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A length bound for binary equality words

Jana Hadravová

Abstract. Let w be an equality word of two binary non-periodic morphisms g, h :

{a, b}∗ → ∆∗ with unique overflows. It is known that if w contains at least 25
occurrences of each of the letters a and b, then it has to have one of the following
special forms: up to the exchange of the letters a and b either w = (ab)ia, or
w = aibj with gcd(i, j) = 1.

We will generalize the result, justify this bound and prove that it can be
lowered to nine occurrences of each of the letters a and b.

Keywords: combinatorics on words, binary equality languages

Classification: 68R15

1. Introduction

Equality language Eq(g, h) of morphisms g, h : Σ∗ → ∆∗ consists of all their
solutions, that is, of all words satisfying equality g(w) = h(w). The concept
of equality language was first introduced in [18] and since then has been widely
studied. Equality languages achieved particular importance in the representation
theory of formal languages since every recursively enumerable language can be
effectively found as a morphic image of an equality language, see [1].

It is also well known, due to [16], that it is undecidable whether an equality
language contains a nonempty word (an algorithmic problem known as the Post

Correspondence Problem, or the PCP). Nevertheless, the problem turned out to be
significantly different in the binary case. The decidability of the binary variant of
PCP was announced by Ehrenfeucht, Karhumäki and Rozenberg in [3]. However,
their proof contains a gap (see [7]); a full proof based on a similar approach is
given by Halava, Harju and Hirvensalo in [6].

It should be also mentioned that the binary case of the PCP is decidable in
polynomial time (see [8, 9]). For |Σ| = 3 it is already a long-standing open
problem whether the equality set has to be regular, see [13] and [14].

The structure of binary equality languages has been first studied in [2] and
[4] and later in series of papers [10], [11], [12]. It has been shown that binary
equality languages are always generated by at most two words, provided that
both morphisms are non-periodic (the periodic case being rather easy). It is also
known that if the set Eq(g, h) is generated by two distinct generators, then these
generators are of the form bai and aib.
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A first step in the characterization of single generators of binary equality lan-
guage was made in [5]. It was claimed there that a simple solution, that is, a
solution with unique overflows, which is long enough in both letters a and b has
to be of the form w = (ab)ia or w = aibj with gcd(i, j) = 1 (up to the exchange
of letters). The minimal requirement for the number of the letters a and b was
fixed to nine, however rigorous proof was not given. The aim of this paper is to
fill in this “white space” and provide the generalization of the result.

2. Basic concepts and definitions

The standard terminology and basic facts of combinatorics on words (see for
example [15] and [17]) will be used across the text. Particularly, the reader should
recall that a binary morphism g : {a, b}∗ → ∆∗ is called non-periodic if g(a) and
g(b) do not commute. If the image words g(a) and g(b) start with different letters,
then we shall say that g is a marked morphism. We will use u ≤p v when u is
a prefix of v and u <p v when u is a nonempty proper prefix of v. Similarly,
u ≤s v expresses the fact that u is a suffix of v and u <s v means that u is a
nonempty proper suffix of u. The greatest common prefix of two words u and v
will be denoted by u∧ v. (One-way) infinite word composed from infinite number
of copies of a word u will be denoted uω. It should be also mentioned that the
primitive root of a word u is the shortest word p such that u = pk for some
positive k.

Binary morphims have the following very important property: For each non-
periodic binary morphism g there is a uniquely given marked (non-periodic) binary
morphism gm and a word zg such that for all words w ∈ {a, b}∗ we have g(w) =
zggm(w)z−1

g . It is not so difficult to see that zg is in fact equal to g(ab) ∧ g(ba).

Let g, h : {a, b}∗ → ∆∗ be two binary non-periodic morphisms. A word w is a
solution of g, h if g(w) = h(w). A solution w is called simple if all overflows are
unique. That is, if w1, w1u, w2 and w2u

′ are prefixes of wω such that

g(w1)z = h(w2) and g(w1u)z = h(w2u
′)

for some word z, then |u| = |u′| = k|w| for some k ∈ N+.

A generalization of the concept of simple solution leads to the definition of
block as a pair of two words (e, f) such that g(e) = h(f) and which is simple in
the aforementioned sense; that is, if w1, w1u and w2, w2u

′ are prefixes of eω, fω

resp. such that

g(w1)z = h(w2) and g(w1u)z = h(w2u
′)

for some word z, then |u| = k|e| and |u′| = k|f | for some k ∈ N+.

In what follows we will be interested only in simple solutions and blocks.

Now, we are going to generalize the definitions given above. We will define a
cyclic solution and a cyclic block . First though, let us fix the notation of (one-way)
infinite words and intervals in words:
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Let u = u0 . . . un−1 be a finite word with its letters denoted by ui, 0 ≤ i < n−1.
We define an infinite word starting at the i-th position of u by:

u[i,∞] = uiui+1 . . . un−1u0u1 . . . .

For two integers 0 ≤ i < j ≤ n− 1 we define the interval u[i, j] by:

u[i, j] = uiui+1 . . . uj−1.

In what follows we will use the definition of interval in a broader sense; if i ≥ j,
then we will use u[i, j] instead of u[i,∞][0, j− i+n]. Note that each letter ui can
be seen as u[i, i+ 1]; and a word u[i, i] is a conjugate of u.

Notice that the definition of the interval u[i, j] for i ≥ j is very natural when
the word u is seen as a cyclic word. This motivates the following crucial definition:

Definition. Let g, h : {a, b}∗ → ∆∗ be morphisms. A cyclic solution of g, h is
an ordered quadruple (w, c, G,H) where w = w0w1 · · ·w|w|−1 ∈ {a, b}+, c ∈ ∆+,
|c| = |g(w)| = |h(w)| and G,H : Z|w| → Z|c| are injective mappings such that

c[G(i), G(i + 1)] = g(wi) and c[H(i), H(i+ 1)] = h(wi),

for all i ∈ Z|w|.

Note that in the previous definition c is a conjugate of g(w) (and h(w)) and
the injective mappings G,H define the ending and starting positions of image
words inside the solution. Therefore, the overflows are words c[G(r), H(t)] and
their position in the solution is uniquely given by the pair (r, t).

We will see later in Example 1 that the definition of cyclic solution indeed non-
trivially generalizes the definition of (ordinary) solution. Moreover, the cyclicity
of the solution simplifies the notion of overflows and allows us to avoid completely
the use of the infinite words in the definition of simple cyclic solution:

Definition. Let (w, c, G,H) be a cyclic solution of g, h. We say that (w, c, G,H)
is simple if

c[G(r1), H(t1)] = c[G(r2), H(t2)]

implies (r1, t1) = (r2, t2).

A generalization of the simple cyclic solution leads to the definition of cyclic
block :

Definition. Let g, h : {a, b}∗ → ∆∗ be morphisms. A cyclic block of g, h
is an ordered pentuple (e, f, c, G,H) where e = e0e1 · · · e|e|−1 ∈ {a, b}+, f =

f0f1 · · · f|f |−1 ∈ {a, b}+, c ∈ ∆+, |c| = |g(e)| = |h(f)| and G : Z|e| → Z|c|,
H : Z|f | → Z|c| are injective mappings such that

c[G(i), G(i + 1)] = g(ei) and c[H(j), H(j + 1)] = h(fj),
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for all i ∈ Z|e|, j ∈ Z|f |. Moreover, we require that it is simple, that is, whenever

c[G(r1), H(t1)] = c[G(r2), H(t2)],

necessarily (r1, t1) = (r2, t2).

Note that a simple cyclic solution (w, c, G,H) can be expressed as a cyclic
block (w,w, c, G,H).

In order to further clarify the relation between the definitions of a solution and
a cyclic solution, suppose that we are given a pair of (not necessarily marked)
morphisms g and h, with a simple solution w. Now, w can be seen as a simple
cyclic solution (w, g(w), G,H) of g and h satisfying in addition that G(0) = H(0).
Consider marked versions gm and hm of g and h. Morphisms gm, hm have a cyclic
solution (w, g(w), Gm, Hm) given by

Gm(j) = (G(j) + |zg|) mod |g(w)| ,

Hm(j) = (H(j) + |zh|) mod |g(w)| .

Notice that (w, g(w), Gm, Hm) is also a simple cyclic solution.

The following slightly technical definition of p-synchronized overflows will play
an important role in our proof.

Definition. We say that a cyclic block (e, f, c, G,H) of morphisms g, h has k
p-synchronized overflows if p is a primitive word and there is a k-tuple

((r1, t1), . . . , (rk, tk)) ∈ (Z|e| × Z|f |)
k

of overflows which has the following properties:

1. for all i ∈ {1, . . . , k − 1} there is li ∈ N+ such that

c[G(ri), H(ti)] = plic[G(ri+1), H(ti+1)],

and c[G(rk), H(tk)] is a nonempty prefix of pω;
2. ri are pairwise distinct and ti are pairwise distinct;
3. for each i ∈ {1, . . . , k} there is some 0 ≤ m < |h(b)| such that

G(ri) = H(ti − 1) +m,

and fti−1 = b.

Informally, these are just different suffixes of h(b) (by condition 3) which are
overflows and at the same time are prefixes of pω for some primitive word p (by
condition 1). Moreover, by condition 2 these overflows can neither start nor end
at the same position of the word c.

The following example illustrates previous definitions.
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Example 1. Let g, h be morphisms given by:

g(a) = (aab)2a, g(b) = ab,

h(a) = a, h(b) = (baa)3ba.

They have a simple cyclic solution ((ab)2a, c, G,H) where c = (aab)8a, and the
mappings G,H : Z5 → Z25 are given by:

G(0) = 0, G(1) = 7, G(2) = 9, G(3) = 16, G(4) = 18,

H(0) = 1, H(1) = 2, H(2) = 13, H(3) = 14, H(4) = 0.

The cyclic solution is depicted in Figure 1.
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Figure 1: Simple cyclic solution ((ab)2a, (aab)8a,G,H).

It is possible to verify that g and h have no equality word. On the other hand,
every equality word can be trivially viewed as a cyclic solution. This example
therefore shows that the concept of cyclic solution generalizes nontrivially the
concept of equality word.
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Marked versions of the morphisms g and h are the following:

g(a) = (aba)2a, g(b) = ba,

h(a) = a, h(b) = (baa)3ba.

Their simple cyclic solution is ((ab)2a, c, Gm, Hm) where Hm = H , and Gm is
given by:

Gm(j) = (G(j) + 1) mod 25.

Notice that in our graphical representation in Figure 1 it only means shifting the
inner circle by one clockwise.

The example also features two aab-synchronized overflows, which are empha-
sized in Figure 1. They are given by pairs (2, 2) and (4, 4) since

c[G(2), H(2)] = c[9, 13] = (aab)a and c[G(4), H(4)] = c[18, 0] = (aab)(aab)a.

Notice that the cyclicity of the solution allows to speak easily for example
about the overflow (aab)2a(aab)4a, which is given by c[G(4), H(2)]. One of the
main advantage of simple cyclic solutions in comparison with (ordinary) simple
solutions is that the definition of simple cyclic solution does not need to employ
infinite words.

The concept of p-synchronized overflows was introduced in [5] and it has been
proved there that the existence of five p-synchronized overflows for some primitive
word p inside the solution guarantees the special form of the solution: up to the
exchange of the letters a and b either w = (ab)ia or w = aibj where gcd(i, j) = 1.
The result means a first significant step in the classification of single generated
binary equality languages:

Lemma 1. Let g, h : {a, b}∗ → ∆∗ be non-periodic morphisms and let w be their

simple solution. If |w|b ≥ 9 and |w|a ≥ 9, then, up to the exchange of the letters

a and b, either

w = (ab)ia

or

w = aibj

with gcd(i, j) = 1.

Although the lemma itself does not speak about p-synchronized overflows, they
are used in the proof as a key ingredient to connect assumption that |w|b ≥ 9 and
|w|a ≥ 9 with the resulting structure of the solution. The key part of the proof
uses the fact that the p-synchronized overflows are generated as a consequence of
the assumption that |w|b ≥ 9 and |w|a ≥ 9. This is formulated in the following
claim:



A length bound for binary equality words 7

Lemma 2. Let (w, c, G,H) be a simple cyclic solution of marked morphisms

g, h : {a, b}∗ → ∆∗. Let h(b) be the longest of the image words g(a), g(b), h(a)
and h(b). If |w|b ≥ 9, then there is a primitive word p such that

• (w, c, G,H) has five p-synchronized overflows;

• h(b) is a factor of pω; and
• at least one of the words g(a) or g(b) is longer than p.

Notice that in the foregoing lemma the condition |w|a ≥ 9 of Lemma 1 is
missing. This is due to the fact that h(b) is supposed to have the maximal length
among the words g(a), g(b), h(a) and h(b). This distinguishes letters a and b and
allows to drop the assumption on |w|a.

Although the proof of Lemma 2 was hinted in [5] for much more generous bound
of 25 bs inside the solution, the rigorous proof was omitted due to its complicity
and length. The aim of this paper is to fill in this missing part in the proof of
Lemma 1. Moreover, we will generalize Lemma 2 in order to be able to use it
with cyclic blocks as well:

Main Lemma. Let (e, f, c, G,H) be a cyclic block of marked morphisms g, h :
{a, b}∗ → ∆∗ and suppose that both e and f are factors of a word w such that

(w, c′, G′, H ′) is a cyclic solution of g, h. Let h(b) be the longest of the image

words g(a), g(b), h(a) and h(b). If |f |b ≥ 9, then there is a primitive word p such

that

• (e, f, c, G,H) has five p-synchronized overflows;

• h(b) is a factor of pω; and
• at least one of the words g(a) or g(b) is longer than p.

Notice that the foregoing lemma indeed generalizes Lemma 2 since every simple
cyclic solution (w, c, G,H) of morphisms g, h is in fact a cyclic block (w,w, c, G,H)
of the same pair of morphisms.

The proof of the Main Lemma will be given by combinatorial analysis in the
last section.

We will finish this part by two definitions. First, let us define the g-cover:

Definition. Let (e, f, c, G,H) be a cyclic solution of morphisms g, h : {a, b}∗ →
∆∗ and let k, ℓ ∈ Z|c|. An ordered pair (m,u) ∈ Z|e| × {a, b}+ is said to be the
g-cover of an ordered pair (k, ℓ) if u and m are such that the word g(u) defined
as

g(u) = c[G(m), k]c[k, ℓ]c[ℓ,G(m+ |u|)]

is the shortest possible.

The last definition introduces a true h-occurrence of a word in a cyclic block:
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Definition. Given a word v we say that (k, l) ∈ Z|c| ×Z|c| is a true h-occurrence
of v in (e, f, c, G,H) if there are i, j ∈ Z|f | satisfying f [i, j] = v and H(i) = k,
H(j) = l.

Example 2. In Figure 1 we have two true h-occurrences of b, namely (2, 13) and
(14, 0). Moreover, g-cover of the first true h-occurrence of b is (0, aba); the second
one has the g-cover (2, aba).

3. Auxiliary lemmas

In this section we will present combinatorial lemmas which will be needed in
the proof of the Main Lemma. First, let us state without a proof the well known
Periodicity Lemma:

Lemma 3 (Periodicity Lemma). Let p, q be primitive words. If pω and qω have

a common factor of the length at least |p|+ |q| − 1, then p and q are conjugate.

The Periodicity Lemma can be equally formulated in the following way: a
word w with periods both n and m and longer than n+m− 1 has also a period
gcd(m,n).

The reader should be also familiar with the fact that two words u and v com-
mute iff they have the same primitive root.

Just to recall the properties of primitive words, we have the next easy lemma:

Lemma 4. Let p be a primitive word. If there are words u and v such that upv
is a factor of pω, then u is a suffix of the word pk and v is a prefix of pk for

sufficiently large k ∈ N+.

The following combinatorial lemmas are mainly based on the Periodicity Lem-
ma and explore the various periodicity properties of words.

Lemma 5. Let u1, u2, v1, v2 be words such that

u1v1 = u2v2,

v1u1 = v2u2,

and u1 <p u2. Then the words u2u
−1
1 and u1v2 have the same primitive root.

Proof: Since

(u1v2)(u2u
−1
1 ) = u1v1u1u

−1
1 = u1v1 = (u2u

−1
1 )(u1v2),

words u1v2 and u2u
−1
1 commute; therefore, they have the same primitive root. �

Lemma 6. Let w be a word such that w = s1p1 = s2p2 = s3p3 for

s3 <s s2 <s s1

p1 <p p2 <p p3.
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Then w has a period

p = gcd(|s2| − |s3| , |s1| − |s2|)

and |w| ≥ 2p.

Proof: Obviously, the word w has periods both |s2| − |s3| and |s1| − |s2|. Since

|w| = |s3| − |s3|+ |s2| − |s2|+ |s1|+ |p1| ≥ |s2| − |s3|+ |s1| − |s2| ,

we deduce from the Periodicity Lemma that w has a period gcd(|s2| − |s3| , |s1| −
|s2|), which concludes the proof. �

Lemma 7. Let w be a word such that

w = vt1 = r2v
jt2 = r3v,

j ≥ 1, and r2 <s r3, t2 <p t1. Then w has a period

gcd(|t1| − |t2| , |r3| − |r2|).

Proof: It is easy to see that w has a periods both |t1|−|t2| and |r3|−|r2|. Notice
that

|t1| − |t2|+ |r3| − |r2| = 2 |w| − 2 |v| − |t2| − |r2| = |w|+ (j − 2) |v| .

Therefore by the Periodicity Lemma, in the case j ≤ 2, a period of w is gcd(|t1|−
|t2| , |r3| − |r2|). It is easy to see that lemma is satisfied if |r2| = |t2|. Indeed, if
|r2| = |t2|, then |t1|− |t2| = |r3|− |r2| and the claim holds trivially. Let us discuss
the remaining cases. The claim obviously holds for all w such that |w| ≤ 2 |v|
since in this case j ≤ 2. Now, we proceed by induction on the length of the word
w. By symmetry, we can suppose that |r2| > |t2|. Let t′1 be a prefix of t1 such
that vt′1 = r2v. We first show that t2 is both a prefix and a suffix of t′1. Since
|t′1| = |r2| > |t2| and t2 <p t1, we can see easily that t2 is a prefix of t′1. On the
other hand, since r2v <s r3v both t′1 and t2 are suffixes of w, and therefore suffix
comparable.

We will split the proof into the following two cases.

Case |vt′1| ≤
∣
∣vjt2

∣
∣. We will show that w ∈ p+ and

gcd(|t1| − |t2| , |r3| − |r2|) = k |p| ,

k ≥ 1, where p is the primitive root of v. Since t2 is a suffix t′1 and vt′1 ≤s v
jt2,

we obtain vt′1t
−1
2 ≤s v

j . Let p be the primitive root of v. Then pt′1t
−1
2 is a suffix

of pk for some sufficiently large k ∈ N+. By the primitivity of p, we obtain that
t′1t

−1
2 ∈ p∗. Moreover, since t2 is a proper suffix of t′1, we get t′1t

−1
2 ∈ p+. Since

t′1 is bordered by t2, we obtain that vt′1 is a prefix of pω longer than p. Recalling
that p is the primitive root of v and v is a suffix of vt′1, we get that t′1 ∈ p+ and
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t2 ∈ p+. Since r2v = vt′1 and r3 = r2v
jt2v

−1, we have also r3 ∈ p+ and r2 ∈ p+.
Finally, w = r2v

jt2 leads to w ∈ p+ and

gcd(|t1| − |t2| , |r3| − |r2|) = k |p| ,

k ≥ 1, which completes the proof of this case.

Case |vt′1| >
∣
∣vjt2

∣
∣. Let w′ = vt′1. Then

w′ = vt′1 = r′2v
jt2 = r′3v,

where r′2 = vt′1(v
jt2)

−1 and r′3 = vt′1v
−1. Since r′2 ≤s r2, r

′
3 ≤s r3 and |r′2| ≤ |r′3|,

we obtain r′2 ≤s r
′
3. By assumption, w′ has a period

π = gcd(|t′1| − |t2| , |r
′
3| − |r′2|).

We will prove that π divides both |t1| − |t2| and |r3| − |r2| and π is a period of w.

We have

|r′3| − |r′2| = |r2| − |vt′1|+
∣
∣vjt2

∣
∣ = |r3v| − |vt′1| = |r3| − |r2| .

Then π divides |r3|− |r2| and since |r3|− |r2| is a period of w, π is also a period of
w. The last step is to prove that π divides |t1|−|t2|, which is true due to equation

|t1| − |t2| = (|t1| − |t′1|) + (|t′1| − |t2|) = |r3| − |r2|+ |t′1| − |t2| .

The proof is now complete. �

Lemma 8. Let w be a word such that

w = r1vt1 = r2v
jt2 = r3vt3,

j ≥ 1, and r2 <s r3, t2 <p t1. Then w has a period

gcd(|t1| − |t2| , |r3| − |r2|)

and t3 ≤p vj−1t2.

Proof: From Lemma 7 it follows that the word w[|r1| , |r3v|] has a period

q = gcd(|t1| − |t2| , |r3| − |r2|).

The word w[0, |r3v|] has a period |r3| − |r2|; therefore, has a period q. Similarly,
the word w[|r1| , |w|] has periods both |t1| − |t2| and q. Since common factor of
words w[0, |r3v|] and w[|r1| , |w|] is the word w[|r1| , |r3v|], which is longer than
q, w has a period q. Word t3 is a prefix of vj−1t2 because |r3| − |r2| is a period
of w. �

We will finish this section by lemmas which are not strictly combinatorial but
will be needed in the proof.
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Lemma 9. Let g be a marked morphism and u, v, w be words satisfying

g(u) ∧ w <p g(v) ∧ w.

Then g(u) ∧ w = g(u ∧ v).

Proof: It is easy to check that if u∧w <p v ∧w for arbitrary three words, then
u ∧ v = u ∧ w. This and the fact that marked morphisms satisfy

g(u) ∧ g(v) = g(u ∧ v)

completes the proof. �

Lemma 10. Let (e, f, c, G,H) be a cyclic block for marked morphisms g, h :
{a, b}∗ → ∆∗ and let (k1, l1), (k2, l2) be two p-synchronized overflows where p is

the primitive root of g(a). Then either e ∈ a+ or there exists a pair of indices

(r1, q1) such that G(r1) = H(q1) and e[r1 − 1, r1] = a.

Proof: Suppose that e /∈ a+. Then

g(e[k1,∞]) ∧ pω = c[G(k1),∞] ∧ pω <p g(a)ω ∧ pω

g(e[k2,∞]) ∧ pω = c[G(k2),∞] ∧ pω <p g(a)ω ∧ pω.

By Lemma 9 we obtain the existence of r1, r2 such that e[k1, r1] ∈ a+ and
e[k2, r2] ∈ a+. Notice that from the definition of p-synchronized overflows we
know that c[G(ki), H(li)] is a prefix of pω for both i ∈ {1, 2}. Moreover, by the
same definition

c[G(k1), H(l1)] = plc[G(k2), H(l2)].

Therefore,

c[G(k2), H(l2)]
−1pω = c[G(k1), H(l1)]

−1pω.

Now, we know that:

c[H(l1), G(r1)] = c[H(l1),∞] ∧ c[G(k1), H(l1)]
−1pω,

c[H(l2), G(r2)] = c[H(l2),∞] ∧ c[G(k2), H(l2)]
−1pω.

Since every cyclic block is simple, we have up to the order of indices:

c[H(l1),∞] ∧ c[G(k1), H(l1)]
−1pω <p c[H(l2),∞] ∧ c[G(k2), H(l2)]

−1pω.

Since

c[H(l1),∞] = h(f [l1,∞]) and c[H(l2),∞] = h(f [l2,∞]),

we finally obtain an inequality

h(f [l1,∞]) ∧ c[G(k1), H(l1)]
−1pω <p h(f [l2,∞]) ∧ c[G(k1), H(l1)]

−1pω.(*)



12 J. Hadravová

Now, we can again apply Lemma 9 on (*) and obtain an index q1 such that

c[H(l1), H(q1)] = h(f [l1, q1])

= h(f [l1,∞]) ∧ c[G(k1), H(l1)]
−1pω = c[H(l1), G(r1)].

Then H(q1) = G(r1), which is what we wanted to prove. From e[k1, r1] ∈ a+

follows the rest. �

4. Proof of Main Lemma

We shall assume that h(b) is the longest of all four image words, that is,

|g(a)| ≤ |h(b)|, |g(b)| ≤ |h(b)| and |h(a)| ≤ |h(b)|.

The aim of this section is to show that five p-synchronized overflows are created
by cumulating bs in f . We will provide an upper bound cb for number of bs in f
such that unless |f |b < cb, a cyclic block (e, f, c, G,H) necessarily has to have five
p-synchronized overflows. This part will show that this bound can be lowered to
9 occurrences of b.

We will have a look at possible forms of g-covers of true h-occurrences of b in f .
It has been shown in [5] that possible forms of g-covers of true h-occurrences of b
inside a solution are quite restricted:

Lemma 11. Let (w, c, G,H) be a cyclic solution for morphisms g, h such that

morphism g is marked. Let (k, ℓ) be a true h-occurrence of b and let (m,u) be its
g-cover. Then u belongs to the one of the following sets:

a+ b+ a+b+ b+a+ a+b+a+ b+a+b+.

Since e and f are factors of some cyclic solution (w, c′, G′, H ′), we can use this
fact and restrict ourselves only to these six types of g-covers.

We now proceed to prove that either a cyclic block (e, f, c, G,H) has five p-
synchronized overflows for some primitive word p or |f |b < 9.

Before the proof is given we will fix the notation and prove few auxiliary claims.
First, notice that since h(b) is of the maximal length, every g-cover (m,u) of

a true h-occurrence of b can be rewritten as u = u1u2, for some nonempty words
u1, u2. Because of this property we can apply combinatorial lemmas mentioned
in the previous section.

As we have already seen in Lemma 11, every true h-occurrence of b has to
possess exactly one of the six variants of cover. Thus, we will divide true h-
occurrences of b into six classes depending on the variant of their cover. To
simplify things slightly, we shall use the notation according to the following table,
which features variables representing the number of true h-occurrences of b with
the specific cover variant:
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# of true h-occurrences of b cover variant

x1 a+

x2 a+b+a+

x3 b+a+

y1 b+

y2 b+a+b+

y3 a+b+

The following lemma presents the way how the g-cover of a true h-occurrence
can be combined with n p-synchronized overflows in order to create n + 1 p-
synchronized overflows. In this way we can increase the number of p-synchronized
overflows.

Lemma 12. Let (e, f, c, G,H) be a cyclic block and let (m,uv) be the g-cover of
(k, l), where (k, l) is a true h-occurrence of b. Suppose that u, v are nonempty

words and there is a primitive word p such that

(1) h(b) is a factor of pω,
(2) there are p-synchronized overflows (r1, t1), . . . , (rn, tn), n ≥ 2, such that

ri 6= m+ |u| and ti 6= H−1(l) for all i ∈ {1, . . . , n},
(3) p ≤s c[k,G(m+ |u|)] or p ≤p c[G(m+ |u|), l].

Then (r1, t1), . . . , (rn, tn), (m + |u| , H−1(l)) are up to the order p-synchronized
overflows.

Proof: First recall that according to the definition of true h-occurrence of b we
have that c[k, l] = h(b) and moreover, k = H−1(l)−1. Since (m,uv) is the g-cover
of (k, l), we obtain from its definition that

G(m+ |u|) = k + j,

where 0 < j < |h(b)|. Therefore, c[G(m + |u| , l] is a suffix of h(b) and the third
condition in the definition of p-synchronized overflows is satisfied.

Notice also that by the second assumption of this lemma, starting and end-
ing positions of overflows (r1, t1), . . . , (rn, tn) are different than those of (m +
|u| , H−1(l)).

It remains to show that the overflows (r1, t1), . . . , (rn, tn), (m + |u| , H−1(l))
are indeed p-synchronized and satisfy (up to their order) the first condition of the
definition of p-synchronized overflows. But, since h(b) is a factor of pω, this fact
easily follows from the third assumption of this lemma together with Lemma 4. �

Notice that the third condition of the previous lemma has a particular impor-
tance, since it “fixes” the overflow c[G(m+ |u|), l] in accordance with distribution
of ps over h(b).
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The next claim presents key ideas involved in combining g-covers of the same
kind into p-synchronized overflows.

Claim 1. Let (e, f, c, G,H) be a cyclic block of morphisms g, h. Then the
following combinatorial properties hold.

(I.) If x1 ≥ 2, then (e, f, c, G,H) has x1 p-synchronized overflows, g(a) = pi,
i ≥ 2 and h(b) is a factor of pω longer than 2 |p|.

(II.) If x2 ≥ 3, then (e, f, c, G,H) has x2 p-synchronized overflows, p ≤p g(a)
and h(b) is a factor of pω longer than 2 |p|.

(III.) If x3 ≥ 3, then (e, f, c, G,H) has x3 p-synchronized overflows, p ≤p g(a),
p ≤s g(b) and h(b) is a factor of pω longer than 2 |p|.

Proof: (I.) We will use Lemma 5. Let (k1, l1), (k2, l2) be true h-occurrences of
b and let (m1, aa

j1), (m2, aa
j2) be their respective g-covers. Let

u1 = c[G(m1), k1] v1 = c[k1, G(m1 + 1)]

u2 = c[G(m2), k2] v2 = c[k2, G(m2 + 1)].

Since we are in a cyclic block, which is simple, we can suppose that u2 <p u1.
Notice that from the definition of g-cover we have

u1v1 = u2v2 = g(a),

v1u1 = v2u2 ≤p h(b).

It follows from Lemma 5 that the words u1u
−1
2 and u2v1 have the same primitive

root p. Then

g(a) = u1v1 = u1u
−1
2 u2v1 = pi,

for some i ≥ 2. Since h(b) is a factor of g(a)ω, it is obviously factor of pω as well.
We shall prove that (m1 + 1, H−1(l1)) and (m2 + 1, H−1(l2)) are p-synchronized
overflows. Obviously, m1 6= m2 and l1 6= l2. Since

c[m1 + 1, H−1(l1)] = v−1
1 h(b),

c[m2 + 1, H−1(l2)] = v−1
2 h(b),

we obtain that

c[m1 + 1, H−1(l1)]c[m2 + 1, H−1(l2)]
−1 = v−1

1 v2 = u1u
−1
2 ∈ p+,

and (m1 + 1, H−1(l1)) and (m2 + 1, H−1(l2)) are p-synchronized overflows. It is
easy to see that each g-cover of the type a+ of another true h-occurrence of b
satisfies condition of Lemma 12 and therefore we can add these g-covers one by
one to the already found p-synchronized overflows.

(II.) and (III.) Remaining two claims can be proved in a similar way using
Lemma 8 and Lemma 6 respectively. �
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Notice that because of symmetry of xs and ys (the covers are the same up to
the exchange of letters a and b) the foregoing lemma can be reformulated with ys
instead of xs. In what follows we will call this “reformulated” version of Claim 1
its dual form.

In particular, Claim 1 means that if xi ≥ 5 or yi ≥ 5 for any i ∈ {1, 2, 3},
then the conclusion of the Main Lemma holds. Notice that under the previous
observation if now |f |b ≥ 25, then the conclusion of the Main Lemma holds simply
by the pigeonhole principle. The rest of the section is dedicated to lowering this
bound.

Claim 2. Let (e, f, c, G,H) be a cyclic block of marked morphisms g, h. The
following properties hold.

(I.) If x1 6= 0, then y2 = 0.
(II.) If x1 ≥ 2, then y3 ≤ 1.
(III.) If x1 ≥ 2, then y1 ≤ 1.

Proof: (I.) Suppose that y2 ≥ 1. Then

h(b) = s2g(a)
ip2,

where i ≥ 1 and p2 ≤p g(b)ω. Since x1 6= 0, the word h(b) is a factor of pω, where
p is the primitive root of g(a). By Lemma 4, we obtain that p2 ≤p pω. We have
a contradiction with g being marked.

(II.) Since x1 ≥ 2, by Claim 1(I.) there is a primitive word p such that g(a) = pi,
i ≥ 2 and h(b) is longer than 2|p| with a period |p|. If y3 ≥ 2, then

h(b) = s1p1 = s2p2,

where s1 <s s2 ∈ Suf(g(a)+) = Suf(p+) and p2 <p p1 ∈ Pref(g(b)+). First notice
that |s2|− |s1| is a period of h(b). Since p is a primitive word and |h(b)| > 2|p|, by
the Periodicity Lemma this period has to be longer or equal to |p|. Then p ≤s s2
and h(b) = upp2, where up = s2. By Lemma 4 we have that p2 ≤p pω, which is a
contradiction with g being marked.

(III.) Suppose that x1 ≥ 2 and y1 ≥ 2. Then by Claim 1(I.) (and its dual
form for ys) there are two p-synchronized overflows (k1, l1), (k2, l2) and two s-
synchronized overflows (m1, n1), (m2, n2), where p is the primitive root of g(a)
and s is the primitive root of g(b). From Lemma 10 it follows that there are
r1, r2, q1, q2 ∈ Z|w| such that G(r1) = H(q1), G(r2) = H(q2) and b = e[r1 − 1, r1],
a = e[r2 − 1, r2]. Since (e, f, c, G,H) is a cyclic block, which is simple, we have
r1 = r2 and a = e[r2 − 1, r2] = e[r1 − 1, r1] = b is a contradiction. �

In a view of previous claim we can now without difficulty see that if |f |b ≥ 17,
then we get the desired conclusion of the Main Lemma.

Last part of this section investigates possible combination of g-covers of differ-
ent kind. Again, as the previous claim, this claim has its dual version obtained
by exchanging xs by ys (and vice versa).
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Claim 3. Let (e, f, c, G,H) be a cyclic block of marked morphisms g, h. If one
of the following properties is satisfied, then the conclusion of the Main Lemma
holds.

(I.) x1 + x3 ≥ 6.
(II.) x1 ≥ 2 and (x2 ≥ 3 or x3 ≥ 3).
(III.) x2 + x3 ≥ 5.
(IV.) x3 ≥ 3 and y3 ≥ 3 and x1 + x3 ≥ 5.
(V.) x3 ≥ 3 and x3 + y2 + x2 ≥ 5.

Proof: (I.) Suppose that x1 + x3 ≥ 6. If x3 ≥ 5 or x1 ≥ 5, then we shall use
Claim 1(III.) or Claim 1(I.). Therefore, 4 ≥ x1 ≥ 2 and 4 ≥ x3 ≥ 2. It follows
from Claim 1(I.) that there are x1 p-synchronized overflows such that p is the
primitive root of g(a), both g(a) and h(b) are longer than 2 |p| and h(b) is factor
pω. Let (m1, b

i1aj1), . . . , (mx3
, bix3ajx3 ) be the g-covers of (r1, t1), . . . , (rx3

, tx3
),

pairwise different true h-occurrences of b in (e, f, c, G,H). We will show that the
inequality

|c[G(mn + in), tn]| ≥ |p|

holds for at least x3 − 1 different g-covers of true h-occurrences of b. Then from
the primitivity of p we obtain p ≤p c[G(mn + in), tn] for x3 − 1 g-covers and we
can gradually apply Lemma 12 and increase the number p-synchronized overflows
up to the number x1 + x3 − 1 ≥ 5, which completes the proof.

For contradiction, suppose that for two different indices n1, n2, it holds:

|c[G(mn1
+ in1

), tn1
]| < |p|

|c[G(mn2
+ in2

), tn2
]| < |p| .

Then h(b) has a period q such that q < |p|. Since |h(b)| > |p|+ q we obtain from
the Periodicity Lemma a contradiction with the primitivity of p.

(II.) Suppose that x1 ≥ 2 and x2 ≥ 3. Then by Claim 1(I.) and Claim 1(II.),
there are x1 p-synchronized overflows and x2 s-synchronized overflows such that
g(a) = pi, i ≥ 2, and s is a prefix of g(a). Moreover, h(b) is a factor of both pω

and sω which is longer than max(2 |p| , 2|s|). From the Periodicity Lemma and the
primitivity of both words p and s follows that p and s are conjugates. Therefore,
p = s. Since p is primitive and h(b) is a factor of pω, we get from Lemma 12 that
(e, f, c, G,H) posses x1 + x2 p-synchronized overflows and the conclusion of the
Main Lemma holds. Case x1 ≥ 2 and x3 ≥ 3 is similar.

(III.) Obviously, either x2 ≥ 3 or x3 ≥ 3. Suppose that both x2 6= 0 and x3 6= 0
otherwise conclusion holds according to Claim 1. Let x2 ≥ 3. From Claim 1(II.)
we obtain the existence of x2 p-synchronized overflows such that p is a prefix of
g(a) and h(b) is a factor of pω longer than 2 |p|. Let (n, aibjak) be the g-cover of
(r1, t1), a true h-occurrence of b in (e, f, c, G,H), such that |c[G(n+i+j), t1]| > |p|.
Let (m, bsal) be the g-cover of (r2, t2), a true h-occurrence of b in (e, f, c, G,H).
Notice, that such g-covers indeed exist since x2 ≥ 3 and x3 6= 0.
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If |c[G(m + s), t]| < |p|, then by looking at a prefix of h(b), we obtain an
equality:

c[r2, G(m+ s)] = c[r1, G(n+ i+ j)]u

for some nonempty word u ≤p g(a)ω . Since g(b) ≤s c[r1, G(n + i + j)] and
c[r2, G(m + s)] ≤s g(b)s, we can apply Lemma 4 and obtain that u is prefix
comparable with the primitive root of g(b). This gives us a contradiction with g
being marked. Therefore, p ≤p c[G(m + s), t], and we can again gradually apply
Lemma 12 ending with x2 + x3 ≥ 5 p-synchronized overflows.

Now, let x3 ≥ 3. Using again Claim 1(III.) leads to the existence of x3 p-
synchronized overflows such that p ≤p g(a), p ≤s g(b) and h(b) is a factor of
pω longer than 2 |p|. Let (m, aibjak) be the g-cover of (r, t), a true h-occurrence
of b in (e, f, c, G,H). Since p ≤s g(b) we obtain from the primitivity of p that
p ≤s c[r,G(m + i + j)]. Proceeding by the application of Lemma 12 eventually
leads to x2 + x3 ≥ 5 p-synchronized overflows.

(IV.) Suppose that x3 ≥ 3, y3 ≥ 3 and x1 + x3 ≥ 5. Applying Claim 1(III.)
on both x3 ≥ 3 and y3 ≥ 3 leads to x3 p-synchronized overflows and y3 s-
synchronized overflows where p and s are primitive words given by Claim 1(III.);
that is, p ≤p g(a), p ≤s g(b) and s ≤p g(b), s ≤s g(a) with h(b) being a factor of
both pω and sω longer than max (2|p|, 2|s|). Notice that we have used the duality
of xs and ys and have applied dual form of Claim 1 as well.

From the Periodicity Lemma it follows that p and s are conjugates; therefore
of the same length. Let (m, aiaj) be the g-cover of (r, t), a true h-occurrence of b
in (e, f, c, G,H). Since |h(b)| > 2 |p| we can see that either |c[r,G(m+ i)]| ≥ |p|
or |c[G(m + i), t]| ≥ |p|. If |c[r,G(m+ i)]| ≥ |p|, then from s ≤s g(a) we have as
well s ≤s c[r,G(m + i)]. From Lemma 4 it follows that c[G(m + i), t] is prefix
comparable with s; therefore, g(a) is prefix comparable with s. Since also s ≤p

g(b), we have obtained a contradiction with g being marked. Therefore, necessarily
p ≤p c[G(m + i), t] and we can apply Lemma 12 and finally get x3 + x1 ≥ 5 p-
synchronized overflows inside (e, f, c, G,H).

(V.) Suppose that x3 ≥ 3. Then from Claim 1(III.) we get the existence of
x3 p-synchronized overflows such that p is a suffix of g(b), a prefix of g(a) and
h(b) is a factor of pω longer than 2 |p|. We have already seen in the third part
of this proof that in this case we can gradually add x2 p-synchronized overflows
resulting from g-covers of the type a+b+a+. Suppose now that y2 ≥ 1 and let
(m, biajbk) be the g-cover of (r, t), a true h-occurrence of b in (e, f, c, G,H). From
the primitivity of p it follows that p ≤p c[G(m+i), t] and we can apply Lemma 12.
We have proved that (e, f, c, G,H) has x3 + y2 + x2 ≥ 5 p-synchronized overflows
and the proof is complete. �

Now, we have everything prepared to finally present the proof of the Main
Lemma.
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Proof of Main Lemma: From the assumption |f |b ≥ 9 we obtain

3∑

i=1

xi +
3∑

i=1

yi ≥ 9.

We will proceed by case analysis based on Claim 1, Claim 2 and Claim 3.

Case x1 ≥ 2 or y1 ≥ 2. Suppose that x1 ≥ 2, the other case can be dealt with
in a similar way. From Claim 2 we necessarily have y2 = 0, y3 ≤ 1 and y1 ≤ 1. If
x1 + x3 ≥ 6, then the Main Lemma holds according to Claim 3(I.). On the other
hand if x1 + x3 ≤ 5 we obtain an inequality

x1 + x3
︸ ︷︷ ︸

≤5

+x2 + y1
︸︷︷︸

≤1

+ y2 + y3
︸ ︷︷ ︸

≤1

≥ 9.

Then x2 ≥ 2 and it follows from dual form of Claim 2(I.) that y1 = 0. Therefore,
x2 ≥ 3. Since x1 ≥ 2, the Main Lemma holds according to Claim 3(II.).

Case x1 ≤ 1 and y1 ≤ 1. If x1 = y1 = 1, then by Claim 2(I.) we have x2 = y2 = 0.
Notice that for y1 we have used dual form of Claim 2. Then

x1 + y1
︸ ︷︷ ︸

=2

+ x2 + y2
︸ ︷︷ ︸

=0

+x3 + y3 ≥ 9

and x3 + y3 ≥ 7. Therefore, x3 ≥ 4 or y3 ≥ 4. Suppose that x3 ≥ 4. In case that
x3 ≥ 5, we can apply Claim 1(III.) and obtain desired conclusion. If x3 = 4, then
y3 ≥ 3 and the Main Lemma holds by Claim 3(IV.). Similarly, we can deal with
the possibility y3 ≥ 4; notice that in this case we would use dual forms of Claim 1
and Claim 3.

Suppose now that x1 ≤ 1 and y1 = 0. If x2 + x3 ≥ 5 or y2 + y3 ≥ 5, then the
proof is complete due to Claim 3(III.) (and its dual form). In case that x2+x3 ≤ 4
and y2 + y3 ≤ 4, we have

x1
︸︷︷︸

≤1

+ y1
︸︷︷︸

=0

+ x2 + x3
︸ ︷︷ ︸

≤4

+ y2 + y3
︸ ︷︷ ︸

≤4

≥ 9.

Therefore, x1 = 1, x2 + x3 = 4 and y2 + y3 = 4. From x1 = 1 it follows by
Claim 2(I.) that y2 = 0; therefore y3 = 4. Now, if x2 ≥ 1, then the Main Lemma
holds due to dual form of Claim 3(V.). On the other hand, if x2 = 0, then we can
apply the fourth part of the same claim, which completes the proof. �

5. Towards the classification of non-simple solutions

We have seen that many occurrences of b inside a cyclic block lead to the
existence of five p-synchronized overflows for some primitive word p and moreover,
partially reveal the structure of image words h(b) and g(b) or g(a).



A length bound for binary equality words 19

We know that when dealing with a simple cyclic solution instead of a cyclic
block, these assumptions give us already very strong knowledge about the solution
itself; it is either (ab)ia or ajbi, with gcd(i, j) = 1.

However, since the Main Lemma is formulated more generally, we have the
possibility to go even a little bit further and look at the structure of non-simple
solutions as well. Taking an advantage of the fact that non-simple solutions of
marked morphisms are composed from blocks, we can also apply the Main Lemma
to a sufficiently “long” block inside a solution, and get the existence of five p-
synchronized overflows for some primitive word p inside the block. An impact
of the existence of five p-synchronized overflows inside one of the blocks on the
structure of the whole solution is the question for further research.
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[9] Holub Š., Binary morphisms with stable suffix complexity , Internat. J. Found. Comput.
Sci., to appear.
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[14] Karhumäki J., Open problems and exercises on words and languages (invited talk), in
Proceedings of Conference on Algebraic Information, Aristotle University of Thessaloniki,

2005, pp. 295–305.
[15] Lothaire M., Combinatorics on Words, Addison-Wesley, Reading, Mass., 1983.
[16] Post E.L., A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc. 52 (1946)

264–268.



20 J. Hadravová
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