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Ratio Tauberian theorems for relatively bounded

functions and sequences in Banach spaces

RYOTARO SATO

Abstract. We prove ratio Tauberian theorems for relatively bounded functions
and sequences in Banach spaces.

Keywords: ratio Tauberian theorem, v-th order Cesaro integral, Laplace integral,
~-th order Cesaro sum, Abel sum

Classification: 40E05, 47TA35

1. Introduction

Let X be a Banach space and u : [0,00) — X be a locally integrable function.
Let g : [0,00) — Ry be a locally integrable function such that [ g(t)dt > 0,
where Ry := {t > 0: ¢t € R}. We assume the condition

t
r)dr t
M—)l as t,s oo with - —1,

s

f; g(r)dr
and prove that if ||u(t)]] = O(g(t)), t — oo, then the following statements are
equivalent:

. . t t
(i) @ =limyoo (fy u(s)ds)/( [y 9(s)ds);
(i) @ =limxpo (fy~ e Mu(t)dt) /([ e Mg(t) dt).
This solves the open problem posed in [6]. Then particular choices of the function
g will be considered, leading to some generalized Tauberian theorems. Discrete
analogues are obtained as well.

2. Results for functions

Let X be a Banach space and u : [0,00) — X be a locally integrable func-
tion. The class of all such functions will be denoted by L{ (R4, X). For u €
Li (Ry,X),v>1andt >0 we define the y-th order Cesaro integral s; (u) over

[0,t] as

1) ) = (ky +u)(0) = [ k(= 9uts)as.



78

R. Sato
where k(t) := t771/I'(y) for t € R;. In particular we have s;(u) = fot u(s) ds.
The Laplace integral u(A) for A € R is defined as

oo b
(2) a(\) = / e Mu(t)dt = lim | e Mu(t)dt
0 b—oo Jo
if the limit exists. It is known (see e.g. [1, Proposition 1.4.1]) that if w(\g) exists
then () exists for all A > A\g. If u is a locally finite positive measure on R,
then we use the notation 7i(A) to denote [;° e~ du(t) when [;~ e du(t) < oo
We begin with the following key lemma.

Lemma 2.1. Let p be a locally finite positive measure on R such that u[0, c0) >
0. If

0,t t
(©) Z[[O,s]] —1 as t,s— o0 with , — 1,
then
(C1) lim inf #O /A = lim inf M
A0 ey Mo [T e Mdp(t)

PROOF: By hypothesis there are two constants G > 1 and § > 0 such that if
t>s>Gand t/s <146 then

(s, 1]

=

0<

=
5
K,

Thus for A > 0 with 1/A > G we have u(1/\, (1 +68)/A < 29u[0,1/)], and
p((L+8)/A, (L48)%/A < [0, (1+8)/A] < 2'u[0,1/].
Then for n > 2 we have inductively

p((L+0)" /A (L+6)" /Al < pl0,(1+6)"/A]

n—1

= pl0, 1/ + D u((1+8)F/A (L+8)" /N
k=0

n—1

< (1 +y 2’“)/407 1/A] = 2740, 1/].
k=0
Hence

O</ e Mdu(t)
0

oo

e Mdu(t)

/ e Mdu(t) + /
[0,1/2] (A48 /A, (A48T /A

1[0,1/A] +Z2" 0,1/Ae” " < .

IN
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Therefore
0,1/X 0,1/A > w1
MO 0N $ sy 5
1(A) Jo e Mdu(t) =
completing the proof. ([

Theorem 2.2 (cf. [2, Theorem 2.2]). Suppose 0 # g € L (Ry,Ry) satisfies
condition (C) with p := g(t)dt. Then for any u € L{ (R4, X) with |lu(t)]] =
O(g(t)), t = oo, the following statements are equivalent:

(i) © =lim;_0o 5t( )/5t( ) = lim; 00 (fot u(s) ds)/(fot g(s)ds);
(i) = = limso00 5 (u Bu)/s? (g )
= limy o0 (fo (t—s)P~1u(s)ds)/ (fo g(s)ds) for some/a]] B >1;
(111) T = 1im,\¢0 ’(7()\)/@()\) = 1lm,\¢0 (fO _/\t ) (fO _/\t )

PROOF: “(i) = (ii) = (iii)” follows from [2, Theorem 2.1].

(iii) = (i): We first note that if P(t) = ZTJLO ant™ is a polynomial function
such that

(3) P(t)>d>0 on [0,1],
then
n . T JoS e MP(emM)u(t) dt

MO [F e MP(emM)g(t) dt
To see this, put P(\) := [7° e N P(e=*)g(t) dt. Then

f 7Atp( )\t)u(t)
e Mp(e M)g(t) dt

_ iv:an</oo A(n+1)t ( )dt) . fooo e_/\(n-l-l)tu(t) dﬁ-

fo 6_’\(”+1)tg(t) dt

n:O
Here
Joo e Attt e
(5) i gy i~ (by (i),
and

J o e Mt ig(tyat 1
(6) 0< =2 ]3()\) < 7 (by (3)).

79
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Thus

i JoS e MP (e M)u(t) dt
im
A0 fooo e MP(e=M)g(t) dt

N

1 o0
=lim —  a, / e MUt dt )z = .
A0 p(>\) = ( 0 g(t) )

Next we write

(7)

where

0 if 0<t<e?
h(t) = - ’
®) {tl if e7l<t<l,

For the proof we may assume without loss of generality that ||u(t)|| < g(¢) for all
t > 0. By condition (C), given an ¢ > 0, there are two constants G > 1 and § > 0
such that

@ | =+

(8) 0< <e if t>s>G and <1+54.

It is standard to see that there exists a polynomial function P(t) = ZT[LO ant™
such that

(a) h(t) < P(t) <& on [0,e”(*7)]

(b) h(t) < P(t) < h(e™!) 4+ e on [e=(1+9) 1],

(c) h(t) < P(t) < h(t)+eon[e ! 1].
Then

[P gwyde
_ I e M (h(e™) = P(e7 ) u(t) dt + [;° e M P(e M )u(t) dt .
fooo e~ Mh(e=M)g(t) dt

= I\+ Il — =,
and

( 1//\+f11+6 +f(1+5)/,\) M (R(e™M) = P(e™))u(t) dt
Jo e Mh(eM)g(t) dt

In(1) + In(2) + Ix(3)

fooo e~ Mh(e > M)g(t)dt’

I
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where
1/X 00
(9) L] < / e Meg(t)dt < e / (e g(t) dt
0 0

by (c) and the assumption that ||u(t)|] < g(¢) for all ¢ > 0. On the other hand,
(b) implies

(1+8)/X (140)/X
Inel< [ e e g <era) [ gl
1/x

1/A
where if A > 0 is sufficiently small, then by (8)
(146)/x 1/A 0o
/ g(t)dt < E/ g(t)dt = 5/ e Mh(e M)g(t) dt,
1 0 0

/A
so that

(10) (IIn(2)]] < (e + 5)5/000 e Mh(e M)g(t) dt

for all sufficiently small A > 0. Finally (a) implies
IIA(3)|| < / e Meg(t)dt < 5/ e Mg(t) dt.
(1+8)/A 0
We apply Lemma 2.1 to infer that there exists a constant 7 > 0 such that
1/A

i inf o 9Bt
A0

fooo e~ Mg(t)dt

> ).

Thus if A > 0 is sufficiently small, then

1/X o]
/ g(t)dt > 1 / e Ng(t) dt,
0

0

so that
€ 1/A € 00

1) @< [Tawd=2 [ e g0 at
nJo nmJo

Consequently

(12) limsup | In]] < & + (e +€)e + = .
L0 n

Now we write
e M P(e M g(t) dt [T e M P(e M u(t) di

I = = e gty dt [ e NP Mgty di
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Similarly as in (12) one may show that if A > 0 is sufficiently small, then

Jom Pl
LS N e g 1) de

Since P(t) > d > 0 on [0, 1] for some d > 0, it follows that

<1+5+(e+€)5+£.
n

- JoS e MP(e M )u(t) dt .
Mo [FemMP(em Myg(tydt

Hence
f e MP(e " Mu(t) dt
[Ty — x| < fz e MP(eM)g(t) dt xH
(13) Jo_e " Pleult) dt

Jo e XP(emA)g(t) dt

— (5 +(e+e)e+ %) [l]|

+<5+(e+5)5+n)‘

as A | 0. Combining this with (12) yields

/2

u(t) dt
(14) limsup [ o ®dt (s+(e+a)s+f)(1+|\x||)
Mo || [ gt dt 1
0
which completes the proof, since € > 0 is arbitrary. ([

Theorem 2.3 (cf. [2, Theorem 4.2], [5, Proposition 3.4]). Let o > 0. Supposeu €
Ll (R4, X) satisfies ||u(t)|| = O(t*™1), t — oco. Then the following statements

loc
are equivalent:

(i) z = limy_oo (D(a+1)

(i) z = limi—o (T(a+ B)
g>1;

(i) @ = limxyo A*@(A) = limyyo A* f;° e~ Mu(t) dt.

%) [y u(s) ds;
JT(B)te+h=1) fot(t — 5)#~u(s) ds for some/all

PROOF: “(i) = (ii) = (iii)” follows from [2, Theorem 4.1].
(iii) = (i): Suppose a > 0. Then define g(t) := kqo(t) = t*1/T(a) for t € Ry

and p = g(t)dt. It follows that Hu( )| = O(g(t)), t = oo, that g(A) = A* for
all A > 0, and that p[0,t] = fo s)ds = (k1 x ko) (t) = kay1(t) = t*/T(a + 1).
Hence p satisfies condition (C), and so (i) follows from Theorem 2.2.

Next suppose o = 0. Since ||u(t)| = O(t™1), t — oo, it follows from standard
calculations (see e.g. [8, pp.204, 206]) that the function U (¢ fo s)ds is
bounded and feebly oscilating (i.e. ||U(t) — U(s)|| — 0 as ¢ and s — oo in such

a way that t/s — 1). Thus (i) follows from [5, Proposition 3.4]. The proof is
complete. (I
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Remark. The special case &« = 1 of Theorem 2.3 states that, under the assump-
tion that w is bounded, the Cesaro limit lim;—, o (1/¢) fo s) ds exists if and only
if the Abel limit limy o Au(X) exists and they are both equal. This is a clas-
sical Tauberian theorem (see e.g. [1, Theorem 4.2.7]). The special case a = 0
of Theorem 2.3 states that, under the assumption that |ju|| = O(t™!), t — oo,
the limit lim; fo s)ds exists if and only if the limit limyo @()) exists and

they are both equal. Thls is another classical Tauberian theorem (see e.g. [1,
Theorem 4.2.9]).

Theorem 2.4. Suppose u € Li (R, X) satisfies |[u(t)|| = O(t™1), t — co. Then
the following statements are equivalent:

(i) = = limyo0 (1/logt) fo s) ds;
(i) 2 = limyo0 (1/t7 1 logt) fo (t — s)P~tu(s) ds for some/all B > 1;
(ili) @ = limxyo (1/ —log A)A(A) = limxyo (1/ —logA) [y~ e~ Mu(t) dt.

Proor: Let
)= 10 if 0<t<1,
A B T

An approximation argument yields that

i fg(tfs)vflg(s) ds f1 (t—s)"tslds
(15) 00 tv—llogt N tﬂoo tv—llogt
fll/t (1—-s)"1s71ds
= lim =1
t—00 logt
for all v > 1 and that
a6 1 GV [Te Mty ettt dt
im ——— = =
M0 —logA Ao —log A ALO —log A

Since |lu(t)|| = O(g(t)), t — oo, and the measure p := g(t)dt satisfies condi-
tion (C), the desired result follows from Theorem 2.2. O

Remark. If X is a Banach lattice with positive cone Xy and u € L (R4, X4),
then statements (i), (i) and (iii) in Theorem 2.4 are also equivalent. This follows
from [2, Theorem 2.2]. (We note that if u € L] (R4, X} ), then statement (ii) in
Theorem 2.4 implies that u(\) exists for all A > 0 (see [3, Lemma 2.5]).)

Fact 2.5. Let u € L], (R4, X). Consider the following three statements:
(i) = =limy 00 fo s)ds;
(ii) @(\) exists for all )\ >0 and & = limy_o (1/t°71) fot(t — 5)P~tu(s) ds for
some/all 8> 1;
(i) @ = limxyo U(A) = limxgo f° e Mu(t) dt.
Then (i) = (i) = (iii).
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PROOF: Letting g(t) := x[o,1](t) we have

Jolt=s) gyds _fo(t=s)tds

lim = lim =1
t—00 tr—1 t—o00 tr—1
for all v > 1 and
1
lim g(\) = 1i Mt =1.
I = g,
Thus the desired result follows from [2, Theorem 2.1]. O

Remarks. (a) If [ |lu(t)||dt < oo, then clearly both (i) and (iii) in Fact 2.5
hold. In general (iii) does not imply (i). (For example let u(t) := sint.) If
u € L (Ry, X) satisfies ||u(t)|| = O(t™!), t — oo, or if X is a Banach lattice and

loc

u € L (R4, X), then (iii) implies (i). (See Theorem 2.3 and [2, Theorem 4.2],
respectively.)

(b) There exists a continuous function u : [0,00) — R such that inf{\ € R :
u(A) exists} = 1 and also such that lim;_,o (1/%) f(f(t —s)u(s) ds (€ R) exists (see
the Remark over Theorem 2.4 in [3], or [7, Example 5]). Thus the hypothesis that
u(A) exists for all A > 0 cannot be omitted from (ii) in Fact 2.5.

3. Results for sequences

Let {zn} := {xn}22, be a sequence in a Banach space X. For v € R and
n € NU {0}, we define the y-th order Cesaro sum s ({z;}) as

a7 = ("

n
k=0

where () := 1 and () :== r(r —1)...(r —n+1)/n! for r € R and n > 1.

Thus s3({z;}) = xo for all v € R, % ({z;}) = z, and s}, ({;}) = >}_, @ for all
n € Ng. The Abel sum {z;}(r) of {z,} is defined as

o0

— —1
(18) {@}(r) =Y 1"z, O<r< (hmsup H:rnﬂl/”) :
n— o0

n=0

Clearly {2;}(r) exists for all 0 < r < 1 if and only if lim sup,, . ||z.||*/" < 1. Let
{an}22, be a sequence of nonnegative real numbers such that > °  a, > 0. We
define u(t) := xp and g(t) := apy for t > 0, where [t] denotes the largest integer
less than or equal to t. Then we have the following

Lemma 3.1. (i) z = lim, 00 (ZZ:O xk)/(ZZ:o ak) if and only if © =
lim;—s 0 (fot u(s) cls)/(f(;5 g(s) ds).
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(ii) Suppose @(r) and {a/i\}(r) exist for all 0 < r < 1. Then
r = lim {‘rl}(r) — lim ZZlZ:O ’I"".I'n
M {ab(r) T e an
if and only if

~ —/\t t) dt
r = lim E()\) = lim fo ( )

MO g Mo [ e Mg(t)dt

PRrROOF: (i) Putting §(t) := ¢ — [t] we have 0 < §(¢) < 1, and

Jouls)ds — (1-8() Sl @ +0() i

Jog(s)ds — (1=6(0) S ar +6() S ar |

so that the first condition of (i) implies the second condition. The converse im-
plication is obvious.
(ii) By an elementary calculation we have

—/\t o0 —An
ﬁ dt e T

Jo e Mgyt 3o lge M an

whence (ii) follows. O

Theorem 3.2 (cf. [2, Theorem 3.2]). Let {a,}32, be a sequence of nonnegative
real numbers such that 220:0 an > 0. Suppose

D ko Ok
®) > k=0 @k

Then for any sequence {x,}52, in X, with ||z,|| = O(ay), n — oo, the following
statements are equivalent:
(1) @ =limp o0 5, ({z:}) /5, ({a:}) = limnoo (Xioozk)/(Xiooak);
(ii) = = limy, 00 55 ({z:})/52({a:}) for some/all B > 1;
(iii) = = limppq {2} (r)/{ai}(r) = limp (30 o @n)/(Xoneg ™ an)-

ProoF: Condition (D) nnphes that the function g(t) = ay satisfies condition (C)

with p := g(t) dt. Hence {al}( ) and {.Z'l}( ) exist for all 0 < r < 1. Then “(i) =
(ii) = (iii)” follows from [2, Theorem 3.1].
(iii) = (i): By Lemma 3.1 and Theorem 2.2 we have

z = lim @(r ) i By s sl
FU {g () MO G oo si(g)  moee 51({%})

) m
—1 as m,n—oo with — — 1.
n

which completes the proof. ([l
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Theorem 3.3 (cf. [2, Theorem 4.4], [5, Proposition 3.6]). Let a > 0. Suppose
{x,}5°, is a sequence in X such that ||z,| = O(n®~'), n — oco. Then the
following statements are equivalent:

(i) z =limpso (D(a+1)/(n+1)%) Y4y T;
(i) 2 = limy oo (D(a —1—/@/(71 + 1)t 1)s8 ({x;}) for some/all B > 1;

(iil) @ =limpqq (1 — ) {a b (r) = limpgy (1 —r)® 300 12y,

PRrROOF: “(i) = (ii) = (iii)” follows from [2, Theorem 4.3].

(iii) = (i): Suppose @ > 0. Then define a,, := ("Jrffl) for n > 0. It follows
(cf. [9, pp. 76-77]) that (1—r)~* =3 ;r"a, for 0 <r < 1, and a, = n®* (1 +
0(1))/T(a), n = co. Thus ||z,| = O(ay), n — co. Since

(03

= n+« n
kz_oak< n )m(1+0(1)), n — o9,

{an}22, satisfies condition (D). Hence (i) follows from Theorem 3.2.

Next suppose o = 0. Then the function u(t) = xp satisfies |Ju(t)|| = O(t™1),
t — oo, and (iii) implies that z = limyyo [, e *u(t) dt. Hence, by Theorem 2.3,
z = limy_yo0 fot u(s)ds =limp 00 > p_o @k This completes the proof. O

Remark. The special cases « = 1 and a = 0 of Theorem 3.3 are classical results
for sequences corresponding to « = 1 and a = 0 of Theorem 2.3, respectively.
(See e.g. [4, Theorem 3.1], [1, Theorem 4.2.17].)

Theorem 3.4. Suppose {z,,}5°, is a sequence in X such that |z,| = O(n™1),
n — oo. Then the following statements are equivalent:

(i) 2 =lim,oo (1/log(n+1)) S5 k;
(i) z =limy 0o (T(B)/(n+1)"1log (n+1))s8({x;}) for some/all B> 1;
(iii) @ =limxyo (1/ —logA){z;}(e™*) =limyyo (1/ —logA) Yort e ay,.
PROOF: Define ag := 0 and a,, := n~! for n > 1. Hence |z,| = O(a,), n —

oo, and Y ,_jar = logn + O(1), n — oo. It follows that {a,};2, satisfies
condition (D). If 8 > 1, then
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it follows by an approximation argument that

/" Ms_l ds - (1+0(1))

sh({ai})

L(B)
n?~llog n
= —— - (14+0(1)), n—>x by (15)).
Similarly
{/a\i}(efA) = Z e At :/ e Mtladt - (1+0(1))
n=1 1

= —logA-(1+0(1)), AlO (by (16)).

Hence the desired result follows from Theorem 3.2. O

Remark. If X is a Banach lattice and {z,}32, C X, then statements (i), (ii)
and (iii) in Theorem 3.4 are also equivalent. This follows from [2, Theorem 3.2].

(We note that statement (ii) in Theorem 3.4 implies that {z;}(r) exists for all
0<r<l)

Fact 3.5. Let {z,}52, be a sequence in X. Consider the following three state-
ments:
(1) = =lmy o0 D 1o Tk

(i) & = limy oo (D(B)/(n + 1)) s8({x;}) for some/all B > 1;

(iil) 2 =limpgq {@;}(r) = lmpg Yoor o 7" 2.
Then (i) = (i) = (iii).
PRrROOF: By letting ap := 1 and a,, := 0 for n > 1, the desired result follows as in
Fact 2.5. We may omit the details. O

Remark. In general (iii) does not imply (i) in Fact 3.5. (For example let x,, :=
(=1)™.) If {z,} satisfies ||z,|| = O(n~1t), n — oo, or if X is a Banach lattice
and {z,} C X4, then (iii) implies (i). (See Theorem 3.3 and [2, Theorem 4.4],
respectively.)

4. A counterexample

The following example shows that condition (D) is essential in Theorem 3.2.
(See also Example 3 in [6].)

Example. Define {a,}32, by

n if ne {2k 2% +1} for some k> 1,
Ap =
" 0 otherwise.
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Thus {a,} does not satisfy condition (D). Next define {z,}52, by

n if n=2* for some k>1,
Ty 1=
" 0 otherwise.

It follows that 2, = O(ay), n — co. An elementary calculation yields

n n
—0Z . o7 2
= lim inf 72570 b < limsup Lo Tk ==

n )
n—00 Zkzo Qg n—00 Zk:O ag 3

1

so that lim,, o 55 ({z:})/sL({a;}) does not exist. Nevertheless we have

{z:}(r) Soe, 2mr?

1
PR - oo n 3] - — = as r T 1.
() ()Xo 2w 4y r? 5

Remark. Let 0 # g € L (R4, Ry). Suppose that g(\) exists for all A > 0 and

loc

that z = limyjo u(\)/g(\) implies z = limy—,00 (fg u(s) ds)/(fotg(s) ds) for all
uw € Ll (Ry,X) with |lu(t)|]] = O(g(t)), t = co. Then in view of Theorem 2.2
it would be natural to ask the following question: Does the measure p := g(t) dt

satisfy condition (C) of Lemma 2.1? The author could not solve this problem.
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