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K Y BE R NE T IK A — VO L UM E 4 7 ( 2 0 1 1 ) , NU MB E R 1 , P AGE S 1 1 0 – 1 2 2

GOODMAN–KRUSKAL MEASURE OF ASSOCIATION

FOR FUZZY–CATEGORIZED VARIABLES

S.M. Taheri and Golamreza Hesamian

The Goodman–Kruskal measure, which is a well-known measure of dependence for con-
tingency tables, is generalized to the case when the variables of interest are categorized by
linguistic terms rather than crisp sets. In addition, to test the hypothesis of independence
in such contingency tables, a novel method of decision making is developed based on a
concept of fuzzy p-value. The applicability of the proposed approach is explained using a
numerical example.

Keywords: fuzzy frequency, fuzzy category, fuzzy Goodman–Kruskal statistic, fuzzy p-
value, fuzzy significance level, NSD index

Classification: 93E12, 62A10

1. INTRODUCTION

An important class of non-parametric statistical procedures is consists in evaluat-
ing the relationship between categorized variables in a two-way contingency table.
Classical procedures in these cases are commonly based on crisp (exact/nonfuzzy)
categories. In real world problems, however, there are many situations in which
categories based on linguistic terms are more realistic and more suitable. These
situations are commonly appeared in economic, psychology, sociology, and medical
studies. For example, consider a study designed to investigate the relationship be-
tween IQ and income level among a certain population. In such case, it is more
realistic to categorize the possible amounts of IQ by a fuzzy partition in some lin-
guistic terms, such as: “very low”, “low”, “medium”, “high”, and “very high”. On
the other hand, the more realistic categories of the amount of income should be,
say, “low”, “moderate”, and “high”. As another example, consider the relationship
between different variables in health sciences. In clinical diagnosis, the performance
of all screening tests depends on the cut points used to separate normal and ab-
normal individuals. The choice of a higher cut point leaves more cases undetected
and the choice of a lower cut point classifies more healthy individuals as abnormal.
For instance, there are no widely accepted or rigorously validated cut points to de-
fine positive screening tests for diabetes in non pregnant adults [5]. The American
Diabetes Association (ADA) has recommended plasma glucose cut point of 140 mg
and the other researchers have recommended plasma glucose cut point of 120 mg
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[22]. However, assuming the same cut point in all researches does not guarantee the
crispness of this point. In the other word, in the neighborhood of the cut point, a
little increase or decrease in blood plasma glucose can change the individuals status
from normal to abnormal or vise versa and this situation is not consistent to clinical
rules where the instability of observations is routine [21]. In such case, it is better
to categorize the amount of glucose by linguistic terms, such as: “low”, “normal”,
and “high”.

But, for study and analyze the above type fuzzy categorized data, it needs to
develop soft statistical methods. In this regard, fuzzy set theory provides the suitable
framework.

In last decades there have been a lot of attempts to combine statistical methods
and fuzzy set theory, in different fields. But, as the authors know, there have been
a few works on non-parametric approach in fuzzy environments. Concerning our
purposes, we briefly review some of the literature on this topic. Denoeux et al.
[3], using the concept of fuzzy partial ordering on closed intervals, extended the
non-parametric rank-sum tests for fuzzy data. They introduced the concepts of
the fuzzy p-value and the degree of rejection of the null hypothesis quantified by a
degree of possibility and a degree of necessity when a given significance level is a crisp
number or a fuzzy set. Grzegorzewski [9] introduced a method for inference about
the median of a population using fuzzy random variables. Also, he demonstrated
a generalization of some classical non-parametric tests for fuzzy random variables
[10]. The last work relies on the quasi-ordering based on a metric in the space of
fuzzy numbers. Also, he [11] proposed a two-sample fuzzy median test for fuzzy
random variables based on the necessity index of strict dominance, suggested by
Dubois and Prade [4]. In this manner, he obtained a fuzzy test showing a degree
of possibility and a degree of necessity for rejecting the underlying hypothesis. In
another work [12], he studied the problem of testing the equality of k-samples against
the so-called “simple-tree alternative” by generalizing the two-sample fuzzy median
test. Hryniewicz [14] considered a fuzzy version of the well-known Pearson’s Chi-
Square test of independence in a two-way contingency table. In another work [15],
he used the fuzzy version of the Goodman–Kruskal statistic, described by ordered
categorical data, in case that imprecise observations are related to the values of
response variable while the observations of the explanatory variable are crisp, by
proposing a certain possibility distribution over a set of categories of the response
variable in order to describe imprecise data. Kahraman et al. [17] proposed some
algorithms for fuzzy non-parametric rank-sum tests based on fuzzy random variables.
For more on statistical methods with fuzzy observations, the reader is referred to
the relevant literature, for example, [18, 20, 26].

In this work, we propose a procedure to extend the Goodman–Kruskal measure
to the case when the categories of interest are imprecise rather than crisp. Moreover,
we investigate a method of testing hypothesis of independence in contingency tables
with fuzzy categories.

This paper is organized as follows: the statement of the main problem of this
work is presented in Section 2. In Section 3, we recall some concepts of fuzzy
numbers. In Section 4, we investigate a procedure to analyze the contingency tables
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with fuzzy categories and, specially, we introduce a generalization of the Goodman–
Kruskal statistic to measure the strength of dependence (or association) between two
categorized variables of interest. To do this, we develop a method to construct fuzzy
cell frequencies, fuzzy Goodman–Kruskal statistic, and fuzzy p-value. To accept or
reject the null hypothesis of independence we use NSD index (Necessity degree of
Strict Dominance [4, 16]) to compare the fuzzy p-value and fuzzy level of significance.
A numerical example is provided to clarify the discussions in this paper, in Section 5.
A brief conclusion is provided in Section 6.

2. STATEMENT OF THE MAIN PROBLEM

Suppose we have a random sample of observations as (x1, y1), (x2, y2) , . . . , (xN , yN ),
and there are two attributes of interest, say T and S, for each subject in the sample.
Suppose there are r categories of the variable T, and c categories of the variable S,
and each of N observations (xi, yi), i = 1, 2, . . . , N is classified into exactly one of the
rc cross-categories. In a r × c contingency table, the entry in the (i, j) cell, denoted
by fij , is the number of items having the cross-classification T = ti,S = sj as shown
in Table 1. The measures of association refer to a wide variety of coefficients that
measure the strength of the relationship that has been described in several ways [1, 6].
A well-known measure of association in conjunction with a two-way contingency
table, is the Goodman–Kruskal γ measure [1, 7, 15]. The range of γ is [−1, +1],
and when T and S are independent, we have γ = 0. When γ < 0 the considered
variables are associated negatively, and when γ > 0 they are associated positively.
The Goodman–Kruskal statistic (the estimator of γ) is given by G = ΠC−ΠD

ΠC+ΠD
, where,

ΠC = 2
r−1∑

i=1

c−1∑

j=1

fij




r∑

s=i+1

c∑

t=j+1

fst



, ΠD = 2
r−1∑

i=1

c∑

j=2

fij

(
r∑

s=i+1

j−1∑

t=1

fst

)
,

in which, ΠC and ΠD denote the total number of concordant and discordant pairs of
observations, respectively [1]. Consider the problem of testing hypothesis H0 : γ = 0
of independence against the alternative hypothesis H1 : γ 6= 0 of non-independence.
The standardized test statistic is computed as Z = G/σ̂G which has an asymptotic
standard normal distribution under the null hypothesis [2, 8]. The estimation of the
variance of G, σ̂2

G, is given by

σ̂2
G =

4

(ΠC + ΠD)2




r∑

i=1

c∑

j=1

fij(π
C
ij − πD

ij )2 − (ΠC − ΠD)2/N



 ,

where, N =
∑r

i=1

∑c
j=1 fij ,

πC
ij =

i−1∑

s=1

j−1∑

t=1

fst +

r∑

s=i+1

c∑

t=j+1

fst, πD
ij =

i−1∑

s=1

c∑

t=j+1

fst +

r∑

s=i+1

j−1∑

t=1

fst.

Therefore, the hypothesis of independence may be rejected at the level of sig-
nificance δ if | G

bσG
| > Φ−1(1 − δ

2 ), where Φ denotes the distribution function of the
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Table 1. Two-way contingency table.

Variable S

Variable T s1 s2 . . . sc

t1 f11 f12 . . . f1c

t2 f21 f22 . . . f2c

· · · . . . ·
· · · . . . ·
· · · . . . ·
tr fr1 fr2 . . . frc

standard normal distribution. Then, the suitable test can be represented by

ϕδ[(x1, y1), . . . , (xN , yN )] =

{
1 p − value < δ,
0 otherwise,

where, p − value = 2[1 − Φ(| G
bσG

|)].

Note that G and σ̂G are functions of f11, f12, . . . , frc, i. e., G ≡ G(f11, f12, . . . , frc)
and σ̂G ≡ σ̂G(f11, f12, . . . , frc).

Now, suppose that the variables of interest are categorized by linguistic terms,
in which the boundary of categories are not precise. In specific words, suppose
that instead of categories t1, t2, . . . , tr of the variable T, we have t̃1, t̃2, . . . , t̃r as
fuzzy categories of the possible values of the variable T. The main problem which
is studied in this work is to extend the Goodman–Kruskal statistic and introduce
a method to test the null hypothesis of independence in such kind of contingency
tables. To this end, we use some concepts of fuzzy set theory, which will recall in
next section.

3. FUZZY NUMBERS

A fuzzy set Ã of the universal set X is defined by its membership function µ eA : X →

[0, 1], with the set supp(Ã) = {x ∈ X : µ eA(x) > 0}, the support of Ã. In this work,

we consider R (the real line) as the universal set. We denote by Ãα the α-cut of the

fuzzy set Ã of R, defined for every α ∈ (0, 1], by Ãα = {x ∈ R : µ eA(x) ≥ α}, and Ã0

is the closure of supp(Ã).

The fuzzy set Ã of R is called a fuzzy number if for every α ∈ (0, 1], the set Ãα is

a non-empty compact interval. Such an interval will be denoted by Ãα = [ÃL
α, ÃU

α ],

where ÃL
α = inf{x : x ∈ Ãα} and ÃU

α = sup{x : x ∈ Ãα}.

One of the popular forms of a fuzzy number, to be considered in this work, is
the so-called trapezoidal fuzzy number Ã = (Al, Ac, As, Ar)T whose membership



114 S.M. TAHERI AND G. HESAMIAN

function is given by

µ eA(x) =






0 x < Al,
x−Al

Ac−Al Al ≤ x < Ac,

1 Ac ≤ x < As,
Ar−x

Ar−As As ≤ x ≤ Ar,

0 x > Ar.






∀x ∈ R.

If Ac = As, it is called a triangular fuzzy number and is denoted by Ã = (Al, Ac, Ar)T .
For more on fuzzy numbers, see, for example, [19].

4. CONTINGENCY TABLE WITH FUZZY CATEGORIES

In this section, we provide an approach for analyzing a two-way contingency table
with fuzzy categories T = {t̃1, t̃2, . . . , t̃r} and S = {s̃1, s̃2, . . . , s̃c}, based on a sample
of crisp observations (x1, y1), (x2, y2), . . . , (xN , yN ) (briefly: a two-way contingency
table with fuzzy categories). In specific words, we investigate a method of testing in-
dependence, and introduce a generalized Goodman–Kruskal measure of association,
for such contingency tables.

4.1. Fuzzy frequency

Let us consider an ordinary two-way contingency table with crisp categories T =
{t1, t2, . . . , tr} and S = {s1, s2, . . . , sc}. Set

Ii
k =

{
1 ti = xk,
0 ti 6= xk,

, Ij
k =

{
1 sj = yk,
0 sj 6= yk.

In other words, an observation (xk, yk), k = 1, 2, . . . , N , belongs to the cell ij if
min{Ii

k, Ij
k} = 1. Now, if we want to consider a two-way contingency table with fuzzy

categories T = {t̃1, t̃2, . . . , t̃r} and S = {s̃1, s̃2, . . . , s̃c}, then it is natural to allocate
the observation (xk, yk) to the cell ij, at level α, when min{µeti

(xk), µ esj
(yk)} ≥ α. So,

we can develop a two-way contingency table with fuzzy categories in the following
way.

Definition 4.1. In a two-way contingency table with fuzzy categories T = {t̃1,

t̃2, . . . , t̃r} and S = {s̃1, s̃2, . . . , s̃c}, the fuzzy frequencies f̃ij , i = 1, 2, . . . , r, j =
1, 2, . . . , c, are defined to be the fuzzy sets, with the degree of membership at f ∈
{0, 1, . . . , N} as follows

µ efij
(f) = sup

{
α ∈ [0, 1] :

N∑

k=1

I(min{µeti
(xk), µ esj

(yk)} ≥ α) = f

}
,

where, I is the indicator function,

I(ρ) =

{
1 if ρ is true,
0 if ρ is false.
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In the following, we denote by f̃ij [α], the α-cuts of the fuzzy frequency f̃ij , i =

1, 2, . . . , r , j = 1, 2, . . . , c. In addition, the general element of the set f̃ij [α] will be
denoted by zij .

4.2. Fuzzy Goodman–Kruskal statistic

Now, we are going to extend a well-known measure of association to the fuzzy
environment in order to evaluate the relationship between underlying variables for
contingency tables with fuzzy categories.

Definition 4.2. Consider the assumptions in Definition 4.1. The fuzzy Goodman–
Kruskal statistic is defined to be a fuzzy set G̃ with the following α-cuts

G̃[α] = [(G̃)L
α, (G̃)U

α ],

where,
(G̃)L

α = inf{G(z11, z12, . . . , zrc) : zij ∈ f̃ij [α]},

(G̃)U
α = sup{G(z11, z12, . . . , zrc) : zij ∈ f̃ij [α]},

and G is defined in Section 2.

Remark 4.3. It is easy to verify that each family of closed intervals G̃[α], α ∈ (0, 1]
constitute a fuzzy number on [−1, 1].

Remark 4.4. It should be mentioned that Hryniewicz [15] extended the concept
of Goodman–Kruskal statistic to a two -way contingency table, too. He considered
the case in which some data are not precise and the categories are crisp. But, in
the present work, we consider the case in which data available are crisp and the
categories are fuzzy sets.

Remark 4.5. If the fuzzy categories reduce to crisp categories, then the fuzzy fre-
quencies and fuzzy Goodman–Kruskal statistic G̃ reduce to the classical frequencies
and classical Goodman–Kruskal statistic G, respectively.

4.3. Fuzzy p-value

As a consequence of the Goodman–Kruskal statistic being imprecise, the result of a
p-value may become imprecise. However, this imprecisely is merely a consequence
of the ambiguity of the categories, which is propagated in the calculations. So,
by extending the classical p-value, we can develop a concept of fuzzy p-value for
evaluating the hypothesis of independence in a two-way contingency table with fuzzy
categories, as follows.

Definition 4.6. In the problem of testing independence in a two-way contingency
table with fuzzy categories, the fuzzy p-value is defined to be a fuzzy set p̃-value
with the following α-cuts

p̃ − value[α] = [(p̃ − value)L
α, (p̃ − value)U

α ],
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where,

(p̃ − value)L
α = 2

[
1 − Φ

(
sup

{∣∣∣∣
G(z11, z12, . . . , zrc)

σ̂G(z11, z12, . . . , zrc)

∣∣∣∣ : zij ∈ f̃ij [α]

})]
,

(p̃ − value)U
α = 2

[
1 − Φ

(
inf

{∣∣∣∣
G(z11, z12, . . . , zrc)

σ̂G(z11, z12, . . . , zrc)

∣∣∣∣ : zij ∈ f̃ij [α]

})]
,

in which, G and σ̂G are defined in Section 2.

Remark 4.7. Based on the Representation Theorem, one can conclude that the
sequence of the closed intervals p̃ − value[α], α ∈ (0, 1], constitute a fuzzy number
on [0, 1].

Remark 4.8. If the fuzzy categories reduce to the crisp categories then the fuzzy
p-value reduces to the classical p-value.

4.4. Method of decision making

Finally, a decision is made by comparing the observed fuzzy p-value and the given
significance level.

Case I) The crisp significance level
When the level of significance is a crisp number as δ, we can define a fuzzy test

ϕ̃δ[( x1, y1), . . . , (xN , yN )] on {0, 1} as follows

ϕ̃δ[(x1, y1), . . . , (xN , yN)] =

{
1

ϕ̃(1)
,

0

ϕ̃(0)

}
,

where ϕ̃(1) = supp<δ µep−value(p) and ϕ̃(0) = supp≥δ µep−value(p). The quantity
µfϕδ

(1) may interpret as possibility that the null hypothesis would be rejected. In a
similar fashion, the quantity µfϕδ

(0) may be interpreted as possibility that H0 would
not be rejected (see also [3]).

Case II) The fuzzy significance level
Since the p-value is defined as a fuzzy set, it is natural to consider the significance

level as a fuzzy set, too. In fact, a fuzzy significance level is considered as a fuzzy set
on (0,1), [13]. In such a situation, therefore, we need a method for comparing the
observed fuzzy p-value and the given fuzzy significance level. There are several ways
to carry out this comparison, see, for example, [3, 4, 24, 25]. An especially applicable
class of ranking methods between fuzzy numbers are necessity and possibility indices
(for more details, see [16]). Here, we recall a definition of a necessity index of strict
dominance (NSD index) between fuzzy numbers, suggested by Dubois and Prade [4].

Definition 4.9. For two fuzzy numbers Ã and B̃, we evaluate the degree of necessity
to which the relation Ã ≻ B̃ is fulfilled by

Nec (Ã ≻ B̃) = 1 − sup
x,y;x≤y

min{µ eA(x), µ eB(y)}.

In addition, the degree of possibility to which the relation Ã � B̃ is fulfilled, is
defined to be Pos (Ã � B̃) = 1 − Nec (Ã ≻ B̃).
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Table 2. The data set in Example 5.1.

No. In. Sat. No. In. Sat. No. In. Sat. No. In. Sat.
1 300 10 2 350 15 3 400 20 4 450 25
5 250 10 6 800 40 7 400 55 8 450 60
9 2500 68 10 350 75 11 850 85 12 1200 10
13 1600 20 14 1800 25 15 900 40 16 1200 52
17 1400 54 18 1600 55 19 1700 56 20 1800 57
21 1900 58 22 2400 66 23 1300 72 24 1500 75
25 1600 77 26 1800 78 27 2600 63 28 1600 92
29 1700 94 30 2500 87 31 3200 25 32 4300 44
33 3100 52 34 3200 55 35 3300 60 36 3500 62
37 3600 64 38 4600 66 39 3200 72 40 3400 74
41 3500 76 42 3700 77 43 3800 78 44 3300 79
45 3600 73 46 4700 86 47 3200 94 48 3500 96
49 3600 95 50 4400 86 51 4700 27 52 5300 53
53 4700 68 54 5200 72 55 5500 74 56 5700 76
57 5600 77 58 5800 78 59 4800 83 60 5300 92
61 5500 95 62 5700 98 63 4900 88 64 700 67
65 400 77 - - - - - - - - -

The fuzzy relation Nec (NSD index) is antisymmetric and transitive. In fact, it
provides a fuzzy partial ordering on F(R) [4].

We use NSD index because of its appropriate properties and its natural interpre-
tation and effectiveness in applied statistical problems (see [3, 12, 16]).

Finally, one can expect that if the observed fuzzy p-value is less than the given
fuzzy significance level δ̃, then H0 (the hypothesis of independence) is rejected,
otherwise H0 is accepted. So, a suitable method for testing independence, can be
defined as follows

Definition 4.10. Consider the problem of testing the null hypothesis of indepen-
dence in a two-way contingency table with fuzzy categories. We define the test of
independence as a fuzzy set ϕ̃eδ [(x1, y1), . . . , (xN , yN)] on {0, 1} as follows

ϕ̃eδ[(x1, y1), . . . , (xN , yN)] =

{
1

ϕ̃(1)
,

0

ϕ̃(0)

}
,

where
ϕ̃(1) = Nec (δ̃ ≻ p̃ − value), ϕ̃(0) = 1 − ϕ̃(1).

In such test, ϕ̃(1) is called the necessity degree that H0 is rejected and ϕ̃(0) is called
the possibility degree that H0 is accepted.

5. NUMERICAL EXAMPLE

In this section, a practical example is provided to clarify the proposed method.
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Example 5.1. (see also [1], p. 57) A study designed to investigate the relationship
between income and job satisfaction among cabmans. Four categories are considered
for income level: “low”, “moderate”, “high”, and “very high” and four categories
are considered for job satisfaction: “little satisfied”, “moderately satisfied”, “more
or less satisfied”, and “satisfied”. A random sample of 65 cabmans reported their
monthly average income (in $) and their job satisfaction (scaled between 0-100).
The results of the collected data are given in Table 2. In this example, therefore,
we deal with a two-way contingency table 4 × 4 with the fuzzy categories T =
{t̃1 = “low”, t̃2 = “moderate”, t̃3 = “high” , t̃4 = “very high”} for income, and S =
{s̃1 = “little satisfied” , s̃2 = “moderately satisfied”, s̃2 = “more or less satisfied”,
s̃4 = “satisfied”} for job satisfaction. The membership functions of the linguistic
terms are shown in Figures 1 and 2. To construct the contingency table, first we
have to obtain the fuzzy frequency of each cell. For instance, assume that the income
and job satisfaction of a person are $ 2500 and 45, respectively. For this case, we
have µet1(2500) = 0, µet2 (2500) = 0.5, µet3 (2500) = 0.5, µet4 (2500) = 0, and µes1

(45) = 0.25, µes2
(45) = 0.75, µes3

(45) = 0, µes4
(45) = 0. By employing Definition

4.1, the contingency table is obtained as shown in Table 3, where
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Fig. 1. Fuzzy categories for income in Example 5.1.
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Fig. 2. Fuzzy categories for job satisfaction in Example 5.1.
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Table 3. The two-way contingency table in Example 5.1.

Job Satisfaction (S)

Income (T) Little Moderate More or Less Satisfied

Low f̃11 f̃12 f̃13 f̃14

Moderate f̃21 f̃22 f̃23 f̃24

High f̃31 f̃32 f̃33 f̃34

Very High f̃41 f̃42 f̃43 f̃44

ef11 =


0.2
7

, 0.4
6

, 1

5

ff
, ef12 =


0.2
5

, 0.4
4

, 0.6
3

, 1

2

ff
, ef13 =


0.3
4

, 0.4
3

, 1

2

ff
,

ef14 =


0.3
1

, 1

0

ff
, ef21 =


0.5
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, 1

3
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0.4
12
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9
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7

, 1

6

ff
,

ef23 =
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9
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7
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6
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4

ff
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, 1

2

ff
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0.3
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, 1

1

ff
,

ef32 =


0.3
11
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, 1

5
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0.1
16
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7
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,
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0.3
2

, 0.69
1

, 1

0

ff
, ef42 =


0.3
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0.2
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ef44 =


0.3
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4

, 1

3

ff
.

Now, suppose that we wish to test the null hypothesis that the income and
job satisfaction are independent at significance level “about 0.05” which is repre-
sented by the triangular fuzzy number δ̃ = (0.02, 0.05, 0.08)T (Figure 3). Based
on the procedures in Section 4, one can obtain the membership function of the
fuzzy p-value introduced in Definition 4.6. For example, at level α = 0.4, we ob-

tained inf{| G(z11,z12,...,z44)
bσG(z11,z12,...,z44)

| : zij ∈ f̃ij [0.4]} ≃ 1.99 and sup{| G(z11,z12,...,z44)
bσG(z11,z12,...,z44)

| : zij ∈

f̃ij [0.4]} ≃ 5.39, hence, (p̃−value)L
0.4 = 1−Φ(5.39) = 0.7×10−9 and (p̃−value)U

0.4 =
1−Φ(1.99) ≃ 0.04 (i. e., p̃− value[0.4] ≃ [0.7× 10−9, 0.04]). By employing this pro-
cedure for all α in [0, 1], the membership function of fuzzy p-value can be obtained
using the Resolution Identity given by

µep−value(x) = sup
α∈[0,1]

αI[x∈ep−value[α]], x ∈ [0, 1].

To compute the membership function of the fuzzy p-value, we used the computa-
tional procedures included usual accelerator programming with MATLAB software
(optimization over a set of alternatives [23]). The membership function of the fuzzy
p-value is obtained as shown in Figure 3 (which can be interpreted as: “about

0.129× 10−5”). Using Definition 4.9, we obtained ϕ̃(1) = Nec (δ̃ ≻ p̃− value) = 0.6
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Fig. 3. Fuzzy p-value and fuzzy significance level eδ in Example 5.1.
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Fuzzy Goodman-Kruskal Statistic G̃

Fig. 4. Fuzzy Goodman–Kruskal statistic eG in Example 5.1.

and ϕ̃(0) = 1 − ϕ̃(1) = 0.4. Therefore, we reject the null hypothesis H0 with a
necessity degree of 0.6 and we accept it with a possibility degree of 0.4.

To obtain the fuzzy Goodman–Kruskal statistic, we need to compute the G̃[α],

for every α ∈ [0, 1] (Definition 4.2). For example, calculations show that (G̃)L
0.4

= inf{G(z11, z12, . . . , z44) : zij ∈ f̃ij [0.4]} ≃ 0.29 and (G̃)U
0.4 = sup{G(z11, z12,

. . . , z44) : zij ∈ f̃ij [α]} ≃ 0.69. Finally, the fuzzy Goodman–Kruskal statistic is
obtained as shown in Figure 4, which is a representation of “about 0.58”.

6. CONCLUSION

We introduced a fuzzy version of the Goodman–Kruskal γ measure of association
for a two-way contingency table when the observations are crisp but the categories
are described by fuzzy sets. We also developed a method for testing hypothesis of
independence in a such two-way contingency table, when level of significance is a
crisp or a fuzzy number. For this purpose, we introduced and employed a concept of
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fuzzy p-value. To evaluate the independence hypothesis, we use a common index to
compare the fuzzy p-value and the given fuzzy significance level. The proposed test,
contrary to the classical crisp test, does not lead to a binary decision (acceptance
or rejection of the hypothesis) but to a fuzzy decision. In fact, a user must decide
whether to reject or to accept the hypothesis of interest actually, but a possibilistic-
based index would support his/her decision.

The proposed method can be extended to other measures of associations which are
commonly used for two-way contingency tables. The problem of analyzing measures
of association in contingency tables for the case where the data available are fuzzy,
is a potential subject for future research.
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