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Abstract. In this paper we investigate the problem of existence and asymptotic behavior
of solutions for the nonlinear boundary value problem

εy
′′ + ky = f(t, y), t ∈ 〈a, b〉, k < 0, 0 < ε ≪ 1

satisfying three point boundary conditions. Our analysis relies on the method of lower and
upper solutions and delicate estimations.
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1. Introduction

We will consider the three point boundary value problem

εy′′ + ky = f(t, y), t ∈ 〈a, b〉, k < 0, 0 < ε≪ 1,(1.1)

y(a) = y(c) = y(b), a < c < b.(1.2)

We can view this equation as the mathematical model of the nonlinear dynamical

system with a high-speed feedback. Moreover, this class of equations has special

significance in connection with applications involving nonlinear vibrations. We focus

on the existence and asymptotic behavior of solutions yε(t) for ε belonging to a non-

resonant set and on an estimate of the difference between the solution yε(t) of (1.1),

(1.2) and a singular solution u(t) of the equation ku = f(t, u).

This research was supported by Slovak Grant Agency, Ministry of Education of Slovak
Republic under grant number 1/0068/08.
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This is a singularly perturbed problem because the order of the differential equa-

tion drops when ε becomes zero. The situation in the present case is complicated by

the fact that there is an inner point in the boundary conditions, in contrast to the

“standard” boundary conditions as the Dirichlet problem, Neumann problem, Robin

problem, periodic boundary value problem ([1], [4], [5]), for example. In the problem

considered there does not exist a positive solution ṽε of DE εy
′′ −my = 0, m > 0,

0 < ε (i.e. ṽε is convex) such that ṽε(c) − ṽε(a) = u(c) − u(a) > 0 and ṽε(t) → 0+

for t ∈ (a, b〉 and ε→ 0+, which could be used to solve this problem by the method

of upper and lower solutions. We will define the correction function v
(corr)
ε (t) which

will allow us to apply the method.

As was said before, we apply the method of upper and lower solutions and some

delicate estimates to prove the existence of a solution for problem (1.1), (1.2) which

converges uniformly to the solution u of the reduced problem (i.e. if we let ε → 0+

in (1.1)) on every compact subset of the interval (a, b) for ε→ 0+.

As usual (cf. [3]), we say that αε ∈ C2(〈a, b〉) is a lower solution for problem (1.1),
(1.2) if εα′′

ε (t)+kαε(t) > f(t, αε(t)) and αε(c)−αε(a) = 0, αε(b)−αε(c) 6 0 for every

t ∈ 〈a, b〉. An upper solution βε ∈ C2(〈a, b〉) satisfies εβ′′

ε (t) + kβε(t) 6 f(t, βε(t))

and βε(c) − βε(a) = 0, βε(b) − βε(c) > 0 for every t ∈ 〈a, b〉.

Theorem 1.1 [2], [3]. If αε, βε are respectively lower and upper solutions for

(1.1), (1.2) such that αε 6 βε, then there exists a solution yε of (1.1), (1.2) with

αε 6 yε 6 βε.

Denote H(u) = {(t, y); a 6 t 6 b, |y − u(t)| < d(t)} , where d(t) is the positive
continuous function on 〈a, b〉 such that

d(t) =











|u(c) − u(a)| + δ for a 6 t 6 a+ 1
2δ,

δ for a+ δ 6 t 6 b− δ,

|u(b) − u(c)| + δ for b− 1
2δ 6 t 6 b,

δ is a small positive constant and u ∈ C2 is a solution of the reduced equation

ku = f(t, u) on 〈a, b〉. We will assume that such a solution u exists. Further, we will
write s(ε) = O(r(ε)) when 0 < lim

ε→0+
|s(ε)/r(ε)| <∞.
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2. Main result

Theorem 2.1. Let f ∈ C1(H(u)) satisfy the condition

∣

∣

∣

∂f(t, y)

∂y

∣

∣

∣
6 w < −k for every (t, y) ∈ H(u) (hyperbolicity condition).

Then there exists ε0 such that for every ε ∈ (0, ε0〉 the problem (1.1), (1.2) has a

unique solution satisfying the inequality

−v(corr)
ε (t) − v̂ε(t) − Cε 6 yε(t) − (u(t) + vε(t)) 6 v̂ε(t) + Cε for u(c) − u(a) > 0

and

−v̂ε(t) − Cε 6 yε(t) − (u(t) + vε(t)) 6 v(corr)
ε (t) + v̂ε(t) + Cε for u(c) − u(a) 6 0

on 〈a, b〉 where

vε(t) =
u(c) − u(a)

D
·
(

e
√

m/ε(b−t) − e
√

m/ε(t−b) + e
√

m/ε(t−c) − e
√

m/ε(c−t)
)

,

v̂ε(t) =
|u(b) − u(c)|

D
·
(

e
√

m/ε(t−a) − e
√

m/ε(a−t) + e
√

m/ε(c−t) − e
√

m/ε(t−c)
)

,

D =
(

e
√

m/ε(b−a) + e
√

m/ε(c−b) + e
√

m/ε(a−c)
)

−
(

e
√

m/ε(a−b) + e
√

m/ε(b−c) + e
√

m/ε(c−a)
)

,

m = −k − w, C = m−1 max{|u′′(t)|; t ∈ 〈a, b〉} and the function

v(corr)
ε (t) =

w|u(c) − u(a)|√
mε

·
[

−O(1)
vε(t)

(u(c) − u(a))

+O(e
√

m/ε(a−c))
v̂ε(t)

|u(b) − u(c)| + tO(e
√

m/εχ(t))
]

is positive for t ∈ (a, b〉.

R em a r k 1. The function vε(t) satisfies

(1) εv′′ε −mvε = 0,

(2) vε(c) − vε(a) = −(u(c) − u(a)), vε(b) − vε(c) = 0,

(3) vε(t) > 0 (6 0) is decreasing (increasing) for u(c) − u(a) > 0 (6 0),

(4) vε(t) converges uniformly to 0 for ε→ 0+ on every compact subset of (a, b〉,
(5) vε(t) = (u(c) − u(a))O

(

e
√

m/εχ(t)
)

where χ(t) = a− t for a 6 t 6 1
2 (b + c) and

χ(t) = t− b+ a− c for 1
2 (b + c) < t 6 b.
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The function v̂ε(t) satisfies

(1) εv̂′′ε −mv̂ε = 0,

(2) v̂ε(c) − v̂ε(a) = 0, v̂ε(b) − v̂ε(c) = |u(b) − u(c)|,
(3) v̂ε(t) > 0 is increasing,

(4) v̂ε(t) converges uniformly to 0 for ε→ 0+ on every compact subset of 〈a, b),
(5) v̂ε(t) = |u(b) − u(c)|O

(

e
√

m/εχ̂(t)
)

where χ̂(t) = t − b for 1
2 (a+ c) 6 t 6 b and

χ̂(t) = c− b+ a− t for a 6 t < 1
2 (a+ c).

The correction function v
(corr)
ε (t) will be determined precisely in the next section.

3. The correction function v
(corr)
ε (t)

Consider the linear problem

(3.1) εy′′ −my = −2w |vε(t)| , t ∈ 〈a, b〉, ε > 0

with the boundary condition (1.2).

We apply the method of upper and lower solutions. We define

αε(t) = 0

and

βε(t) =
2w

m
max {|vε(t)| , t ∈ 〈a, b〉} =

2w

m
|vε(a)| .

Obviously, |vε(a)| = 2wm−1|u(c)−u(a)|
(

1+O
(

e
√

m/ε(a−c)
))

and the constant func-

tions αε and βε are lower and upper solutions for problem (3.1), (1.2). Thus on the

basis of Lemma 1.1 there exists a unique solution yLin
ε of the linear problem (3.1),

(1.2) for every ε such that

0 6 yLin
ε (t) 6

2w

m
|u(c) − u(a)|

(

1 +O
(

e
√

m/ε(a−c)
))

on 〈a, b〉. The solution we denote by v(corr)
ε (t) i.e. is

v(corr)
ε (t)

def
= yLin

ε (t)

and we compute v
(corr)
ε (t) exactly:

v(corr)
ε (t) = − (ψε(a) − ψε(c))

(u(c) − u(a))
vε(t) +

(ψε(c) − ψε(b))

|u(b) − u(c)| v̂ε(t) + ψε(t)
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where

ψε(t) =
w|u(c) − u(a)|

D
√
mε

t
(

e
√

m/ε(b−t) + e
√

m/ε(t−b) − e
√

m/ε(c−t) − e
√

m/ε(t−c)
)

.

Hence

ψε(a) − ψε(c) =
w|u(c) − u(a)|

D
√
mε

a
(

e
√

m/ε(b−a) + e
√

m/ε(a−b)

− e
√

m/ε(c−a) − e
√

m/ε(a−c)
)

− w|u(c) − u(a)|
D
√
mε

c
(

e
√

m

ε
(b−c) + e

√
m/ε(c−b) − 2

)

=
w|u(c) − u(a)|√

mε
O(1),

ψε(c) − ψε(b) =
w|u(c) − u(a)|

D
√
mε

c
(

e
√

m/ε(b−c) + e
√

m/ε(c−b) − 2
)

− w|u(c) − u(a)|
D
√
mε

b
(

2 − e
√

m/ε(c−b) − e
√

m/ε(b−c)
)

=
w|u(c) − u(a)|√

mε
O

(

e
√

m/ε(a−c)
)

,

ψε(t) =
w|u(c) − u(a)|√

mε
O

(

e
√

m/εχ(t)
)

.

Thus, we obtain

v(corr)
ε (t) =

w|u(c) − u(a)|√
mε

·
[

−O(1)
vε(t)

(u(c) − u(a))

+O
(

e
√

m/ε(a−c)
) v̂ε(t)

|u(b) − u(c)| + tO
(

e
√

m/εχ(t)
)

]

.

4. Proof of theorem

P r o o f. First we will consider the case u(c) − u(a) > 0. We define the lower

solutions by

αε(t) = u(t) + vε(t) − v(corr)
ε (t) − v̂ε(t) − Γε

and the upper solutions by

βε(t) = u(t) + vε(t) + v̂ε(t) + Γε.
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Here Γε = ε∆/m where ∆ is the constant which shall be defined below, α 6 β

on 〈a, b〉 and satisfy the boundary conditions prescribed for the lower and upper
solutions of (1.1), (1.2).

Now we show that εα′′

ε (t) + kαε(t) > f(t, αε(t)) and εβ
′′

ε (t) + kβε(t) 6 f(t, βε(t)).

Denote h(t, y) = f(t, y) − ky. By the Taylor theorem we obtain

h(t, αε(t)) = h(t, αε(t)) − h(t, u(t)) =
∂h(t, θε(t))

∂y
(vε(t) − v(corr)

ε (t) − v̂ε(t) − Γε),

where (t, θε(t)) is a point between (t, αε(t)) and (t, u(t)), and (t, θε(t)) ∈ H(u) for

sufficiently small ε. Hence, from the inequalities m 6 ∂h(t, θε(t))/∂y 6 m + 2w in

H(u) we have

εα′′

ε (t) − h(t, αε(t)) > εu′′(t) + εv′′ε (t)

− εv(corr)′′

ε (t) − εv̂′′ε (t) − (m+ 2w)vε(t) +mv(corr)
ε (t) +mv̂ε(t) +mΓε.

Because vε(t) = |vε(t)| we have −εv(corr)′′

ε (t) − 2wvε(t) +mv
(corr)
ε (t) = 0, as follows

from DE (3.1), we get

εα′′

ε (t) − h(t, αε(t)) > εu′′(t) +mΓε > −ε|u′′(t)| + ε∆.

For βε(t)) we have the inequality

h(t, βε(t)) − εβ′′

ε (t) =
∂h(t, θ̃ε(t))

∂y
(vε(t) + v̂ε(t) + Γε) − εβ′′

ε (t)

= m(vε(t) + v̂ε(t) + Γε) − ε(u′′(t) + v′′ε (t) + v̂′′ε (t))

> ε∆ − ε|u′′(t)|

where (t, θ̃ε(t)) is a point between (t, u(t)) and (t, βε(t)) and (t, θ̃ε(t)) ∈ H(u) for

sufficiently small ε.

The case u(c) − u(a) 6 0:

The lower solutions

αε(t) = u(t) + vε(t) − v̂ε(t) − Γε

and the upper solutions

βε(t) = u(t) + vε(t) + v(corr)
ε (t) + v̂ε(t) + Γε
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satisfy

εα′′

ε − h(t, αε) = εu′′ + εv′′ε − εv̂′′ε − ∂h

∂y
(vε − v̂ε − Γε)

= εu′′ + εv′′ε − εv̂′′ε +
∂h

∂y
(−vε + v̂ε + Γε)

> εu′′ + εv′′ε − εv̂′′ε +m(−vε + v̂ε + Γε)

= εu′′ + ε∆ > ε∆ − ε|u′′|

h(t, βε) − εβ′′

ε =
∂h

∂y
(vε + v(corr)

ε + v̂ε + Γε) − εu′′ − εv′′ε − εv(corr)′′

ε − εv̂′′ε

> (m+ 2w)vε +m(v(corr)
ε + v̂ε + Γε) − εu′′ − εv′′ε − εv(corr)′′

ε − εv̂′′ε

= − 2w |vε| +mv(corr)
ε − εv(corr)′′

ε + ε∆ − εu′′ = ε∆ − εu′′

> ε∆ − ε|u′′|.

Now, if we choose a constant ∆ such that ∆ > |u′′(t)|, t ∈ 〈a, b〉 then εα′′

ε (t) >

h(t, αε(t)) and εβ
′′

ε (t) 6 h(t, βε(t)) in 〈a, b〉.
The existence of a solution for (1.1), (1.2) satisfying the above inequality follows

from Lemma 1.1. The uniqueness of solutions follows from the fact that the function

h(t, y) is increasing in the variable y in H(u) (Peano’s phenomenon). �

R em a r k 2. Theorem 2.1 implies that yε(t) = u(t) + O(ε) on every compact

subset of (a, b) and

lim
ε→0+

yε(a) = lim
ε→0+

yε(b) = u(c).

The boundary layer effect occurs at the point a or/and b in the case when u(a) 6= u(c)

or/and u(b) 6= u(c).

E x am p l e 1. Consider the linear problem

εy′′ − y = t, t ∈ 〈0, 2〉, 0 < ε≪ 1

with the boundary condition

y(0) = y(1) = y(2).

Its unique solution

yε(t) =
e2
√

1/ε − 2e
√

1/ε + 1

e4
√

1/ε − 2e3
√

1/ε + 2e
√

1/ε − 1
· e
√

1/εt

+
−e4

√
1/ε + 2e3

√
1/ε − 2e2

√
1/ε

e4
√

1/ε − 2e3
√

1/ε + 2e
√

1/ε − 1
· e−

√
1/εt − t
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converges (by virtue of Theorem 2.1 and Remark 2) to the solution u(t) = −t of the
reduced problem as ε→ 0+ on the interval (0, 2) and

lim
ε→0+

yε(0) = lim
ε→0+

yε(2) = u(1) = −1

and

lim
ε→0+

y′ε(0) = lim
ε→0+

y′ε(2) = ∞

(the boundary layer phenomenon).
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