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Boundary value problems for semilinear evolution

inclusions: Carathéodory selections approach

Tiziana Cardinali∗, Lucia Santori

Abstract. In this paper we prove two existence theorems for abstract boundary
value problems controlled by semilinear evolution inclusions in which the nonlin-
ear part is a lower Scorza-Dragoni multifunction. Then, by using these results,
we obtain the existence of periodic mild solutions.

Keywords: semilinear differential inclusion, selection theorem, mild solution, lo-
wer Scorza Dragoni multifunction, mild periodic solution.

Classification: Primary 34A60, 34G20

1. Introduction

In the setting of a separable Banach space X we prove the existence of mild
solutions for abstract boundary value problems controlled by the following semi-
linear evolution inclusion

x′ ∈ A(t)x + F (t, x)

in which {A(t)}t∈[0,b] is a family of densely defined linear operators generating an
evolution operator T and F is a multifunction. At first we examine problems in
which the boundary condition Lx = ω is present, L is here a continuous linear
operator and ω ∈ X . Then we consider problems with the more general boundary
condition Lx = Mx, where M is a compact operator.

In the recent past, analogous problems for ordinary differential equations have
been treated by many authors (for a wide bibliography on this subject see for in-
stance [6]). In the last few years the attention has been given to abstract boundary
value problems controlled by semilinear differential inclusions. We refer, for exam-
ple, to the papers of Anichini-Zecca [2], Zecca-Zezza [20], N.S. Papageorgiou [16],
[17], [18] and to the monograph [9]. The possibility of wide practical applications
explains the growing interest in the investigation of such abstract boundary value
problems. Among the others, the recent papers [15] and [1] study “degenerate”
problems.

In the first part of this note we present two existence results of mild solutions
by considering lower Scorza-Dragoni multifunctions (see Theorem 3.1 and Theo-
rem 3.2). As concerns the operators of the family {A(t)}t∈[0,b] we allow that they
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are unbounded and so our theorems can be applied to the study of distributed
parameter control problems (see [14]) and in mathematical physics (free boundary
and obstacle problems, see [5]). We show that our two results extend in a broad
sense the theorems proved in [18] (see Remarks 3.1, 3.2 and 3.3).

In the last section we illustrate the applicability of our results for the study of
problems with periodic boundary conditions and we obtain two existence theorems
which extend in a broad sense the results proved in [18] (see Remark 4.1).

2. Preliminaries

Throughout this paper J denotes the interval [0, b], b > 0, of the real line
(endowed with the Lebesgue measure µ) and X is a Banach space with the norm
‖ · ‖. Let P(X) denote the collection of all nonempty subsets of X . For every
A ∈ P(X), we denote by ‖A‖ = supa∈A ‖a‖. The following notations will also be
used

Pf(c)(X) = {S ∈ P(X) : S is closed (and convex)},

P(w)k(c)(X) = {S ∈ P(X) : S is (weakly-)compact (and convex)}.

For every A,B ∈ Pf (X), we define the Hausdorff metric by

H(A,B) = max{sup
b∈B

ρ(b, A), sup
a∈A

ρ(a,B)}

where ρ(b, A) = inf{‖a− b‖ : a ∈ A}.
Let T be a topological space. A multifunction F : T → Pf (X) is said to

be H-continuous if it is continuous from T into the metric space (Pf (X), H).
A multifunction F : T → P(X) is said to be lower semicontinuous (l.s.c.) at

a point t0 ∈ T if, for every open set A ⊆ X such that F (t0) ∩ A 6= ∅, there exists
a neighbourhood U of t0 with the property F (t) ∩ A 6= ∅, for every t ∈ U .

Let (Ω,Σ) be a measurable space. A multifunction F : Ω → P(X) is said to
be measurable if the set F−(U) = {t ∈ Ω : F (t)∩U 6= ∅} is measurable, for every
open set U ⊆ X , while F is said to be graph measurable if GrF = {(ω, x) ∈
Ω ×X : x ∈ F (ω)} ∈ Σ× B(X), with B(X) the Borel σ-field of X . Moreover F
is said to be scalarly measurable if for every x∗ belonging to the dual topological
space X∗, the function ω 7→ σ(x∗, F (ω)) = sup{〈x∗, x〉 : x ∈ F (ω)} is measurable,
where 〈·, ·〉 denotes the duality brackets for the pair (X,X∗).

By Sp
F , 1 ≤ p ≤ ∞, we denote the set of all selections of a multifunction

F : J → P(X) that belong to the Lebesgue-Bochner space Lp(J,X) (see [8,
Definition A.3.89]), i.e. Sp

F = {f ∈ Lp(J,X) : f(t) ∈ F (t) a.e. on J}.
A multifunction F : J × X → Pf (X) is said to satisfy the Scorza-Dragoni

property if, for every ε > 0, there exists a closed subset Jε of J , µ(J\Jε) < ε,
such that F|Jε×X is H-continuous.

A multifunction F : J ×X → P(X) is said to verify the lower Scorza-Dragoni

property if, for every ε > 0, there exists a closed subset Jε of J , µ(J\Jε) < ε,
such that F|Jε×X is lower semicontinuous.
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Finally we recall that a function f : J ×X → X is said to be a Carathéodory

selection of a multifunction F : J × X → P(X) if, for every x ∈ X , f(·, x) is
measurable; for every t ∈ J , f(t, ·) is continuous; f(t, x) ∈ F (t, x), a.e. t ∈ J , for
every x ∈ X .

Moreover we recall the following basic definitions.
Let ∆ = {(t, s) ∈ J × J : 0 ≤ s ≤ t ≤ b} be fixed. A two parameter family

{T (t, s)}(t,s)∈∆, T (t, s) : X → X bounded linear operators, is called an evolution

system if

(i) T (t, t) = I, t ∈ J ,
(ii) T (t, r)T (r, s) = T (t, s), 0 ≤ s ≤ r ≤ t ≤ b,
(iii) (t, s) 7→ T (t, s) is strongly continuous on ∆, i.e., for every x ∈ X , the map

(t, s) 7→ T (t, s)x is continuous on ∆ (see e.g. [11]),

and we denote with T : ∆ → L(X) the respective evolution operator (see e.g. [19]),
where L(X) is the space of all bounded linear operators from X to X . Taking
(iii) into account, we note that there exists a constant M > 0 such that

(2.1) sup
(t,s)∈∆

‖T (t, s)‖L ≤ M,

where ‖T (t, s)‖L = sup‖x‖≤1 ‖T (t, s)x‖ ≤ M.

Let {A(t)}t∈J be a family of linear operators, A(t) : D(A) ⊆ X → X , D(A) not
depending on t and being a dense subset of X . In order to obtain our existence
results it is not necessary to precise the way in which the family {A(t)}t∈J gener-
ates an evolution operator. Usually is said that {A(t)}t∈J generates an evolution

operator T : ∆ → L(X) if there exists an evolution system {T (t, s)}(t,s)∈∆ such
that on the region D(A) each operator T (t, s) is strongly differentiable relative to
t and s and

∂T (t, s)

∂t
= A(t)T (t, s) and

∂T (t, s)

∂s
= −T (t, s)A(s)

(see e.g. [11], [12], [19]).

3. Main results

First of all we prove the following selection theorem.

Proposition 3.1. Let X be a Banach space. If a multifunction F : J × X →
Pfc(X) has the lower Scorza-Dragoni property, then there exists a Carathéodory

selection f : J ×X → X of F .

Proof: From the lower Scorza-Dragoni property, for every j ∈ N, we can say
that there exists a closed set Kj ⊂ J , µ(J\Kj) < 2−j , such that Fj = F|Kj×X

is lower semicontinuous. Since Fj satisfies all assumptions of Michael’s selection
Theorem (see [13, Theorem 3.2′′]) we can claim that there exists a continuous
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function fj : Kj × X → X such that fj(t, x) ∈ F (t, x), for all (t, x) ∈ Kj × X .
Now we consider the function f : J ×X → X defined by

f(t, x) =

{
fj(t, x), t ∈ Kj\

⋃
i<j Ki, j ∈ N

0, otherwise.

We want to show that f is a Carathéodory selection of F .
By using the continuity of fj it is easy to check that, for each t ∈ J , the

function f(t, ·) is continuous on X . Now, fixing x ∈ X , in order to prove the
measurability of f(·, x) we consider an open set A ⊂ X . We have

f−(A, x) = {t ∈ J : f(t, x) ∈ A} = H1 ∪H2,

where

H1 = {t ∈
⋃

j∈N

Kj : f(t, x) ∈ A}

and

H2 = {t ∈ J\
⋃

j∈N

Kj : f(t, x) ∈ A}.

Let us note that the set H1 can be rewritten as follows

H1 =
⋃

j∈N

Aj , where Aj = f−
j (A, x)\

⋃

i<j

Ki.

Fixing j ∈ N, by continuity of fj(·, x) on Kj we have that there exists an open set

Ij ⊂ J such that f−
j (A, x) = Ij ∩Kj. Therefore the set f−

j (A, x) is measurable.
We can deduce that H1 is measurable. On the other hand, as regards the set H2

there are two possibilities: if 0 ∈ A then H2 = J\
⋃

j∈N
Kj , while if 0 /∈ A then

H2 = ∅. So, H2 is also measurable.
Finally we observe that if (t, x) ∈ (

⋃
j∈N

Kj)×X then there exists j̃ = min{j ∈

N : t ∈ Kj} such that f(t, x) = fj̃(t, x) ∈ F (t, x). Being

µ(J\
⋃

j∈N

Kj) ≤ µ(J\Kj) < 2−j, j ∈ N,

we can deduce that the set J\
⋃

j∈N
Kj has measure zero. Therefore we can

conclude that f is a Carathéodory selection of F . �

Now, we are able to prove the existence of mild solutions for the following
boundary value problem governed by a semilinear differential inclusion

(P)

{
x′ ∈ A(t)x + F (t, x)

Lx = ω
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where ω ∈ X , L : C(J,X) → X is an operator and the family {A(t)}t∈J satisfies
the assumption

H(A): {A(t)}t∈J is a family of linear operators A(t) : D(A) ⊆ X → X , with
D(A) not depending on t and dense in X , generating an evolution system
{T (t, s)}(t,s)∈∆ such that the operator T (t, s) is compact, for t− s > 0.

We recall that a function x ∈ C(J,X) is said to be a mild solution for (P) if

x(t) = T (t, 0)x(0) +

∫ t

0

T (t, s)f(s) ds, t ∈ J, where f ∈ S1
F (·,x(·));

Lx(t) = ω, t ∈ J.

At first, we prove the existence of mild solutions for (P) when F has the lower

Scorza-Dragoni property.

Theorem 3.1. Let X be a separable Banach space whose dual X∗ is separable.

We assume that H(A) is satisfied and we suppose the following hypotheses on the

data

H(F ): F : J ×X → Pfc(X) is a multifunction such that

(1) (t, x) → F (t, x) has the lower Scorza-Dragoni property;

(2) there exists a sequence (ϕk)k∈N, where ϕk ∈ Lp
+(J), 1 ≤ p ≤ ∞,

sup‖x‖≤k ‖F (t, x)‖ ≤ ϕk(t), a.e. on J , and such that

limk→∞
1
k

∫ b

0
ϕk(t) dt = β < ∞.

H(L): L : C(J,X) → X is a linear, continuous operator satisfying:

H0: the operator L̂ ∈ L(X) defined by L̂(x) = L(T (·, 0)x), x ∈ X , is

a bijection;

H1: (M‖L̂−1‖L‖L‖L + 1) Mβ < 1, where M and β are as in (2.1) and
H(F )(2), respectively.

Then (P) admits at least one mild solution.

Proof: From Proposition 3.1 the multifunction F : J × X → Pfc(X) has a
Carathéodory selection f : J × X → X . Let us consider the multifunction G :
J ×X → Pkc(X) defined as

(3.1) G(t, x) = {f(t, x)}, (t, x) ∈ J ×X.

Now, for each x ∈ X , because f(·, x) is measurable we can say that the mul-
tifunction G(·, x) is measurable. Moreover, for each t ∈ J , f(t, ·) is continuous
and so it is easy to check that G(t, ·) is H-continuous. Then G is a Carathéodory
multifunction with compact and convex values in the separable Banach space X .
Hence, from Proposition 7.16 of [8], we get that G satisfies the Scorza-Dragoni
property.

Moreover, taking into account that f is a selection of F , by using H(F )(2) we
have that the mentioned sequence (ϕk)k is such that sup‖x‖≤k ‖G(t, x)‖ ≤ ϕk(t),

a.e. t ∈ J , k ∈ N. Now, since X∗ has the Radon-Nikodym property (see [8,
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Proposition A.3.97]), from Theorem 1 of [17] we have that there exists at least
one mild solution x̃ ∈ C(J,X) for the following problem:

(P)ext

{
x′ ∈ A(t)x+ ext G(t, x)

Lx = ω

where ext G(t, x) denotes the set of extreme points of G(t, x). Since ext G(t, x) =
{f(t, x)} ⊂ F (t, x), we can say that x̃ is also a mild solution for (P). �

Remark 3.1. Let us remark that Theorem 3.1 extends in a broad sense Theo-
rems 3.1 and 3.2 proved in [18]. First of all we observe that (P) (in which ω ∈ X
is fixed) can be written as the following problem

(P̃)

{
x′ ∈ A(t)x + F (t, x)

Lx = Mx

where M : C(J,X) → X is the operator defined by Mx = ω, x ∈ C(J,X).
The following multifunction F : [0, 1]× R → Pfc(R)

F (t, x) =

{
{0}, x ∈ N0

[0, n], x ∈ ]n− 1, n[ ∪ ]− n, 1− n[ , n ∈ N

satisfies all hypotheses of Theorem 3.1 but not the property H(F )(3) of The-
orem 3.1 of [18] or H(F )1(3) of Theorem 3.2 of [18]. Indeed, any sequence
(ϕk)k∈N, ϕk ∈ L1

+([0, 1]), with the property

sup
‖x‖≤k

‖F (t, x)‖ = max
n≤k

{‖[0, n]‖} = k ≤ ϕk(t), a.e. on [0, 1]

it is such that limk→∞
1
k

∫ 1

0 ϕk(t) dt 6= 0.

Now we obtain an existence result of mild solutions for the more general prob-

lem (P̃).

Theorem 3.2. Let X be a separable Banach space. We assume that H(A), H(L)
and H0 are satisfied and we suppose the following hypotheses on the data

H(F )1: F : J ×X → Pfc(X) is a multifunction such that

(1) (t, x) → F (t, x) has the lower Scorza-Dragoni property;

(2) there exists a sequence (ϕk)k∈N, where ϕk ∈ L1
+(J),

sup‖x‖≤k ‖F (t, x)‖ ≤ ϕk(t), a.e. on J , and such that

limk→∞
1
k

∫ b

0 ϕk(t) dt = 0.
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H(M): M : C(J,X) → X is a compact operator such that

lim‖u‖→∞
‖M(u)‖

‖u‖ = 0.

Then (P̃) admits at least one mild solution, i.e. a function x ∈ C(J,X) verifying

x(t) = T (t, 0)x(0) +
∫ t

0
T (t, s)f(s) ds, t ∈ J , where f ∈ S1

F (·,x(·)), and such that

Lx(t) = Mx(t), t ∈ J .

Proof: First we observe that, by proceeding as in Theorem 3.1, we can consider
the multifunction G : J ×X → Pkc(X) defined as in (3.1). From Proposition 1.6
of [8] we can deduce that f is measurable and so we have that G is scalarly
measurable (see [8, Proposition 2.39, p. 166]). Moreover, for every t ∈ J , the
multifunction G(t, ·) : X → Pkc(X) is H-continuous, so we can say that it is
upper semicontinuous from X into Xw, where Xw denotes the Banach space X
endowed with the weak topology.

Next, by using the fact that f is a selection of F , the conditionH(F )1(2) implies
that the mentioned sequence (ϕk)k∈N is such that sup‖x‖≤k ‖G(t, x)‖ ≤ ϕk(t), a.e.
t ∈ J , k ∈ N.

Now we are in position to apply Theorem 3.1 of [18] and so we can say that
there exists at least one mild solution x̃ ∈ C(J,X) for problem

(P)G

{
x′ ∈ A(t)x +G(t, x)

Lx = Mx

Recalling the definition of G, we can conclude that x̃ is also a mild solution

for (P̃). �

Remark 3.2. We note that our Theorem 3.2 extends in a broad sense Theo-
rem 3.1 of [18]. Indeed there exist multifunctions verifying the hypotheses of
Theorem 3.2, but not all conditions required in Theorem 3.1 of [18]. For example,
we can consider the multifunction F : [0, 1]× R → Pkc(R) defined as follows

F (t, x) =

{
{0}, x ∈ N0

[0, 1
k
], x ∈ ]k − 1, k[ ∪ ]− k, 1− k[ , k ∈ N.

Remark 3.3. Let us note that if we restrict Theorem 3.2 of [18] to the class of
multifunctions F : J ×X → Pfc(X) we can say that our Theorem 3.2 improves
Theorem 3.2 of [18]. Indeed by Theorem 3.5 of [7] we have that B(J×X)×B(X)-
graph measurability coincides with measurability so, by using Theorem 2.1 of
[3], the hypotheses on F required in Theorem 3.2 of [18] imply the assumptions
of Theorem 3.2. On the other hand, there exist multifunctions satisfying the
hypotheses of our Theorem 3.2 but not all hypotheses of Theorem 3.2 of [18], as
the following example proves:
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Example 3.1. Put C ⊂ [0, 1] the Cantor set such that µ(C) = 0, where µ is the
Lebesgue measure in R, let f : [0, 1] → [0, 2] be a function so defined

f(x) = fC(x) + x, x ∈ [0, 1]

where fC is the Vitali-Cantor function. It is easy to see that f is an homomor-
phism and that µ(f(C) \ {0}) = 1. Fixed H a non Lebesgue measurable subset
of f(C) \ {0}, we consider M = f−1(H). Now we are in position to define the
multifunction F : [0, 1]× R → Pfc(R) where

F (t, x) =





[0, 2], t ∈ M,

[0, 1], (t, x) = (0, 0),

{0}, otherwise.

First of all we observe that, for each ε > 0, by using the regularity of Lebesgue
measure there exists a compact subset Cε ⊂ [0, 1] \C such that µ([0, 1] \Cε) <

ε
2 .

Now, the closed set Jε = Cε ∩ [ ε2 , 1] is such that µ([0, 1] \ Jε) < ε and F|Jε×R is
s.c.i.. Moreover it is easy to check that F has also the other properties of our
Theorem 3.2.

On the other hand, F does not verify all the assumptions of Theorem 3.2 of
[18]. In fact, taking into account that M is not a Borel measurable set, the
multifunction F is not B([0, 1]× [0, 1])× B(R)-graph measurable.

Remark 3.4. Obviously, taking into account that in Theorem 3.1 we also require
the separability of the dual space X∗, there exist multifunctions that satisfy the
properties of Theorem 3.2 but not all the hypotheses of Theorem 3.1 (for example
if Ω is a separable measurable space, X = L1(Ω) is a separable Banach space
whose dual X∗ = L∞(Ω) is not separable (cf. [4, p. 98])). Moreover there exist
multifunctions that verify the hypotheses of Theorem 3.1 but not the hypotheses
of Theorem 3.2. To justify this assertion we can consider the multifunction of
Remark 3.1.

4. Periodic solutions

In this section we use the results of Section 3 to establish the existence of
periodic mild solutions for the following boundary value problem

(PP)

{
x′ ∈ A(t)x + F (t, x)

x(0) = x(b)

We need the following stronger hypothesis on {A(t)}t∈J

H(A)p: {A(t)}t∈J is a family of linear operators, A(t) : D(A) ⊆ X → X , with
D(A) not depending on t and dense in X , generating an evolution system
{T (t, s)}(t,s)∈∆ such that the operator T (t, s) is compact, for t − s > 0,
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and

(4.1) T (b, 0)x = x ⇔ x = 0.

From condition (4.1) we deduce that Ker(T (b, 0) − I) = {0} (where I is the
identity operator). By invoking Fredholm’s alternative Theorem (see [8, Theo-
rem A.3.125]), (4.1) implies that R(T (b, 0) − I) = X . Therefore the operator
T (b, 0) − I is a bijection. Being T (b, 0) − I ∈ L(X), by Banach’s Theorem (see
[10, Theorem 2, p. 229]) we can deduce (T (b, 0)− I)−1 ∈ L(X) and so there exists

a constant K̃ > 0 such that

(4.2) ‖(T (b, 0)− I)−1‖L ≤ K̃.

Now, we can prove

Theorem 4.1. Let X be a separable Banach space whose dual X∗ is separa-

ble. We suppose that H(A)p is satisfied, the multifunction F verifies H(F ) of

Theorem 3.1 and

H ′
1: (2MK̃+1)Mβ < 1, where M, K̃ and β are as in (2.1), (4.2) and H(F )(2),

respectively.

Then (PP) admits at least one mild periodic solution, i.e. a function x ∈ C(J,X)

verifying x(t) = T (t, 0)x(0) +
∫ t

0 T (t, s)f(s) ds, t ∈ J , where f ∈ S1
F (·,x(·)), and

such that x(0) = x(b).

Proof: Let us consider the operator L : C(J,X) → X defined by Lx = x(b) −
x(0). It is easy to check that L is a continuous and linear operator. Moreover, let

L̂ : X → X be the operator L̂x = L(T (·, 0)x), x ∈ X . By recalling the definition
of L and H(A)p we clearly have

(4.3) L̂ = T (b, 0)− I ∈ L(X)

and there exists L̂−1 ∈ L(X), so L satisfies H0 of Theorem 3.1. On the other
hand, thanks to the definition of L we can write

‖L‖L = sup
‖x‖C≤1

‖x(b)− x(0)‖ ≤ 2

and, by using H ′
1 and (4.2), we have

(M‖L̂−1‖L ‖L‖L + 1) Mβ < 1.

Then, H1 of Theorem 3.1 is also verified. By using operator L, fixed ω = 0, the
problem (PP) can be rewritten as (P). So, by applying Theorem 3.1 we can
conclude that (PP) has at least one mild periodic solution. �

Now we prove the existence of mild periodic solutions in the case that X∗ is
not necessarily separable.
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Theorem 4.2. Let X be a separable Banach space. If H(A)p is satisfied and

the multifunction F verifies H(F )1 of Theorem 3.2, then (PP) admits at least

one mild periodic solution.

Proof: As in the previous theorem we can say that the operator L : C(J,X) →
X defined by Lx = x(b) − x(0) satisfies H(L) and H0. Now, let us consider
M : C(J,X) → X defined as Mx = 0, x ∈ C(J,X). The operator M is clearly

compact and such that lim‖u‖→∞
‖M(u)‖

‖u‖ = 0. Therefore M verifies hypothesis

H(M) of Theorem 3.2.
Now, by using the operators L and M , the problem (PP) can be rewritten as

(P̃). So by applying Theorem 3.2 we can conclude the existence of at least one
mild periodic solution for (PP). �

Remark 4.1. Thanks to the examples presented in Remarks 3.1, 3.2 and 3.3 we
can say that our periodic results extend in a broad sense the analogous theorems
proved in [18].
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