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On weakly s-permutably embedded subgroups

Changwen Li

Abstract. Suppose G is a finite group and H is a subgroup of G. H is said to be
s-permutably embedded in G if for each prime p dividing |H|, a Sylow p-subgroup
of H is also a Sylow p-subgroup of some s-permutable subgroup of G; H is called
weakly s-permutably embedded in G if there are a subnormal subgroup T of G
and an s-permutably embedded subgroup Hse of G contained in H such that
G = HT and H ∩T ≤ Hse. We investigate the influence of weakly s-permutably
embedded subgroups on the p-nilpotency and p-supersolvability of finite groups.

Keywords: weakly s-permutably embedded subgroups, p-nilpotent, n-maximal
subgroup

Classification: 20D10, 20D20

1. Introduction

All groups considered in this paper are finite. A subgroupH of a groupG is said
to be s-permutable (or s-quasinormal) [1] in G if H permutes with every Sylow
subgroup of G. From Ballester-Bolinches and Pedraza-Aguilera [2], we know H is
said to be s-permutably embedded in G if for each prime p dividing |H |, a Sylow p-
subgroup ofH is also a Sylow p-subgroup of some s-permutable subgroup of G. In
recent years, it has been of interest to use supplementation properties of subgroups
to characterize properties of a group. For example, Wang [3] introduced the
concept of c-normal subgroup. A subgroup H of a group G is said to be c-normal
in G if there exists a normal subgroup K such that G = HK and H ∩K ≤ HG,
where HG is the maximal normal subgroup of G contained in H . In 2007, Skiba
[5] introduced the concept of weakly s-permutable subgroup. A subgroup H
of a group G is said to be weakly s-permutable in G if there is a subnormal
subgroup T of G such that G = HT and H ∩ K ≤ HsG, where HsG is the
maximal s-permutable subgroup ofG contained inH . As a generalization of above
subgroups, Y. Li, S. Qiao and Y. Wang [7] introduced a new subgroup embedding
property in a finite group called weakly s-permutably embedded subgroup. In the
present paper we characterize p-nilpotency of finite groups with the assumption
that some n-maximal subgroups are weakly s-permutably embedded.

The project is supported by the Natural Science Foundation of China (No:11071229) and the
Natural Science Foundation of the Jiangsu Higher Education Institutions (No:10KJD110004).
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2. Preliminaries

Definition 2.1. A subgroup H of a group G is said to be weakly s-permutably
embedded in G if there are a subnormal subgroup T of G and an s-permutably
embedded subgroupHse of G contained in H such that G = HT andH∩T ≤ Hse.

Remark. Obviously, s-permutably embedding property implies weakly s-per-
mutably embedding property. The converse does not hold in general. For example,
suppose G = S4, the symmetric group of degree 4. Take H =< (34) >. Then H
is weakly s-permutably embedded in G, but not s-permutably embedded in G.

Lemma 2.2 ([7, Lemma 2.5]). Let H be a weakly s-permutably embedded sub-

group of a group G.

(1) If H ≤ L ≤ G, then H is weakly s-permutably embedded in L.
(2) If N ⊳G and N ≤ H ≤ G, then H/N is weakly s-permutably embedded

in G/N .

(3) If H is a π-subgroup and N is a normal π′-subgroup of G, then HN/N
is weakly s-permutably embedded in G/N .

Lemma 2.3. Let G be a group and p a prime such that pn+1 ∤ |G| for some

integer n ≥ 1. If (|G|, (p− 1)(p2 − 1) . . . (pn − 1)) = 1, then G is p-nilpotent.

Proof: Suppose that the statement is not true and let G be a counterexample
of minimal order. Obviously, every subgroup of G satisfies the hypothesis of the
Lemma. The minimal choice of G implies that G is a minimal non-p-nilpotent
group. By [11, III, 5.2 and IV, 5.4], G = P⋊Q is a subdirect product of two Sylow
subgroups. It is easy to see that every proper quotient group of G satisfies the
hypothesis. Thus Φ(P ) = Φ(G) = 1 and so P is an elementary abelian p-group.
Since NG(P )/CG(P ) is isomorphic to a subgroup of Aut(P ) and |Aut(P )| divides
(p− 1)(p2− 1) . . . (pn− 1) for |P | ≤ pn, we have NG(P )/CG(P ) = 1. This induces
that G is p-nilpotent by [6, Theorem 10.1.8]. The contradiction completes the
proof. �

Lemma 2.4 ([8, A, 1.2]). Let U , V , and W be subgroups of a group G. Then

the following statements are equivalent:

(1) U ∩ VW = (U ∩ V )(U ∩W );
(2) UV ∩ UW = U(V ∩W ).

Lemma 2.5 ([9, Lemma 2.3]). Suppose that H is s-permutable in G, P a Sylow

p-subgroup of H , where p is a prime. If HG = 1, then P is s-permutable in G.

Lemma 2.6 ([9, Lemma 2.4]). Suppose P is a p-subgroup of G contained in

Op(G). If P is s-permutably embedded in G, then P is s-permutable in G.

Lemma 2.7 ([18, Lemma A]). If P is an s-permutable p-subgroup of G for some

prime p, then NG(P ) ≥ Op(G).

Lemma 2.8 ([4, Lemma 2.8]). Let M be a maximal subgroup of G and P a

normal p-subgroup of G such that G = PM , where p is a prime. Then P ∩M is

a normal subgroup of G.
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3. Main results

Theorem 3.1. Let G be a group and p a prime such that (|G|, (p − 1)(p2 −
1) . . . (pn − 1)) = 1 for some integer n ≥ 1. If there exists a Sylow p-subgroup P
of G such that every n-maximal subgroup (if exists) of P is weakly s-permutably

embedded in G, then G is p-nilpotent.

Proof: Suppose that the theorem is false and let G be a counterexample of
minimal order. We will derive a contradiction in several steps.

(1) G is not a non-abelian simple group.
By Lemma 2.3, pn||P | and so there exists a non-identity n-maximal subgroup

Pn of P . By the hypothesis, Pn is weakly s-permutably embedded in G. Then
there are a subnormal subgroup T of G and an s-permutably embedded subgroup
(Pn)se of G contained in Pn such that G = PnT and Pn ∩ T ≤ (Pn)se. If G is
simple, then T = G and so Pn = (Pn)se is s-permutably embedded in G. Thus
there is an s-permutable subgroup K of G such that Pn is a Sylow p-subgroup
of K. Since G is simple, we have KG = 1. By Lemma 2.5, Pn is s-permutable
in G. Therefore NG(Pn) ≥ Op(G) = G by Lemma 2.7. It follows that Pn ⊳ G,
a contradiction.

(2) G has a unique minimal normal subgroup N such that G/N is p-nilpotent.
Moreover Φ(G) = 1.

Let N be a minimal normal subgroup of G. Consider G/N . We will show
G/N satisfies the hypothesis of the theorem. Since P is a Sylow p-subgroup of G,
PN/N is a Sylow p-subgroup of G/N . If |PN/N | ≤ pn, then G/N is p-nilpotent
by Lemma 2.3. So we may suppose |PN/N | ≥ pn+1. Let Mn/N be an n-maximal
subgroup of PN/N . Then Mn = N(Mn ∩ P ). Let Pn = Mn ∩ P . It follows that
Pn ∩N = Mn ∩ P ∩N = P ∩N is a Sylow p-subgroup of N . Since

pn = |PN/N : Mn/N | = |PN : (Mn ∩ P )N | = |P : Mn ∩ P | = |P : Pn|,

Pn is an n-maximal subgroup of P . By the hypothesis, Pn is weakly s-permutably
embedded in G, thus there are a subnormal subgroup T of G and an s-permutably
embedded subgroup (Pn)se of G contained in Pn such that G = PnT and Pn∩T ≤
(Pn)se. So G/N = M/N · TN/N = PnN/N · TN/N . Since (|N : Pn ∩ N |, |N :
T ∩N |) = 1, (Pn∩N)(T ∩N) = N = N∩G = N∩(PnT ). By Lemma 2.6, (PnN)∩
(TN) = (Pn ∩ T )N . It follows that (PnN/N) ∩ (TN/N) = (PnN ∩ TN)/N =
(Pn∩T )N/N ≤ (Pn)seN/N . Since (Pn)seN/N is s-permutably embedded in G/N
by [2, Lemma 2.1], we have that Mn/N is weakly s-permutably embedded in G.
Therefore G/N satisfies the hypothesis of the theorem. The choice of G yields
that G/N is p-nilpotent. Consequently the uniqueness of N and the fact that
Φ(G) = 1 are obvious.

(3) Op′(G) = 1.
If Op′(G) 6= 1, then N ≤ Op′ (G) by step (2). Since

G/Op′(G) ∼= (G/N)/(Op′(G)/N)
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is p-nilpotent, we have G is p-nilpotent, a contradiction.

(4) Op(G) = 1.
If Op(G) 6= 1, Step (2) yields N ≤ Op(G) and Φ(Op(G)) ≤ Φ(G) = 1. There-

fore, G has a maximal subgroup M such that G = MN and G/N ∼= M is
p-nilpotent. Since Op(G) ∩M is normalized by N and M , Op(G) ∩M is normal
in G. The uniqueness of N yields N = Op(G). Since P ∩ M < P , there is a
maximal subgroup P1 of P such that P ∩M ≤ P1. Take an n-maximal subgroup
Pn of P such that Pn ≤ P1. By the hypothesis, there are a subnormal subgroup T
of G and an s-permutably embedded subgroup (Pn)se of G contained in Pn such
that G = PnT and Pn∩T ≤ (Pn)se. So there is an s-permutable subgroup K of G
such that (Pn)se is a Sylow p-subgroup of K. If KG 6= 1, then N ≤ KG ≤ K. It
follows that N ≤ (Pn)se ≤ P1, and so P = N(P ∩ M) = NP1 = P1, a con-
tradiction. If KG = 1, by Lemma 2.7, (Pn)se is s-permutable in G. From
Lemma 2.7 we have Op(G) ≤ NG((Pn)se). Since (Pn)se is subnormal in G,
Pn ∩T ≤ (Pn)se ≤ Op(G) = N by [12, Corollary 1.10.17]. Thus, (Pn)se ≤ P1 ∩N
and

(Pn)se ≤ ((Pn)se)
G = ((Pn)se)

Op(G)P = ((Pn)se)
P ≤ (P1 ∩N)P = P1 ∩N ≤ N.

It follows that ((Pn)se)
G = 1 or ((Pn)se)

G = P1 ∩ N = N . If ((Pn)se)
G = 1,

then Pn ∩ T = 1 and so |T |p = pn. Hence T is p-nilpotent by Lemma 2.3. Since
T ⊳ ⊳G, we have G is p-nilpotent, a contradiction. If ((Pn)se)

G = P1 ∩N = N ,
then N ≤ P1 and so P = P1, a contradiction.

(5) The final contradiction.
If N ∩ P ≤ Φ(P ), then N is p-nilpotent by J. Tate’s theorem ([11, IV, 4.7]).

Hence, by Np′ charN⊳G, Np′ ≤ Op′(G) = 1. It follows that N is a p-group. Then
N ≤ Op(G) = 1, a contradiction. Consequently, there is a maximal subgroup P1

of P such that P = (N∩P )P1. We take an n-maximal subgroup Pn of P such that
Pn ≤ P1. By the hypothesis, Pn is weakly s-permutably embedded in G. Then
there are a subnormal subgroup T of G and an s-permutably embedded subgroup
(Pn)se of G contained in Pn such that G = PnT and Pn ∩T ≤ (Pn)se. So there is
an s-permutable subgroup K of G such that (Pn)se is a Sylow p-subgroup of K.
If KG 6= 1, then N ≤ KG ≤ K and so (Pn)se∩N is a Sylow p-subgroup of N . We
know that (Pn)se∩N ≤ Pn∩N ≤ P ∩N and P ∩N is a Sylow p-subgroup of N , so
(Pn)se∩N = Pn∩N = P ∩N . Consequently, P = (N ∩P )P1 = (Pn∩N)P1 = P1,
a contradiction. Therefore KG = 1. By Lemma 2.5, (Pn)se is s-permutable in G
and so (Pn)se ⊳⊳G. Hence Pn ∩ T ≤ (Pn)se ≤ Op(G) = 1. Since |T |p = pn, T is
p-nilpotent by Lemma 2.4. Let Tp′ be the normal p-complement of T . Then Tp′

is a normal Hall p′-subgroups of G, a contradiction. �

Theorem 3.2. Let p be a prime and F a saturated formation containing all p-
nilpotent groups. Suppose that G is a group with (|G|, (p−1)(p2−1) . . . (pn−1)) =
1 for some integer n ≥ 1. Then G ∈ F if and only if G has a normal subgroup
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E such that G/E ∈ F and E has a Sylow p-subgroup such that every n-maximal

subgroup (if exists) of P is weakly s-permutably embedded in G.

Proof: The necessity is obvious. We need only to prove the sufficiency. Suppose
that the assertion is not true and let G be a counterexample of minimal order. By
Lemma 2.1, every n-maximal subgroup of P is weakly s-permutably embedded
in E. Hence by Theorem 3.1, E is p-nilpotent. Obviously E 6= G. Let T be a
normal Hall p′-subgroup of E. Now we divide the proof into the following steps:

(1) T = 1, and so P = E ⊳G.
Assume that T 6= 1. Because T is a normal Hall p′-subgroup of E and E ⊳G,

T ⊳G. We claim that G/T (with respect to E/T ) satisfies the hypothesis. In fact,
(G/T )/(E/T ) ∼= G/E ∈ F and E/T is a p-group. Suppose that Mn/T is an n-
maximal subgroup of PT/T and Pn = Mn∩P . Then Pn is an n-maximal subgroup
of P and Mn = PnT . By the hypothesis, Pn is weakly s-permutably embedded in
G. By Lemma 2.1, Mn/T = PnT/T is weakly s-permutably embedded in G/T .
The minimal choice of G implies that G/T ∈ F. It is easy to see that G ∈ F from
[8, Proposition IV. 3.11], a contradiction. Hence T = 1 and P = E EG.

(2) Suppose that Q is a Sylow q-subgroup of G, where q is a prime divisor of
|G| and q 6= p. Then PQ = P ×Q.

By (1), P = EEG. So PQ is a subgroup of G. By Lemma 2.1, every n-maximal
subgroup of P is weakly s-permutably embedded in PQ. Hence by Theorem 3.1,
we have that PQ is p-nilpotent. It follows that QE PQ and so PQ = P ×Q.

(3) Final contradiction.
Let H be an arbitrary non-identity normal subgroup of G contained in P and

Gp a Sylow p-subgroup of G. By (2), we have HQ = H × Q for any Sylow
q-subgroup of G with q 6= p. This induces that Op(G) ≤ CG(H) and [H,G] =
[H,GpO

p(G)] = [H,Gp]EG. We claim that [H,Gp] < H . Indeed, if [H,Gp] = H ,
then for any non-negative integer t, H = [H,Gp, . . . , Gp] ≤ Gt+1

p , where the
number of Gp in [H,Gp, . . . , Gp] is t, which contradicts [8, Theorem A.10.3]. Thus
[H,Gp] < H and consequently there exists a normal subgroup K of G such that
H/K is a chief factor of G and [H,K] ≤ K. This implies that H/K ≤ Z(G/K).
Then we obtain that G ∈ F since G/P ∈ F. The final contradiction completes
the proof. �

Corollary 3.3. Let p be the smallest prime dividing the order of a group G.

Assume that H is a normal subgroup of G such that G/H is p-nilpotent. If there
exists a Sylow p-subgroup P of H such that every maximal subgroup of P is

weakly s-permutably embedded in G, then G is p-nilpotent.

Corollary 3.4 ([16, Theorem 3.1]). Let p be a prime dividing the order of a

group G with (|G|, p − 1) = 1. Assume that H is a normal subgroup of G such

that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that

every maximal subgroup of P is c∗-normal in G, then G is p-nilpotent.
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Corollary 3.5 ([9, Theorem 3.1]). Let p be a prime dividing the order of a group

G with (|G|, p−1) = 1. If there exists a Sylow p-subgroup P of G such that every

maximal subgroup of P is s-quasinormally embedded in G, then G is p-nilpotent.

Corollary 3.6 ([7, Theorem 3.1]). Let p be the smallest prime dividing the order

of a group G. If there exists a Sylow p-subgroup P of G such that every maximal

subgroup of P is weakly s-permutably embedded in G, then G is p-nilpotent.

Corollary 3.7 ([19, Theorem 3.1]). Let p be the smallest prime dividing the

order of a group G. If there exists a Sylow p-subgroup P of G such that every

maximal subgroup of P is weakly s-permutable in G, then G is p-nilpotent.

Corollary 3.8 ([20, Theorem 3.2]). Let p be a prime dividing the order of a group

G with (|G|, p−1) = 1. If there exists a Sylow p-subgroup P of G such that every

maximal subgroup of P is weakly s-permutable in G, then G is p-nilpotent.

Corollary 3.9 ([10, Theorem 3.1]). Let p be the smallest prime dividing the

order of a group G. If there exists a Sylow p-subgroup P of G such that every

maximal subgroup of P is s-permutably embedded in G, then G is p-nilpotent.

Corollary 3.10 ([13, Theorem 3.4]). Let p be the smallest prime dividing the

order of a group G. If there exists a Sylow p-subgroup P of G such that every

maximal subgroup of P is c-normal in G, then G is p-nilpotent.

Corollary 3.11 ([17, Theorem 3.1]). Let p be a prime dividing the order of a

group G with (|G|, p − 1) = 1 and H a normal subgroup of G such that G/H is

p-nilpotent. If there exists a Sylow p-subgroup P of H such that every maximal

subgroup of P is c-normal or s-permutably embedded in G, then G is p-nilpotent.

Theorem 3.12. Let p be a prime, G a p-solvable group and H a normal subgroup

of G such that G/H is p-supersolvable. If there exists a Sylow p-subgroup P of

H such that every maximal subgroup of P is weakly s-permutably embedded in

G, then G is p-supersolvable.

Proof: Suppose that the theorem is false and let G be a counterexample of
minimal order.

(1) G has a unique minimal normal subgroup N contained in H such that G/N
is p-supersolvable.

Let N be a minimal normal subgroup of G contained in H . Since P is the
Sylow p-subgroup of H , PN/N is the Sylow p-subgroup of H/N . Let M/N be a
maximal subgroup of PN/N ; then M = (M ∩P )N . Let P1 = M ∩P . Obviously,
P1 is the maximal subgroup of P . Since G is p-solvable, N is elementary abelian
p-group or p′-group. If N is p′-group, then M/N = P1N/N . If N is p-group,
then M/N = P1/N . By hypothesis, P1 is weakly s-permutably embedded in G
and so M/N is weakly s-permutably embedded in G/N by Lemma 2.1. Since
(G/N)/(H/N) ∼= G/H is p-supersolvable, G/N satisfies all the hypotheses of our
theorem. It follows that G/N is p-supersolvable by the minimality of G. Clearly,
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N is the unique minimal normal subgroup of G contained in H as the class of
p-supersolvable group is a saturated formation.

(2) Op′(G) = 1.

If T = Op′(G) 6= 1, we consider G = G/T . Clearly, G/H ∼= G/HT is p-

supersolvable by the p-supersolvability of G/H , where H = HT/T . Let P1 =
P1T/T be a maximal subgroup of PT/T . We may assume that P1 is a maximal
subgroup of P . Since P1 is weakly s-permutably embedded in G, the subgroup
P1T/T is weakly s-permutably embedded in G/T by Lemma 2.1. The minimality
of G yields that G is p-supersolvable, and so G is also p-supersolvable, a contra-
diction.

(3) The final contradiction.
Since G is p-solvable, N is an elementary abelian p-group by step (2). If N

is contained in all maximal subgroups of G, then N ≤ Φ(G) and so G is p-
supersolvable, a contradiction. Hence there exists a maximal subgroup M of G
such thatG = NM andN∩M = 1. Applying Lemma 2.8, we haveOp(H)∩M⊳G.
Therefore Op(H) ∩ M = 1 and N = Op(H). Let Gp be a Sylow p-subgroup of
G containing P . Then Gp = P (Gp ∩ M) and Gp ∩ M < Gp. Take a maximal
subgroup G1 of G containingGp∩M and set P1 = G1∩P . Then Gp∩M = G1∩M
and G1 = P1(Gp ∩M). Moreover, P1 is maximal in P . By the hypothesis, P1 is
weakly s-permutably embedded in G. Then there are a subnormal subgroup T
of G and an s-permutably embedded subgroup (P1)se of G contained in P1 such
that G = P1T and P1 ∩ T ≤ (P1)se. So there is an s-permutable subgroup K of
G such that (P1)se is a Sylow p-subgroup of K. If KG 6= 1, then we can take a
minimal normal subgroup N1 of G such that N1 ≤ KG. Since G is p-solvable,
from (2), N1 must be a p-subgroup, so that N1 ≤ (P1)se ≤ P ≤ H and indeed
N1 = N by step (1). Furthermore, Gp = N(Gp ∩ M) ≤ P1(Gp ∩ M) = G1,
a contradiction. Therefore KG = 1 and, by Lemma 2.5, (P1)se is s-permutable in
G. By [12, Corollary 1.10.17], P1 ∩ T ≤ (P1)se ≤ N . Since |G : T | is a number of
p-power and T ⊳⊳G, Op(G) ≤ T . We know G/Op(G) is p-subgroup, so G/Op(G)
is p-supersolvable and G/(N ∩ Op(G)) . G/N × G/Op(G) is p-supersolvable.
Then N ∩ Op(G) 6= 1. Since N is the minimal subgroup, N ∩ Op(G) = N and
N ≤ Op(G). It follows that N ≤ T . Thus we have P1 ∩ T = P1 ∩N = (P1)se is
s-permutable in G. Since G1 = P1(Gp ∩M) and P1 = (P1 ∩N)(P ∩M), we have
G1 = (P1 ∩ N)(Gp ∩ M). Now let Q be a Sylow q-subgroup of M with q 6= p.
Then Q is also a Sylow q-subgroup of G, and hence (P1 ∩ N)Q = Q(P1 ∩ N).
Since Gp ∩ M is a Sylow p-subgroup of M , the set (P1 ∩ N)M forms a group.
The maximality of M implies that either (P1 ∩N)M = G or (P1 ∩N)M = M . If
the former holds, then Gp = G1(Gp ∩M) = G1, a contradiction. Thus we must
have (P1 ∩N)M = M , that is, P1 ∩N ≤ M . It follows that P1 ∩N = 1. Since
P1 ∩N is a maximal subgroup of N , we have N is a cyclic of order p. Thus G is
p-supersolvable, a final contradiction. �
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Corollary 3.13 ([16, Theorem 3.5]). Let p be a prime, G a p-solvable group and

H a normal subgroup of G such that G/H is p-supersolvable. If there exists a

Sylow p-subgroup P of H such that every maximal subgroup of P is c∗-normal

in G, then G is p-supersolvable.

Corollary 3.14 ([14, Theorem 3.1]). Let p be a prime, G a p-solvable group and

H a normal subgroup of G such that G/H is p-supersolvable. If there exists a

Sylow p-subgroup P of H such that every maximal subgroup of P is c-normal

in G, then G is p-supersolvable.

Corollary 3.15 ([15, Theorem 3.10]). Let p be a prime, G a p-solvable group and

H a normal subgroup of G such that G/H is p-supersolvable. If there exists a

Sylow p-subgroup P of H such that every maximal subgroup of P is s-permutably

embedded in G, then G is p-supersolvable.

Corollary 3.16 ([20, Theorem 3.3]). Let p be a prime and G a p-solvable group.
If there exists a Sylow p-subgroup P of G such that every maximal subgroup of

P is s-permutable in G, then G is p-supersolvable.

Corollary 3.17. Let H be a normal subgroup of a group G such that G/H is

supersolvable. If every maximal subgroup of any Sylow subgroup of H is weakly

s-permutably embedded in G, then G is supersolvable.

Proof: Let p is the smallest prime divisor of |G|. The supersolvability of G/H
implies that G/H is p-nilpotent. By Corollary 3.3, G is p-nilpotent. Furthermore
G is solvable. Applying Theorem 3.12, it is easy to see that G is supersolvable. �
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