for x1, x2 ∈ L\{a}, x1 �= x2 is equivalent with x1L

′ = x2L
′;

particularly, the common point of L and x1L
′ = x2L

′ must be of the form
x1a = x2a, a contradiction with x1 �= x2. So we obtain just k lines of the
form xL′, including L′ (since aL′ = L′). Denote by S the set of all points
that lie on these lines; obviously, cardS = k · k = k2. Now let us check that
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y2

y1

x1 x2 a

L′ x1L
′ = x2L

′

L

Fig. 3

the set S is closed under the quasigroup multiplication. If two points of S
lie on the same line xL′ then also their product lies on this line since xL′

is a subquasigroup of Q. Investigate points x1y1 ∈ x1L
′, x2y2 ∈ x2L

′. By
mediality, (x1y1) · (x2y2) = (x1x2) · (y1y2) ∈ x1x2L

′. Hence S is a carrier set
of a subquasigroup of Q which involves generators a, b, c of Q. S must coincide
with the carrier set Q. �

Theorem 4.2 The incidence structure IQ associated to the quasigroup Q from
Theorem 4.1 is an affine plane of order k.

For the definition of an affine plane of order q, e.g. [13, p. 32].
Proof The type of Q is (k2, k), k ≥ 2, so that there are just k2 points, every
line contains exactly k points, and there are just k2−1

k−1 = k + 1 lines passing
through any point. Let p be a point and L a line not containing p. Then there
are just k lines 〈p, x〉 for x ∈ L, and consequently it remains a single line disjoint
to L through p. Since for any two distinct points p, q there is just one line 〈p, q〉
containing them, and there exist three noncollinear points a, b, c, the incidence
structure IQ must be an affine plane. �

Lemma 4.3 (Trapezoid property) Let Q = (Q, ·) be a medial (n, k)-quasigroup
with n > k ≥ 3. If a, b, c are collinear pairwise distinct points in IQ, and A, B
parallel lines such that a ∈ A, b ∈ B, c �∈ A, then 〈c, p〉 ∩B �= ∅ for all p ∈ A.

Proof By Lemma 3.8, there exists t ∈ T such that B = tQ(c, A). But this
means that tQ(c, p) ∈ B for all p ∈ A. �

4.1 Affine space

Recall how affine spaces distinct from affine planes can be introduced. We adopt
here a view-point of H. Lenz, [14], with axioms a bit reformulated.
An affine space (distinct from affine planes) is introduced as an incidence

structure (P,L) together with an equivalence relation of parallelism defined on
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L (which decomposes L into classes of parallel lines) such that the following
conditions hold:
(i) Any two distinct points a, b are simultaneously contained in just one line

(denoted by ab).
(ii) To every point p and every line L there exists just one line through p

parallel to L.
(iii) (Trapezoid property) If a, b, c are pairwise distinct collinear (=contained

in the same line) points and A,B parallel lines such that a ∈ A, b ∈ B, c �∈ A,
then for any p ∈ A the line pc intersects B.

A B

p

b

c

a

a
b

c

Fig. 4 Fig. 5

(iv) (Parallelogram property) If every line consists of just two points and
a, b, c are non-collinear points then the line through c parallel to ab intersects
the line through b parallel to ac.
(v) Every line contains at least two points, and there exist two distinct lines

which are not parallel.

Theorem 4.4 For every medial quasigroup Q = (Q, ·) of type (n, k), n > k2,
k ≥ 3, the associated incidence structure IQ is an affine space A of finite
dimension ≥ 3.

Proof Let us start with the incidence structure IQ and take the parallelism
relation introduced for the affine space parallelism (sec. 2.1). The condition (i)
from the previous definition of affine space is satisfied, since lines are subquasi-
groups generated by point pairs, and (ii) follows by Prop. 3.5. The trapezoid
axiom is valid by Lemma 4.3. The parallelogram axiom is here redundant be-
cause of the assumption k > 2, that also guarantees the validity of the first part
of the axiom (v). The second part of the axiom (v) follows from the assumption
n > k2 as follows. Take arbitrary points a �= b. Since cardQ = n > k2 there
must exist further points c, d such that the points a, b, c, d do not generate a
subquasigroup of order k2, so that 〈a, b〉, 〈c, d〉 must be disjoint, and cannot be
parallel. �

Corollary 4.5 For the medial quasigroup Q = (Q, ·) from Theorem 4.4 there
exists m ≥ 3 such that n = km holds, m is the dimension of the affine space A
and equals to the minimal number of generators of Q.
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4.2 Isomorphism of incidence structures

Two incidence structures (P,L) and (P ′,L′) are said to be isomorphic if there
exists a bijection ϕ, called isomorphism of (P,L) onto (P ′,L′)) such that L ∈
L ⇒ {ϕ(x) | x ∈ L} ∈ L′, and L′ ∈ L′ ⇒ {ϕ−1(x) | x ∈ L′} ∈ L.
Particularly, if both structures are affine spaces then the last condition L′ ∈

L′ ⇒ {ϕ−1(x) | x ∈ L′} ∈ L can be omitted if we add the condition that
parallel lines are mapped onto parallel lines. An affine space which has only
finite number of points is called finite.
The order of a finite affine space is the number of points on a line, which is

independent of the choice of a particular line. It is well known that two finite
affine spaces, with dimension at least three, of the same order and the same
dimension are isomorphic.

Lemma 4.6 (i) Any two subquasigroups of order k in a medial quasigroup Q =
(Q, ·) of type (k2, k), k > 1, are isomorphic.
(ii) Any two medial quasigroups of type (k, k), k > 1, are isomorphic.

Proof Part (i): Let Q = (Q, ·) be a medial quasigroup of type (k2, k), k > 1.
If A, B are parallel lines in IQ then by Lemma 3.8, B = cA for some c ∈ Q.
However, the mapping A → B, a 	→ ca is a bijection satisfying (by mediality)
the equality c · aa′ = (cc)(aa′) = (ca)(ca′) for a, a′ ∈ A. Hence this mapping is
an isomorphism.
If t is a term from T such that the mappings A → Q, p 	→ t(c, p) are not

constant (we can choose e.g. t ≡ xy), A a line, a1 ∈ A, and if c runs over a
line C1 �= A going through a1 then tQ(c, A) runs over all lines parallel to A,
fig. 6. If c′ is another point on C1 then tQ(c, a1) = b1, tQ(c′, a1) = b′1 are points
also belonging to C1. Similarly, if a2 is another point on A then tQ(c, a2) = b2,
tQ(c′, a2) = b′2 are points on the same line, let us say C2. Changing points
in other admissible positions allows to reach all other positions of a line C
non-parallel to C1. The points b1, b2 are on the same line parallel to A, and
b′1, b

′
2 are on the same line parallel to A as well, fig. 7. Now by Lemma 3.3

b1b
′
1 = tQ(c, a1)tQ(c′, a1) = tQ(cc′, a1), b2b

′
2 = tQ(c, a2)tQ(c′, a2) = tQ(cc′, a2),

so that also b1b
′
1, b2b

′
2 lie on the same line parallel to A. We conclude that

the “parallel projection” from C1 onto C2 induced by lines parallel to A is a
quasigroup isomorphism.
Part (ii): Every medial quasigroup Q = (Q, ·) of type (k, k) can be deduced

from a field (Q,+, ◦) of order k in such a way that a · b = a+ ν ◦ (b− a) for all
a, b ∈ Q where ν is a generating element of the multiplicative group of the field
(briefly, a primitive element, cf. [19], Theorem 7, pp. 82–83).
Let us assume two medial quasigroups Q = (Q, ·), Q′ = (Q′, ·′) of type

(k, k). Let us assume fields (Q,+, ◦), (Q′,+′, ◦′) of order k, and in each of them
a primitive element, ν or ν′, respectively, so that a · b = a + ν ◦ (b − a) for all
a, b ∈ Q and a′ ·′ b′ = a′ +′ ν′◦′(b′ − a′) for all a′, b′ ∈ Q′. We know that the
fields are isomorphic. In particular, we can choose an isomorphism ϕ so that
ϕ(ν) = ν′ (then ϕ is unique up to isomorphism of the quasigroups, cf. [25],
Theorem 2.8 on p. 1097). Hence we can express the operation of Q′ in the
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form ϕ(a) ·′ ϕ(b) = ϕ(a)+′ϕ(ν)◦′(ϕ(b)− ϕ(a)) = ϕ(a+ ν ◦ (b− a)) which yields
ϕ(a ·b) = ϕ(a) ·′ϕ(b) for all a, b ∈ Q. The quasigroups Q,Q′ under consideration
are therefore isomorphic. �

a

C1

tQ(c, a)

c

A

c

c′

a1

b1

b′1

a2

b2

b′2

C1

C2

A

Fig. 6 Fig. 7

4.3 Parallelism is independent of the choice of a starting
element

Now let us go back to explanation why the choice of a fixed element e for the
definition of the parallelism introduced after Lemma 2.2 plays no role whatever
as far as the result of the construction is concerned.
One explanation of this fact uses isomorphism between both copies of affine

spaces. If e is chosen in another position then IQ is also a copy of an affine
space of the same dimension, with the same point set and the same line set, and
the relation of parallelism between lines must be the same as well.
An alternative explanation of this fact can be based on the characteristic

property of parallel lines, namely that two distinct lines are parallel if and only
if they are disjoint and “complanar”. Let Q = (Q, ·) be a medial quasigroup
of type (km, k). In subquasigroups of type (k2, k), parallelism of two lines,
defined after Lemma 3.3, coincides with the relation “to be disjoint or to be
equal”. Since the last relation is independent of a choice of the starting point,
parallelism of lines must be independent of the starting point also in the whole
quasigroup Q.
In Theorems 4.4 and 4.7, we will prove that for a medial quasigroup Q =

(Q, ·) of type (n, k), n > k2, k ≥ 3 > 2, the incidence structure IQ is an affine
space distinct from an affine plane, and that for every medial quasigroup of
type (k2, k), k > 2, the incidence structure IQ is a desarguesian affine plane.
Note that another proof of Theorem 4.7 can be deduced from Theorem 4.4 via
embedding.
Let us present now an alternative proof of Lemma 4.6 (i) according to conside-
rations of [7, p. 103].
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Let Q = (Q, ·) be a medial quasigroup of type (k2, k), k > 1. That is, IQ is
an affine plane. Define A · B := {a · b | a ∈ A, b ∈ B} for any nonempty subsets
A,B ⊆ Q.

A
B

C

a0
b0

c0

Fig. 8

Let A,B,C be pairwise distinct parallel lines, and let a0 ∈ A, b0 ∈ B, c0 ∈ C
be points satisfying a0 · b0 = c0, fig. 8. We assert that A ·B = C. First we have
C = a0B. In fact, C is the unique line parallel to A going through c0, but the
line a0B going through c0 = a0b0 has the same property (A, a0B are disjoint
and hence parallel since if a0b′ ∈ A would be satisfied for b′ ∈ B it would follow
b′ ∈ A, a contradiction to parallelism of A,B). Hence C ⊆ A · B. Since a0
was an arbitrary point on the line A we have aB = C for all a ∈ A, so that
A ·B ⊆ C.
Let L,L′ be distinct lines, and L′′ a line non-parallel to any of L,L′. Define

a mapping ϕ : L → L′, p 	→ p′ such that either p = p′, or p �= p′ and 〈p, p′〉 ‖ L′′.
By the previous assertion, the mapping ϕ is a quasigroup isomorphism between
L and L′, and can be called parallel perspectivity . It follows that any two
subquasigroups of order k in Q are necessarily isomorphic. �

Theorem 4.7 Let Q = (Q, ·) be a medial quasigroup of type (k2, k), k > 3.
Then IQ is a desarguesian plane.
Proof (After [7]) Let e, a, c′ be non-collinear points, and let b = t(e, a), c =
t′(e, b) for suitable terms t, t′ ∈ T ; whence c = t′(e, t(e, a)). Let a′, b′ lie on
〈e, c′〉 in such a position that 〈b, c′〉 ‖ 〈b′, c〉, 〈a, b′〉 ‖ 〈b, a′〉. Since parallel
perspectivity is a quasigroup isomorphism it follows that b′ = t′(e, c′), a′ =
t(e, b′), fig. 9. Therefore a′ = t(e, t′(e, c′)) and by Lemma 2.2, a′ = t′(e, t(e, c′)).
Since c = t′(e, t(e, a)) we conclude 〈a′, c〉 ‖ 〈a, c′〉. �

Theorem 4.8 Let n,m be integers with n > 2, m ≥ 2. Let A be the “arith-
metical exemplar” of an m-dimensional affine space over a field (F,+, ·) of
order n. That is, x = (x1, . . . , xm) ∈ Fm are points of A, {a + t · v | t ∈ F},
a ∈ Fm arbitrary, v ∈ Fm\{(0, . . . , 0)

︸ ︷︷ ︸

m

} are lines of A, and the parallelism re-
lation for lines is given by

{a1 + tv1 | t ∈ F} ‖ {a2 + tv2 | t ∈ F}
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a

b

b′

a′

c

c′

Fig. 9

if and only if v1,v2 ∈ Fm are proportional m-tuples (i.e. each of them is a
non-zero multiple of the other by an element from F\{0}*). Then the binary
operation ◦ on Fm introduced by

x ◦ y = x+ ν(y− x), x,y ∈ Fm

where ν is a primitive element of the field, establishes on Fm a structure of a
medial quasigroup of type (nm, n). Moreover, I(Fm,◦) is isomorphic to A.

Proof (Fm, ◦) is a quasigroup since for given m-tuples a,b, c ∈ Fm, both
equations x◦b = c, a◦y = c are uniquely solvable in Fm. Indeed, x+ν(b−x) =
c ⇔ (1 − ν)x = c − νb ⇔ x = 1

1−ν (c − νb), and a + ν(y − a) = c ⇔ νy =

c − (1 − ν)a ⇔ y = 1
ν (c − (1 − ν)a). Mediality of ◦ can be verified as follows:

(a◦b)◦(c◦d) = (a+ν(b−a)◦(c+ν(d−c)) = a+ν(c+ν(d−c)−a−ν(b−a)) =
a − νa − νa + ν2a + νb − ν2b + νc − ν2c + ν2d, similarly (a ◦ c) ◦ (b ◦ d) =
(a+ν(c−a)◦(b+ν(d−b)) = a+ν(cν(a)+ν(b+ν(b+ν(d−b)−a−ν(c−a)) =
a − νa − νa + ν2a + νb − ν2b + νc − ν2c + ν2d, the same formula as before.
Every line of A contains just n points, and is generated in (Fm, ◦) by any pair
of its distinct points. If a, b are distinct points then

a, a ◦ b, a ◦ (a ◦ b), . . . , a ◦ (a ◦ . . . (a ◦ b) . . . )
︸ ︷︷ ︸

n

exhaust just all n points of the line L = {a + t(b − a)}. Indeed, if we rewrite
these expressions by means of the operations +, · of the field (F,+, ·) it turns
out that these elements are pairwise distinct, and therefore must exhaust the
whole set L. Moreover, it can be verified that L is closed under ◦. The fact
that {ν, ν2, . . . , νn−1} = F\{0} is crucial. Hence (Fm, ◦) is a medial quasigroup
of type (nm, n). Of course, the associated incidence structure I(Fm,◦) is, by
Theorem 4.4, an m-dimensional affine space. �

*We use operations of the arithmetical m-dimensional vector space over F .
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4.4 Embedding of medial quasigroups

Briefly, let us mention embeddings.

Every medial quasigroup Q = (Q, ·) of type (k2, k), k ≥ 2 can be embedded
into a medial quasigroup of type (k3, k).

For this purpose, let us use the direct product of (Q, ·) with the medial
quasigroup (A, ·) where A is an arbitrary line in the incidence structure IQ.
By [16], p. 894, Theorem 2, the direct product of (Q, ·) and (A, ·) is a medial
idempotent quasigroup of type (k2 · k, k). In fact, both assumptions of [16],
Theorem 2 are satisfied. The fact that every subquasigroup of order k in Q is
doubly homogeneous, [19], p. 82, Theorem 6, plays an important role.
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