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Abstract. The time-dependent system of partial differential equations of the second
order describing the electric wave propagation in vertically inhomogeneous electrically and
magnetically biaxial anisotropic media is considered. A new analytical method for solving
an initial value problem for this system is the main object of the paper. This method
consists in the following: the initial value problem is written in terms of Fourier images
with respect to lateral space variables, then the resulting problem is reduced to an operator
integral equation. After that the operator integral equation is solved by the method of
successive approximations. Finally, a solution of the original initial value problem is found
by the inverse Fourier transform.
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1. Introduction

The study of wave propagation inside electrically and magnetically anisotropic

materials constitutes an important interdisciplinary area of research with many

cutting-edge scientific and technological applications. The dynamics of electric fields

inside of electrically and magnetically anisotropic materials are described by the

time-dependent system (see for example, [7], [5], [20])

(1) E
∂2

E

∂t2
+ curlx(M−1 curlx E) = f ,

*This work was supported by Dokuz Eylul University of Turkey under the research
grant 2006.KB.FEN.024.
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where x = (x1, x2, x3) ∈ R
3 is the space variable, t ∈ R is the time variable,

E = (E1, E2, E3) is a vector function with components Ek = Ek(x, t), k = 1, 2, 3,

f = −∂J/∂t, J = (J1, J2, J3) is the density of the electric current, Jk = Jk(x, t),

k = 1, 2, 3; E = (εij)3×3 is a symmetric positive definite matrix of the electric per-

mittivity; M = (µij)3×3 is a symmetric positive definite matrix of the magnetic

permeability,M−1 is inverse toM.

We note that for the isotropic medium (E = ε0I andM = µ0I, I is the identity

matrix; ε0, µ0 are positive constants) the equation (1) under conditions f = 0 and

divx(ε0E) = 0 can be written as

∂2
E

∂t2
−

1

ε0µ0
∆xE(x, t) = 0.

This equation is a classical wave equation and dozens of Initial Value Problems (IVPs)

and Initial Boundary Value Problems (IBVPs) have been formulated and studied

for it (see for example [8], [17]). Nowadays in view of the growing interest to the

development of new anisotropic materials the analysis of electromagnetic fields in

anisotropic media is an important issue and the study of IVPs and IBVPs for the

equation (1) with arbitrary positive definite symmetric matrices E andM becomes

actual. A special case of (1) is the system of crystal optics. In this case E is a

symmetric positive definite matrix and M = µ0I. IVP for the system of crystal

optics, where E is a diagonal matrix with different positive constant elements and

M is the identity matrix, with smooth initial data and solving this problem has been

studied by Courant and Hilbert [6] (see pp. 603–612). Burridge and Qian in [4] have

used a plane wave approach to obtain an explicit formula for a fundamental solution

of the same system of crystal optics. We note that the system of crystal optics is of

great interest in applied mathematics and the different aspects of this system have

been studied in [11], [12], [16]. Yakhno [18] has used matrix symbolic computations

for constructing the time-dependent electromagnetic fields for the system (1), when

E andM are symmetric positive definite matrices with constant elements.

The main object of our paper is IVP for the system (1) which consists in finding

the vector function E satisfying (1) and the initial data

(2) E|t=0 = 0,
∂E

∂t

∣

∣

∣

t=0
= 0.

The following notation and assumptions will be used throughout the paper: α, β,

T are given positive numbers, α 6 β, c =
√

β/α; ∆ is the triangle given by

(3) ∆ = {(x3, t) : 0 6 t 6 T, −c(T − t) 6 x3 6 c(T − t)};
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elements of the diagonal matrices E = diag(ε11(x3), ε22(x3), ε33(x3)) and M =

diag(µ11(x3), µ22(x3), µ33(x3)) are twice continuously differentiable functions over

[−cT, cT ] and have such positive values that 0 < α 6 εjj(x3) 6 β, 0 < α 6

mjj(x3) ≡ 1/µjj(x3) 6 β, j = 1, 2, 3. Besides, we assume that there exists the

Fourier transform with respect to x1, x2 of the components of the vector func-

tion f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) which appears in (1); the Fourier images

of fj(x, t), denoted as f̃j(ν, x3, t), are such that f̃j(ν, x3, t) ∈ C(R2 × ∆), j = 1, 2, 3;

ν = (ν1, ν2) ∈ R
2.

The assumptions we have made about E and M are related to biaxial vertically

inhomogeneous anisotropic media where electric waves are propagated and the sys-

tem (1) is a mathematical model of these waves. We note that various aspects of

electromagnetic waves in homogeneous biaxial anisotropic materials were considered

in the works [10], [13], [14].

The main result of the present paper is a new method for solving IVP (1), (2). This

method consists of the following. First, IVP (1), (2) is written in terms of Fourier

images with respect to lateral variables x1, x2. We denote this problem as FTIVP.

Secondly, the resulting (FTIVP) is reduced to an operator integral equation. After

that the operator integral equation is solved by the method of successive approx-

imations. Finally, to find a solution of IVP (1), (2) we apply the inverse Fourier

transform with respect to ν1, ν2 to the solution of the operator integral equation.

At the same time a class of vector functions, where a unique solution of (1), (2) is

constructed, is described.

The paper is organized as follows. In Section 2 IVP (1), (2) is written in terms

of the Fourier transform with respect to the lateral variables. The reduction of the

resulting problem (FTIVP) to an equivalent operator integral equation is given in

Section 3. The properties of the operator integral equation are described in Sec-

tion 4. Using these properties, a unique solution of the operator integral equation is

constructed in Section 5. Finding a solution of the original IVP (1), (2) is given in

Section 6.

2. Set-up of FTIVP

Let the components of the vector functions Ẽ(ν, x3, t) = (Ẽ1(ν, x3, t), Ẽ2(ν, x3, t),

Ẽ3(ν, x3, t)) and f̃(ν, x3, t) = (f̃1(ν, x3, t), f̃2(ν, x3, t), f̃3(ν, x3, t)) be defined by

Ẽj(ν, x3, t) = Fx1x2
[Ej ](ν, x3, t), f̃j(ν, x3, t) = Fx1x2

[fj ](ν, x3, t),

j = 1, 2, 3, ν = (ν1, ν2) ∈ R
2,
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where Fx1x2
is the operator of the Fourier transform with respect to x1, x2, i.e.

Fx1x2
[E](ν, x3, t) =

∫ ∞

−∞

∫ ∞

−∞

E(x, t)ei(ν1x1+ν2x2) dx1 dx2, i2 = −1,

and ν = (ν1, ν2) ∈ R
2 is the Fourier transform parameter.

Applying the operator Fx1x2
to (1), (2) and using the properties of the Fourier

transform, we can write the problem (1), (2) in terms of the Fourier image Ẽ(ν, x3, t)

as follows:

εjj(x3)
∂2Ẽj

∂t2
−

∂

∂x3

(

mkk(x3)
∂Ẽj

∂x3

)

= − ν2
km33(x3)Ẽj + νjνkm33(x3)Ẽk(4)

+ (iνj)
∂

∂x3
(mkk(x3)Ẽ3) + f̃j ,

ε33(x3)
∂2Ẽ3

∂t2
+ (ν2

1m22(x3) + ν2
2m11(x3))Ẽ3 = (iν1)m22(x3)

∂Ẽ1

∂x3
(5)

+ (iν2)m11(x3)
∂Ẽ2

∂x3
+ f̃3,

(6) Ẽ|t=0 = 0,
∂Ẽ

∂t

∣

∣

∣

t=0
= 0,

where j = 1, 2, j 6= k, k = 1, 2.

3. Reduction of FTIVP to operator integral equation

The main aim of this section is to show that FTIVP is equivalent to a second

kind operator integral equation of the Volterra type. This section is organized as

follows. In Subsection 3.1 we obtain the equivalence of (4) under data (6) to some

integral equalities for Ẽj(ν, x3, t), j = 1, 2. The equivalence of (5) under data (6)

to an integral equality for Ẽ3(ν, x3, t) is described in Subsection 3.2. The integral

equality for (∂Ẽ3/∂t)(ν, x3, t) is presented in Subsection 3.2 also. Subsection 3.3

contains integral equalities for (∂Ẽj/∂x3)(ν, x3, t), j = 1, 2 in the forms which are

necessary to get a closed system of integral equations for unknowns Ẽj , Ẽ3, ∂Ẽ3/∂t,

∂Ẽj/∂x3, j = 1, 2. This system of integral equations is written in the form of a

second kind operator integral equation of the Volterra type in Subsection 3.4.

3.1. Equivalence of (4), (6) to integral equalities

Now we show that for each j = 1, 2 the equation (4) is written in the terms of

a new function Uj(ν, yj , t). The resulting equation is a partial differential equation
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with constant coefficients in the principal part. We find the integral equality for

Uj(ν, yj, t) by inverting the principal part of the resulting differential equation. As

a next step the integral equality is written in terms of Ẽj(ν, x3, t).

Let us consider the transformation

(7) yj = τj(x3), τj(x3) =

∫ x3

0

cj(ξ) dξ,

where

c2
1(ξ) =

ε11(ξ)

m22(ξ)
, c2

2(ξ) =
ε22(ξ)

m11(ξ)
.

Lemma 1. Under the assumptions mentioned in Section 1 the function τj(x3),

defined by (7) for each j = 1, 2, has the following properties:

(a) τj(x3) is a monotonically increasing function from [−cT, cT ] into [Y −
j , Y +

j ],

where Y −
j = τj(−cT ), Y +

j = τj(cT );

(b) τj(x3) has a monotonically increasing inverse function τ−1
j (yj) from [Y −

j , Y +
j ]

into [−cT, cT ];

(c) τj(0) = 0, τ−1
j (0) = 0;

(d) τj(x3) ∈ C3[−cT, cT ], τ−1
j (yj) ∈ C3[Y −

j , Y +
j ].

P r o o f. Proof of Lemma 1 follows from calculus [2]. �

Let

(8) Wj(ν, yj, t) = Ẽj(ν, x3, t)|x3=τ−1

j
(yj)

.

Then we have

(9)
∂Ẽj

∂x3
(ν, x3, t)|x3=τ−1

j
(yj)

= cj(τ
−1
j (yj))

∂Wj

∂yj
(ν, yj, t).

The equation (4) may be written in terms of yj and Wj(ν, yj , t) as

∂2Wj

∂t2
−

∂2Wj

∂y2
j

= − Kj(yj)
∂Wj

∂yj
− ν2

k

m33(x3)

εjj(x3)

∣

∣

∣

x3=τ−1

j
(yj)

Wj(10)

+ νjνk
m33(x3)

εjj(x3)

∣

∣

∣

x3=τ−1

j
(yj)

Ẽk

+ (iνj)
[ 1

εjj(x3)

∂

∂x3
(mkk(x3)Ẽ3(ν, x3, t))

]

x3=τ−1

j
(yj)

+
f̃j(ν, x3, t)

εjj(x3)

∣

∣

∣

x3=τ−1

j
(yj)

,
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where

Kj(yj) =
d

dyj
(lnAj(yj)), Aj(yj) =

1
√

mkk(x3)εjj(x3)

∣

∣

∣

x3=τ−1

j
(yj)

,(11)

j = 1, 2, k 6= j, k = 1, 2.

Let us introduce the function Uj(ν, yj , t) by the equality

(12) Wj(ν, yj , t) = Sj(yj)Uj(ν, yj , t),

where the function Sj(yj) is defined by

(13) Sj(yj) = exp
(1

2

∫ yj

0

Kj(ξ) dξ
)

.

Substituting (12) into (10), we find

∂2Uj

∂t2
−

∂2Uj

∂y2
j

(14)

= [qj(yj) − ν2
kM3j(yj)Nj(yj)]Uj + νjνkM3j(yj)Lj(yj)Ẽk(ν, τ−1

j (yj), t)

+ (iνj)
∂

∂yj
[Cj(yj)Lj(yj)Mkj(yj)Ẽ3(ν, τ−1

j (yj), t)]

− (iνj)Mkj(yj)
∂

∂yj
[Cj(yj)Lj(yj)]Ẽ3(ν, τ−1

j (yj), t) + Fj(ν, yj, t),

j = 1, 2, k 6= j, k = 1, 2.

Here the following notation was used:

qj(yj) =
1

2
K ′

j(yj) −
1

4
K2

j (yj), Cj(yj) = cj(x3)|x3=τ−1

j
(yj)

,(15)

Nj(yj) =
1

εjj(x3)

∣

∣

∣

x3=τ−1

j
(yj)

, Mlj(yj) = mll(x3)|x3=τ−1

j
(yj)

, l = 1, 2, 3;

Lj(y) =
Nj(y)

Sj(y)
, Fj(ν, yj , t) = f̃j(ν, τ−1

j (yj), t)Lj(yj),

where Kj(yj), Sj(yj) are defined by (11), (13). Using the d’Alembert formula ([17],

see also Appendix A), we can show that equation (14) with zero initial data is
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equivalent to the integral equation

Uj(ν, yj , t) =
1

2

∫ t

0

∫ yj+(t−τ)

yj−(t−τ)

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]Uj(ν, ξ, τ)(16)

+ νjνkM3j(ξ)Lj(ξ)Ẽk(ν, τ−1
j (ξ), τ)

− (iνj)Mkj(ξ)
∂

∂ξ
[Cj(ξ)Lj(ξ)]Ẽ3(ν, τ−1

j (ξ), τ) + Fj(ν, ξ, τ)
}

dξ dτ

+
iνj

2

∫ t

0

{Cj(ξ)Lj(ξ)Mkj(ξ)Ẽ3(ν, τ−1
j (ξ), τ)}

∣

∣

∣

ξ=yj+(t−τ)

ξ=yj−(t−τ)
dτ,

j = 1, 2, k 6= j, k = 1, 2.

Here and throughout the paper we have used the notation {f(ξ)}
∣

∣

ξ=y+(t−τ)

ξ=y−(t−τ)
=

f(y + (t − τ)) − f(y − (t − τ)).

By virtue of (8) and (12) equation (16) may be written as follows:

Ẽj(ν, x3, t)(17)

=
Sj(τj(x3))

2

∫ t

0

∫ τj(x3)+(t−τ)

τj(x3)−(t−τ)

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]

×
Ẽj(ν, τ−1

j (ξ), τ)

Sj(ξ)
+ νjνkM3j(ξ)Lj(ξ)Ẽk(ν, τ−1

j (ξ), τ)

− (iνj)Mkj(ξ)
∂

∂ξ
[Cj(ξ)Lj(ξ)]Ẽ3(ν, τ−1

j (ξ), τ) + Fj(ν, ξ, τ)
}

dξ dτ

+
iνj

2
Sj(τj(x3))

∫ t

0

{Cj(ξ)Lj(ξ)Mkj(ξ)Ẽ3(ν, τ−1
j (ξ), τ)}

∣

∣

∣

ξ=τj(x3)+(t−τ)

ξ=τj(x3)−(t−τ)
dτ,

j = 1, 2, k 6= j, k = 1, 2.

3.2. Integral equalities for Ẽ3, ∂Ẽ3/∂t

Let us view (5) as the inhomogeneous ordinary differential equation whose coef-

ficients depend on the parameters ν1, ν2, and x3. Let the right-hand side of (5) be

the inhomogeneous term. Then integrating the equation (5) with respect to t with

zero initial data, we find the integral equality for Ẽ3(ν, x3, t):

Ẽ3(ν, x3, t) =
1

ε33(x3)

∫ t

0

[

iν1m22(x3)
∂Ẽ1

∂x3
(ν, x3, τ)(18)

+ iν2m11(x3)
∂Ẽ2

∂x3
(ν, x3, τ) + f̃3(ν, x3, τ)

]

×
sin(d(ν, x3)(t − τ))

d(ν, x3)
dτ,
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where

(19) d(ν, x3) =

√

ν2
1m22(x3) + ν2

2m11(x3)

ε33(x3)
.

Differentiating (18) with respect to t, we find the integral equality for ∂Ẽ3

∂t (ν, x3, t):

∂Ẽ3

∂t
(ν, x3, t)(20)

=
1

ε33(x3)

∫ t

0

[

iν1m22(x3)
∂Ẽ1

∂x3
(ν, x3, τ)

+ iν2m11(x3)
∂Ẽ2

∂x3
(ν, x3, τ) + f̃3(ν, x3, τ)

]

cos(d(ν, x3)(t − τ)) dτ.

3.3. Integral equalities for ∂Ẽj/∂x3, j = 1, 2

In this subsection we will obtain integral equalities for (∂Ẽj/∂x3)(ν, x3, t), j = 1, 2,

in the form containing functions Ẽj(ν, x3, t), (∂Ẽj/∂x3)(ν, x3, t), j = 1, 2, Ẽ3(ν, x3, t),

(∂Ẽ3/∂t)(ν, x3, t). A starting point here is the equation (17) which can be written

in the form

Ẽj(ν, x3, t)(21)

=
Sj(τj(x3))

2

∫ t

0

∫ τj(x3)+(t−τ)

τj(x3)−(t−τ)

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]

Ẽj(ν, τ−1
j (ξ), τ)

Sj(ξ)

+ νjνkM3j(ξ)Lj(ξ)Ẽk(ν, τ−1
j (ξ), τ)

− (iνj)Mkj(ξ)
∂

∂ξ
[Cj(ξ)Lj(ξ)]Ẽ3(ν, τ−1

j (ξ), τ) + Fj(ν, ξ, τ)
}

dξ dτ

+
iνj

2
Sj(τj(x3))

×

{
∫ τj(x3)+t

τj(x3)

Cj(η)Lj(η)Mkj(η)Ẽ3(ν, τ−1
j (η), τj(x3) + (t − η)) dη

−

∫ τj(x3)

τj(x3)−t

Cj(µ)Lj(µ)Mkj(µ)Ẽ3(ν, τ−1
j (µ),−τj(x3) + (t + µ)) dµ

}

,

j = 1, 2, k 6= j, k = 1, 2.
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Differentiating (21) with respect to x3 we find

∂Ẽj

∂x3
(ν, x3, t)(22)

=
cj(τj(x3))S

′
j(τj(x3))

2

{
∫ t

0

∫ τj(x3)+(t−τ)

τj(x3)−(t−τ)

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]

×
Ẽj(ν, τ−1

j (ξ), τ)

Sj(ξ)
+ νjνkM3j(ξ)Lj(ξ)Ẽk(ν, τ−1

j (ξ), τ)

− (iνj)Mkj(ξ)
∂

∂ξ
[Cj(ξ)Lj(ξ)]Ẽ3(ν, τ−1

j (ξ), τ) + Fj(ν, ξ, τ)
}

dξ dτ

+ (iνj)

[
∫ τj(x3)+t

τj(x3)

Cj(η)Lj(η)Mkj(η)Ẽ3(ν, τ−1
j (η), τj(x3) + (t − η)) dη

−

∫ τj(x3)

τj(x3)−t

Cj(µ)Lj(µ)Mkj(µ)Ẽ3(ν, τ−1
j (µ),−τj(x3) + (t + µ)) dµ

]}

+
Sj(τj(x3))

2

∫ t

0

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]

Ẽj(ν, τ−1
j (ξ), τ)

Sj(ξ)

+ νjνkM3j(ξ)Lj(ξ)Ẽk(ν, τ−1
j (ξ), τ) − (iνj)Mkj(ξ)

∂

∂ξ
[Cj(ξ)Lj(ξ)]

× Ẽ3(ν, τ−1
j (ξ), τ) + Fj(ν, ξ, τ)

}ξ=τj(x3)+(t−τ)

ξ=τj(x3)−(t−τ)
dτ +

iνjcj(x3)

2
Sj(τj(x3))

×

{
∫ τj(x3)+t

τj(x3)

Cj(η)Lj(η)Mkj(η)
∂Ẽ3

∂t
(ν, τ−1

j (η), τj(x3) + (t − η)) dη

+

∫ τj(x3)

τj(x3)−t

Cj(µ)Lj(µ)Mkj(µ)
∂Ẽ3

∂t
(ν, τ−1

j (µ),−τj(x3) + (t + µ)) dµ

}

− (iνj)cj(x3)Sj(τj(x3))Cj(τj(x3))Lj(τj(x3))Mkj(τj(x3))Ẽ3(ν, x3, t),

j = 1, 2, k 6= j, k = 1, 2.

Using (18), the equation (22) can be written as

∂Ẽj

∂x3
(ν, x3, t)(23)

=
cj(τj(x3))S

′
j(τj(x3))

2

{
∫ t

0

∫ τj(x3)+(t−τ)

τj(x3)−(t−τ)

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]

×
Ẽj(ν, τ−1

j (ξ), τ)

Sj(ξ)
+ νjνkM3j(ξ)Lj(ξ)Ẽk(ν, τ−1

j (ξ), τ)

− (iνj)Mkj(ξ)
∂

∂ξ
[Cj(ξ)Lj(ξ)]Ẽ3(ν, τ−1

j (ξ), τ) + Fj(ν, ξ, τ)
}

dξ dτ
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+ (iνj)

∫ t

0

{Cj(z)Lj(z)Mkj(z)Ẽ3(ν, τ−1
j (z), τ)}

∣

∣

∣

z=τj(x3)+(t−τ)

z=τj(x3)−(t−τ)
dτ

}

+
Sj(τj(x3))

2

∫ t

0

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]

Ẽj(ν, τ−1
j (ξ), τ)

Sj(ξ)

+ νjνkM3j(ξ)Lj(ξ)Ẽk(ν, τ−1
j (ξ), τ) − (iνj)Mkj(ξ)

∂

∂ξ
[Cj(ξ)Lj(ξ)]

× Ẽ3(ν, τ−1
j (ξ), τ) + Fj(ν, ξ, τ)

}∣

∣

∣

ξ=τj(x3)+(t−τ)

ξ=τj(x3)−(t−τ)
dτ

+
iνjcj(x3)

2
Sj(τj(x3))

×

{
∫ t

0

{

Cj(z)Lj(z)Mkj(z)
∂Ẽ3

∂t
(ν, τ−1

j (z), τ)
}∣

∣

∣

z=τj(x3)+(t−τ)

+
{

Cj(z)Lj(z)Mkj(z)
∂Ẽ3

∂t
(ν, τ−1

j (z), τ)
}

z=τj(x3)−(t−τ)
dτ

}

−
(iνj)cj(x3)

ε33(x3)
Sj(τj(x3))Cj(τj(x3))Lj(τj(x3))Mkj(τj(x3))

×

∫ t

0

[

iν1m22(x3)
∂Ẽ1

∂x3
(ν, x3, τ) + iν2m11(x3)

∂Ẽ2

∂x3
(ν, x3, τ)

+ f̃3(ν, x3, τ)
] sin

(

d(ν, x3)(t − τ)
)

d(ν, x3)
dτ,

j = 1, 2, k 6= j, k = 1, 2.

3.4. An operator integral equation

Equations (17), (18), (20), (23) represent a system of integral equations with

respect to the unknowns Ẽj , Ẽ3, ∂Ẽ3/∂t, ∂Ẽj/∂x3, j = 1, 2. Reasonings of Subsec-

tions 3.1–3.3 show that this system is equivalent to (4), (5) under condition (6). The

system (17)–(20), (23) can be written in the form of the operator integral equation

(24) V(ν, x3, t) = G(ν, x3, t) +

∫ t

0

(KV)(ν, x3, t, τ) dτ,

where V = (V1, V2, V3, V4, V5, V6) is the unknown vector-function whose components

are

V1 = Ẽ1, V2 = Ẽ2, V3 = Ẽ3,(25)

V4 =
∂Ẽ3

∂t
, V5 =

∂Ẽ1

∂x3
, V6 =

∂Ẽ2

∂x3
;
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G = (G1, G2, G3, G4, G5, G6) is the given vector-function whose components are

defined by

Gj(ν, x3, t) =
Sj(τj(x3))

2

∫ t

0

∫ τj(x3)+(t−τ)

τj(x3)−(t−τ)

Fj(ν, ξ, τ) dξ dτ, j = 1, 2,(26)

G3(ν, x3, t) =
1

ε33(x3)

∫ t

0

f̃3(ν, x3, τ)
sin(d(ν, x3)(t − τ))

d(ν, x3)
dτ,(27)

G4(ν, x3, t) =
1

ε33(x3)

∫ t

0

f̃3(ν, x3, τ) cos(d(ν, x3)(t − τ)) dτ,(28)

G4+j(ν, x3, t) =
cj(τj(x3))S

′
j(τj(x3))

2

∫ t

0

{
∫ τj(x3)+(t−τ)

τj(x3)−(t−τ)

Fj(ν, ξ, τ) dξ(29)

+ (iνj){Fj(ν, ξ, τ)}
∣

∣

∣

ξ=τj(x3)+(t−τ)

ξ=τj(x3)−(t−τ)

}

dτ

− (iνj)
cj(x3)

ε33(x3)
Sj(τj(x3))Lj(τj(x3))Mkj(τj(x3))

×

∫ t

0

f̃3(ν, x3, τ)
sin(d(ν, x3)(t − τ))

d(ν, x3)
dτ, j = 1, 2.

The components of the vector-operator K = (K1,K2,K3,K4,K5,K6) are defined by

(KjV)(ν, x3, t, τ)(30)

=
Sj(τj(x3))

2

∫ τj(x3)+(t−τ)

τj(x3)−(t−τ)

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]

Vj(ν, τ−1
j (ξ), τ)

Sj(ξ)

+ νjνkM3j(ξ)Lj(ξ)Vk(ν, τ−1
j (ξ), τ)

− (iνj)Mkj(ξ)
∂

∂ξ
[Cj(ξ)Lj(ξ)]V3(ν, τ−1

j (ξ), τ)
}

dξ

+
iνj

2
Sj(τj(x3)){Cj(ξ)Lj(ξ)Mkj(ξ)V3(ν, τ−1

j (ξ), τ)}
∣

∣

∣

ξ=τj(x3)+(t−τ)

ξ=τj(x3)−(t−τ)
,

j = 1, 2, k 6= j, k = 1, 2;

(K3V)(ν, x3, t, τ) =
1

ε33(x3)
[iν1m22(x3)V5(ν, x3, τ)(31)

+ iν2m11(x3)V6(ν, x3, τ)]
sin(d(ν, x3)(t − τ))

d(ν, x3)
,

(K4V)(ν, x3, t, τ) =
1

ε33(x3)
[iν1m22(x3)V5(ν, x3, τ)(32)

+ iν2m11(x3)V6(ν, x3, τ)] cos(d(ν, x3)(t − τ)),
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(K4+jV)(ν, x3, t, τ)(33)

=
cj(τj(x3))S

′
j(τj(x3))

2

{
∫ τj(x3)+(t−τ)

τj(x3)−(t−τ)

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]

×
Vj(ν, τ−1

j (ξ), τ)

Sj(ξ)
+ νjνkM3j(ξ)Lj(ξ)Vk(ν, τ−1

j (ξ), τ)

− (iνj)Mkj(ξ)
∂

∂ξ
[Cj(ξ)Lj(ξ)]V3(ν, τ−1

j (ξ), τ)
}

dξ

+ (iνj){Cj(z)Lj(z)Mkj(z)V3(ν, τ−1
j (z), τ)}

∣

∣

∣

z=τj(x3)+(t−τ)

z=τj(x3)−(t−τ)

}

+
Sj(τj(x3))

2

{

[qj(ξ) − ν2
kM3j(ξ)Nj(ξ)]

Vj(ν, τ−1
j (ξ), τ)

Sj(ξ)

+ νjνkM3j(ξ)Lj(ξ)Vk(ν, τ−1
j (ξ), τ)

− (iνj)Mkj(ξ)
∂

∂ξ
[Cj(ξ)Lj(ξ)]V3(ν, τ−1

j (ξ), τ)
}∣

∣

∣

ξ=τj(x3)+(t−τ)

ξ=τj(x3)−(t−τ)

+
iνjcj(x3)

2
Sj(τj(x3))

× {{Cj(z)Lj(z)Mkj(z)V4(ν, τ−1
j (z), τ)}|z=τj(x3)+(t−τ)

+ {Cj(z)Lj(z)Mkj(z)V4(ν, τ−1
j (z), τ)}|z=τj(x3)−(t−τ)}

−
(iνj)cj(x3)

ε33(x3)
Sj(τj(x3))Cj(τj(x3))Lj(τj(x3))Mkj(τj(x3))

× [iν1m22(x3)V5(ν, x3, τ)

+ iν2m11(x3)V6(ν, x3, τ)]
sin(d(ν, x3)(t − τ))

d(ν, x3)
,

j = 1, 2, k 6= j, k = 1, 2.

4. Properties of the operator integral equation (24)

To establish the existence and uniqueness of the solution for (24) we have used

specific properties of the inhomogeneous term and the kernel of (24). In this section

these properties are established by the following two propositions.

Proposition 1. Let the components of G = (G1, G2, . . . , G6) be defined by

(26)–(29). Then under the assumptions mentioned in Section 1 these components

are continuous functions for (x3, t) ∈ ∆, ν ∈ R
2.

Proposition 2. Let the components of the vector operator K = (K1,K2, . . . ,K6)

be defined by (30)–(33). Then under the assumptions mentioned in Section 1
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(i) the expressions

∫ t

0

(KmV)(ν, x3, t, τ) dτ, m = 1, 2, . . . , 6,

are continuous functions for (x3, t) ∈ ∆, ν ∈ R
2 and any vector function

V(ν, x3, t) = (V1(ν, x3, t), V2(ν, x3, t), . . . , V6(ν, x3, t)) with continuous compo-

nents for (x3, t) ∈ ∆, ν ∈ R
2;

(ii) for any positive number Ω the following inequalities are satisfied:

(34)

∣

∣

∣

∣

∫ t

0

(KmV)(ν, x3, t, τ) dτ

∣

∣

∣

∣

6 B

∫ t

0

‖V‖(ν, τ) dτ, m = 1, 2, . . . , 6,

where (x3, t) ∈ ∆, |ν| 6 Ω, B is a positive number depending on α, β, T , Ω;

(35) ‖V‖(ν, τ) = max
m=1,2,...,6

max
ξ∈[−c(T−τ),c(T−τ)]

|Vm(ν, ξ, τ)|.

P r o o f of Proposition 1. Let numbers α, β, T , c, the set∆, and functions εjj(x3),

mjj(x3) satisfy the assumptions of Section 1, numbers Y −
j , Y +

j and functions τj ,

τ−1
j have the properties from Lemma 1. Using the formulae (11), (13), (15), we

find that the functions Aj , Sj , Cj , Nj , Lj, Mlj are twice continuously differentiable

on [Y −
j , Y +

j ]; the functions Kj are once continuously differentiable on [Y −
j , Y +

j ],

and qj , Fj are continuous on [Y −
j , Y +

j ]. The function d(ν, x3) defined by (19) is

twice continuously differentiable with respect to x3 ∈ [−cT, cT ] for any ν ∈ R
2 and

sin(d(ν, x3)(t − τ))/d(ν, x3) is bounded and twice continuously differentiable with

respect to (x3, t) ∈ ∆ for any ν ∈ R
2, 0 6 τ 6 t. Using properties τj described

in Lemma 1, we find that Gm(ν, x3, t), m = 1, 2, . . . , 6, are continuous functions for

(x3, t) ∈ ∆ and ν ∈ R
2. Proposition 1 is proved. �

P r o o f of Proposition 2 (i). Using the reasoning made in the proof of Proposi-

tion 1 and formulae (30)–(33), we find that

∫ t

0

(KmV)(ν, x3, t, τ) dτ, m = 1, 2, . . . , 6,

are continuous functions with respect to (x3, t) ∈ ∆ for any ν ∈ R
2 and any vector

function V = (V1, V2, . . . , V6) with continuous components Vj(ν, x3, t) for (x3, t) ∈ ∆

and ν ∈ R
2. Hence, Proposition 2 (i) is proved. �
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To prove Proposition 2 (ii) we need the following lemma.

Lemma 2. Let c, T be the numbers and∆ the triangle defined by (3), let τj be the

function defined by (7), τ−1
j the inverse function to τj ; Y

−
j , Y

+
j the numbers defined in

Lemma 1. Then for any (x3, t) ∈ ∆, τ ∈ [0, t] and ξ ∈ [τj(x3)−(t−τ), τj(x3)+(t−τ)],

the following relations are satisfied:

τ−1
j (ξ) ∈ [−c(T − τ), c(T − τ)], ξ ∈ [Y −

j , Y +
j ].

P r o o f of Lemma 2. Let y = τj(x3). Using Lemma 1, we obtain

(36) y =

∫ τ−1

j
(y)

0

√

εjj(z)

mjj(z)
dz.

Differentiating both sides of (36) with respect to y, we get

(37)
dτ−1

j (y)

dy
=

Ã

εjj(τ
−1
j (y))

mjj(τ
−1
j (y))

.

Integrating (37) from 0 to y and using τ−1
j (0) = 0, we find

(38) τ−1
j (y) =

∫ y

0

Ã

εjj(τ
−1
j (z))

mjj(τ
−1
j (z))

dz.

By (38), we come to

τ−1
j (τj(x3) − (t − τ)) =

∫ τj(x3)−(t−τ)

0

Ã

εjj(τ
−1
j (z))

mjj(τ
−1
j (z))

dz(39)

= x3 −

∫ τj(x3)

τj(x3)−(t−τ)

Ã

εjj(τ
−1
j (z))

mjj(τ
−1
j (z))

dz.

We have from (39)

(40) τ−1
j (τj(x3) − (t − τ)) > x3 − c(t − τ).

Using (x3, t) ∈ ∆, we have

x3 − c(t − τ) > −c(T − t) − c(t − τ) = −c(T − t)
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and therefore,

(41) τ−1
j (τj(x3) − (t − τ)) > −c(T − τ).

Similarly we find

(42) τ−1
j (τj(x3) + (t − τ)) 6 c(T − τ).

As τ−1
j (ξ) is monotonically increasing (see Lemma 1), using (41), (42), we obtain

(43) −c(T − τ) 6 τ−1
j (ξ) 6 c(T − τ)

for any ξ ∈ [τj(x3) − (t − τ), τj(x3) + (t − τ)]. It follows from (43) that

−cT 6 τ−1
j (ξ) 6 cT

and therefore, as τj is monotonically increasing, we conclude that

(44) Y −
j = τj(−cT ) 6 ξ 6 τj(cT ) = Y +

j

for any ξ ∈ [τj(x3) − (t − τ), τj(x3) + (t − τ)]. Lemma 2 is proved. �

P r o o f of Proposition 2 (ii). Let the number Q be defined by

Q = max
j=1,2

max
y∈[Y −

j
,Y +

j
]

{

|qj(y)|, |Lj(y)|, |Nj(y)|, |Sj(y)|, |Cj(y)|,

∣

∣

∣

∂

∂y
(Cj(y)Lj(y))

∣

∣

∣
, max
l=1,2,3

|Mlj(y)|
}

.

Using Lemma 2, we deduce that for any (x3, t) ∈ ∆ and τ ∈ [0, t], ξ ∈ [τj(x3)−(t−τ),

τj(x3) + (t − τ)] the following inequalities are satisfied:

|qj(ξ)| 6 Q, |Lj(ξ)| 6 Q, |Nj(ξ)| 6 Q, |Sj(ξ)| 6 Q, |Cj(ξ)| 6 Q,
∣

∣

∣

∂

∂ξ
(Cj(ξ)Lj(ξ))

∣

∣

∣
6 Q, max

l=1,2,3
|Mlj(ξ)| 6 Q, ‖Vm(ν, τ−1

j (ξ), τ)‖ 6 ‖V‖(ν, τ),

j = 1, 2, m = 1, 2, . . . , 6.

From the above inequalities and the equation (30) we find the relation

|(KjV)(ν, x3, t, τ)| 6
Q

2

∫ τj(x3)+(t−τ)

τj(x3)−(t−τ)

{(Q + |ν|2Q2)|Vj(ν, τ−1
j (ξ), τ)|

+ |ν|2Q2|Vk(ν, τ−1
j (ξ), τ)| + |ν|Q2|V3(ν, τ−1

j (ξ), τ)|} dξ

+ |ν|Q4‖V‖(ν, τ), j = 1, 2, k = 1, 2, k 6= j.
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Let Ω be any positive number. Then the last relation implies

|(KjV)(ν, x3, t, τ)| 6 Bj(T, Ω)‖V‖(ν, τ),

where (x3, t) ∈ ∆, |ν| 6 Ω,

Bj(T, Ω) = max
(x3,t)∈∆

{Q2T (1 + 2Ω2Q + ΩQ) + ΩQ4}, j = 1, 2.

We find from the equation (31) that

∣

∣

∣
(K3V)(ν, x3, t, τ)

∣

∣

∣
6 B3(T, Ω)‖V‖(ν, τ),

where (x3, t) ∈ ∆, |ν| 6 Ω, B3(T, Ω) = 2c2|Ω|T .

Using a similar reasoning, we can define constants Bm(T, Ω) for m = 4, 5, 6 such

that

(KmV)(ν, x3, t, τ)| 6 Bm(T, Ω)‖V‖(ν, τ),

where (x3, t) ∈ ∆, |ν| 6 Ω.

Choosing

B = max
m=1,2,...,6

Bm(T, Ω),

we complete the proof of Proposition 2 (ii). �

5. Solving operator integral equation (24)

Let α, β, T be positive numbers, α 6 β, c =
√

β/α, let ∆ be defined by (3) and let

all assumptions stated in Section 1 be satisfied. In this section we solve the integral

equation (24) by the method of successive approximations and then show that this

solution is unique in the class of vector functions with continuous components for

(ν, x3, t) ∈ R
2 × ∆.

5.1. Successive approximations and convergence

Let Ω be an arbitrary positive number. Let us consider the integral equation (24)

for (x3, t) ∈ ∆, |ν| 6 Ω. To find a solution of this equation we apply the successive

approximations

V
(0)(ν, x3, t) = G(ν, x3, t),(45)

V
(n)(ν, x3, t) =

∫ t

0

(KV
(n−1))(ν, x3, t, τ) dτ, n = 1, 2 . . . .
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Our goal is to show that for (x3, t) ∈ ∆, |ν| 6 Ω, the series

∞
∑

n=0

V
(n)(ν, x3, t) =

( ∞
∑

n=1

V
(n)
1 (ν, x3, t), . . . ,

∞
∑

n=1

V
(n)
6 (ν, x3, t)

)

is uniformly convergent to a vector function

V(ν, x3, t) = (V1(ν, x3, t), V2(ν, x3, t), . . . , V6(ν, x3, t))

with continuous components and this vector function is a solution of (24).

Indeed, we find from (45) and Propositions 1, 2 of Section 4 that for (x3, t) ∈ ∆,

|ν| 6 Ω, the vector functions V
(n)(ν, x3, t), n = 0, 1, 2 . . ., have continuous compo-

nents and

(46) |V
(n)
j (ν, x3, t)| 6 B

∫ t

0

‖V(n−1)‖(ν, τ) dτ,

where ‖ · ‖(ν, τ) and B are defined in Proposition 2.

It follows from (46) that

(47) |V (n)
m (ν, x3, t)| 6

(BT )n

n!
max
|ν|6Ω

‖G‖(ν, T ), m = 1, 2, . . . , 6, n = 0, 1, 2 . . . .

The uniform convergence of
∞
∑

n=0
V

(n)
m (ν, x3, t) to a continuous function Vm(ν, x3, t)

follows from the inequality (47) and the first Weierstrass theorem ([2], p. 425). Let

us show that the vector function V(ν, x3, t) is a solution of (24).

Summing the equation (45) with respect to n from 1 to N , we have

(48)

N
∑

n=1

V
(n)(ν, x3, t) =

N−1
∑

n=0

∫ t

0

(KV
(n))(ν, x3, t, τ) dτ,

where
N

∑

n=1

V
(n)(ν, x3, t) =

( N
∑

n=1

V
(n)
1 (ν, x3, t), . . . ,

N
∑

n=1

V
(n)
6 (ν, x3, t)

)

.

Adding the vector function G(ν, x3, t) to both sides of (48), we arrive at

(49)

N
∑

n=0

V
(n)(ν, x3, t) = G(ν, x3, t) +

∫ t

0

N−1
∑

n=0

(KV
(n))(ν, x3, t, τ) dτ.

Letting N tend to infinity and using the second Weierstrass theorem ([2], p. 426), we

find that the vector function V(ν, x3, t) satisfies (24) for (x3, t) ∈ ∆, |ν| 6 Ω. Since
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Ω is an arbitrary positive number, we conclude that the vector function V(ν, x3, t)

with continuous components is a solution of (24) for (x3, t) ∈ ∆, ν ∈ R
2.

5.2. Uniqueness of the solution

We prove here that the solution V(ν, x3, t) of (24) is unique in the class of vector

functions with components Vm ∈ C(R2 × ∆), m = 1, 2, . . . , 6. Indeed, let Ω be an

arbitrary positive number, letV(ν, x3, t) andV
∗(ν, x3, t) be two solutions of (24) with

continuous components for (x3, t) ∈ ∆, |ν| 6 Ω. Setting V̂(ν, x3, t) = V(ν, x3, t) −

V
∗(ν, x3, t), we find from (24)

(50) V̂(ν, x3, t) =

∫ t

0

(KV̂)(ν, x3, t, τ) dτ.

Using Proposition 2, we obtain from (50)

(51) ‖V̂‖(ν, t) 6 B

∫ t

0

‖V̂‖(ν, τ) dτ,

where |ν| 6 Ω, t ∈ [0, T ]; ‖·‖(ν, t) andB are defined in the statement of Proposition 2.

Applying Gronwall’s lemma [9] to (51), we get

(52) ‖V̂‖(ν, t) = 0, t ∈ [0, T ], |ν| 6 Ω.

Using the continuity of V̂(ν, x3, t), we conclude that

V̂(ν, x3, t) ≡ 0, (x3, t) ∈ ∆, |ν| 6 Ω.

Since Ω is an arbitrary positive number, we obtain that V(ν, x3, t) ≡ V
∗(ν, x3, t) for

(x3, t) ∈ ∆, ν ∈ R
2. The uniqueness of the solution of (24) is proved.

6. Constructing a solution of initial value problem (1), (2)

In this section we show that a solution of (1), (2) may be found by the inverse

Fourier transform of the first three components of V(ν, x3, t), where V(ν, x3, t) is

the generalized solution of (24) found in Section 5. We describe the class of vector

functions where the solution of (1), (2) is unique.

We will use the following notions and notation. For the exponent α = (α1, α2)

with αj ∈ {0, 1, 2, . . .} and |α| = α1 + α2, the partial derivatives of higher order

∂|α|

∂να1

1 ∂να2

2

f̃k(ν, x3, t),
∂|α|

∂να1

1 ∂να2

2

Vl(ν, x3, t), k = 1, 2, 3, l = 1, 2, . . . , 6,
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will be denoted by

Dα
ν f̃k(ν, x3, t), Dα

ν Vl(ν, x3, t).

For vector functions V = (V1, V2, . . . , V6), f̃ = (f̃1, f̃2, f̃3) and each α we define Dα
ν V

and Dα
ν f̃ by

Dα
ν V = (Dα

ν V1, D
α
ν V2, . . . , D

α
ν V6), Dα

ν f̃ = (Dα
ν f̃1, D

α
ν f̃2, D

α
ν f̃3).

We denote by C(R2) the class consisting of all continuous functions that are defined

on R2. Then for m = 0, 1, 2, . . . we define Cm(R2) by C0(R2) = C(R2) and otherwise

by

Cm(R2) = {ϕ(ν) ∈ C(R2) : for all |α| 6 m, Dα
ν ϕ(ν) ∈ C(R2)},

C∞(R2) =

∞
⋂

m=1

Cm(R2).

Further, Cc(R
2) is the class of all functions from C(R2) with compact supports;

L2(R
2) is the class of all square integrable functions over R2; ‖ϕ‖2 is defined for each

ϕ(ν) ∈ L2(R
2) by

‖ϕ‖2
2 =

∫

R2

|ϕ(ν)|2 dν.

The Paley-Wiener space PW (R2) is the space consisting of all functions ϕ(x1, x2) ∈

C∞(R2) satisfying (see Appendix B)

(a)
(

1 +
√

x2
1 + x2

2

)m
∆nϕ(x1, x2) ∈ L2(R

2) for all m, n ∈ {0, 1, 2 . . .},

(b) R∆
ϕ = lim

n→∞
‖∆nϕ(x1, x2)‖

1/2n
2 < ∞,

where ∆n = (∂2/∂x2
1 + ∂2/∂x2

2)
n.

The class C(∆; Cc(R
2)) consists of all continuous mappings of (x3, t) ∈ ∆ into

the class C(R2) of functions ν = (ν1, ν2) ∈ R
2; C(∆; PW (R2)) is the class of all

continuous mappings of ∆ into PW (R2).

In this section we suppose that the assumptions of Section 1 hold and f̃ =

(f̃1, f̃2, f̃3) is the Fourier transform with respect to x1, x2 of the inhomogeneous

term f in (1) such that for each α

Dα
ν f̃k ∈ C(R2 × ∆) ∩ C(∆; Cc(R

2)), k = 1, 2, 3.

Let us consider the problem (4)–(6) (FTIVP). It was shown in Section 3 that this

problem is equivalent to the operator integral equation (24). In Section 5 using the

successive approximations a solution of (24) was constructed. Using this solution,

we find a unique vector function Ẽ(ν, x3, t) = (Ẽ1(ν, x3, t), Ẽ2(ν, x3, t), Ẽ3(ν, x3, t))
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such that Ẽl, (∂/∂x3)Ẽj , (∂/∂t)Ẽ3 ∈ C(R2 × ∆), l = 1, 2, 3, j = 1, 2; and this vector

function Ẽ(ν, x3, t) will be a generalized solution of FTIVP (4)–(6).

To complete the reasoning of this section let us show that the inverse Fourier

transform F−1
ν with respect to ν = (ν1, ν2) ∈ R

2 is applicable to Ẽ(ν, x3, t), and

E(x, t) = F−1
ν [Ẽ] is the unique generalized solution of (1), (2).

Using the Proposition 1 and the assumptions of this section, we see Gm(ν, x3, t),

m = 1, 2, . . . , 6, defined by (26)–(29) satisfy the conditions

(53) Dα
ν Gm(ν, x3, t) ∈ C(R2 × ∆) ∩ C(∆; Cc(R

2))

for any α = (α1, α2), αj ∈ {0, 1, 2, . . .}, j = 1, 2.

Applying Dα
ν to (24), we obtain

Dα
ν V(ν, x3, t) = Dα

ν G(ν, x3, t) +

∫ t

0

(KDα
ν V)(ν, x3, t, τ) dτ,(54)

ν ∈ R
2, (x3, t) ∈ ∆.

Equation (54) has the same form as (24). The solution V(ν, y, t) of (24), which is

found by the method of successive approximations described in Section 5, has the

following property:

Dα
ν V(ν, x3, t) ∈ C(R2 × ∆) for any α = (α1, α2), αj ∈ {0, 1, 2, . . .}, j = 1, 2.

Let us consider an arbitrary positive number Ω and an arbitrary multi-index α =

(α1, α2) with components from {0, 1, 2, . . .}. Using (54) and (34), we obtain the

inequality

(55) ‖Dα
ν V‖(ν, t) 6 ‖Dα

ν G‖(ν, t) + B

∫ t

0

‖Dα
ν V‖(ν, τ) dτ,

where |ν| 6 Ω, t ∈ [0, T ]; B and ‖·‖(ν, t) are defined in the statement of Proposition 2

(see formula (35)).

Applying Gronwall’s lemma [9] to the inequality (55), we find

(56) ‖Dα
ν V‖(ν, t) 6 ‖Dα

ν G‖(ν, t)eBT , |ν| 6 Ω, t ∈ [0, T ].

It follows from (53), (56) that the solution of (54) satisfies Dα
ν V(ν, x3, t) ∈

C(∆; Cc(R
2)) for any α. Hence, the components of the generalized solution

Ẽ(ν, x3, t) = (Ẽ1(ν, x3, t), Ẽ2(ν, x3, t), Ẽ3(ν, x3, t))
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of (4)–(6) satisfy the conditions

Ẽl,
∂

∂x3
Ẽj ,

∂

∂t
Ẽ3 ∈ C(R2 × ∆) ∩ C(∆; C∞

c (R2)), l = 1, 2, 3, j = 1, 2.

Applying the inverse Fourier transform with respect to ν1, ν2 to (4)–(6) and using

the real version of the Paley-Wiener theorem [1] (see also Appendix B) we find that

E(x, t) = F−1
ν [Ẽ] is the unique generalized solution of (1), (2) such that El(x, t),

(∂/∂x3)Ej(x, t), (∂/∂t)E3(x, t) belong to the class C(R2 × ∆) ∩ C(∆; PW (R2)),

l = 1, 2, 3, j = 1, 2.

Conclusion

The initial value problem (1), (2) is a mathematical model of the time dependent

electric field in vertically inhomogeneous biaxial anisotropic media. In the present

paper a new method for solving this problem has been obtained. This method

consists of the following. First, IVP (1), (2) is rewritten in the form of Fourier images

with respect to the lateral variables x1, x2. Secondly, the resulting problem (FTIVP)

is reduced to an operator integral equation. After that the operator integral equation

is solved by the method of successive approximations. Finally, to find a solution of

IVP (1), (2) we apply the inverse Fourier transform with respect to ν1, ν2 to the

solution of the operator integral equation.

We note that if symmetric positive definite matrices E and M have constant

elements then an explicit formula for the solution of IVP (1), (2) has been derived

by symbolic computations in MATLAB [19], [20]. Using this formula, the simulation

of electric fields has been derived in different homogeneous anisotropic materials [20].

Unfortunately, the explicit formulae for solutions cannot be constructed in the case

when elements of matrices E andM are functions of one or several variables. In the

case when E andM depend on one variable x3 our method allows us to determine

electric fields in inhomogeneous biaxial anisotropic media.

Appendix A

Generalized Cauchy problem for the wave equation

Let us consider IVP for the wave equation with two independent variables

( ∂2

∂t2
−

∂2

∂y2

)

w(y, t) = f(y, t), y ∈ R, t > 0,(57)

w(y, t)|t=0+ = 0,
∂w

∂t
(y, t)|t=0+ = 0.(58)
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If f(y, t) ∈ C1(R×[0,∞)) then there exists a unique solution w(y, t) ∈ C2(R×[0,∞))

which can be given by the D’Alembert formula (see, for example [17], p. 176).

Let now assume that f(y, t) ∈ C(R× [0,∞)). In this case the problem (57), (58)

will be interpreted as the generalized Cauchy problem ([17], pp. 171–178). Accord-

ing to the theorem from ([17], p. 174), there exists an inverse operator (∂2/∂t2 −

∂2/∂y2)−1 such that the function w(y, t), defined by

(59) w(y, t) =
( ∂2

∂t2
−

∂2

∂y2

)−1

f(y, t) ≡

∫∫

R2

θ((t − τ) − |y − ξ|)θ(τ)f(ξ, τ) dξ dτ,

is the unique generalized solution of the generalized Cauchy problem (57), (58) for

any f(y, t) ∈ C(R× [0,∞)). This means that the equality (59) is equivalent to (57),

(58), where (57) is understood as the equality of generalized functions [17].

R em a r k 1. We note that (59) may be written as the d’Alembert formula

(60) w(y, t) =
θ(t)

2

∫ t

0

∫ y+(t−τ)

y−(t−τ)

f(ξ, τ) dξ dτ,

or

(61) w(y, t) =
θ(t)

2

∫ y+t

y−t

∫ t−|ξ−y|

0

f(ξ, τ) dξ dτ, y ∈ R, t ∈ R.

It follows from (60) that for y ∈ R, t > 0 the derivatives ∂w/∂t, ∂w/∂y can be found

by

∂w

∂t
(y, t) =

1

2

∫ t

0

[f(y + (t − τ), τ) − f(y − (t − τ), τ)] dτ,

∂w

∂y
(y, t) =

1

2

∫ t

0

[f(y + (t − τ), τ) − f(y − (t − τ), τ)] dτ.

This means that the generalized solution w(y, t) of (57), (58) belongs to C1(R ×

[0,∞)) for any f(y, t) ∈ C(R× [0,∞)).

R em a r k 2. Let us consider IVP for the wave equation with two independent

variables

( ∂2

∂t2
−

∂2

∂y2

)

w(y, t) = F
(

y, t, w(y, t),
∂w

∂t
(y, t),

∂w

∂y
(y, t)

)

, y ∈ R, t > 0,(62)

w(y, t)|t=0+ = 0,
∂w

∂t
(y, t)|t=0+ = 0,(63)
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where

F
(

y, t, w,
∂w

∂t
,
∂w

∂y

)

= p2(y, t)
∂w

∂t
+ p1(y, t)

∂w

∂y
+ p0(y, t)w + f(y, t),

pk(y, t), f(y, t) ∈ C1(R× [0,∞)), k = 0, 1, 2, are given functions. Using the reasoning

as above, we find that the generalized Cauchy problem (62), (63) is equivalent to the

equation

w(y, t) =
( ∂2

∂t2
−

∂2

∂y2

)−1

F
(

y, t, w(y, t),
∂w

∂t
(y, t),

∂w

∂y
(y, t)

)

(64)

≡

∫ ∫

R2

θ((t − τ) − |y − ξ|)θ(τ)F
(

y, t, w(ξ, τ),
∂w

∂t
(ξ, τ),

∂w

∂y
(ξ, τ)

)

dξ dτ.

The equation (64) may be written in the form

(65) w(y, t) =
θ(t)

2

∫ t

0

∫ y+(t−τ)

y−(t−τ)

F
(

y, t, w(ξ, τ),
∂w

∂t
(ξ, τ),

∂w

∂y
(ξ, τ)

)

dξ dτ.

Appendix B

Paley-Wiener space and the real version of Paley-Wiener theorem

The result here has been taken from the paper [1] (see also [3], [15]).

As well known (see for example, [1], [3], [15]) the classical Fourier transform F is an

isomorphism of the Schwartz space S(Rk) onto itself. The space C∞
c (Rk) of smooth

functions with compact support is dense in S(Rk), and the classical Paley-Wiener

theorem characterizes the image of C∞
c (Rk) under F as a rapidly decreasing function

having a holomorphic extension to Ck of exponential type. In this appendix we will

define the Paley-Wiener space and consider the real version of the Paley-Wiener

theorem following the nice work [1].

Definition. We define the Paley-Wiener space PW (Rk) as the space of all func-

tions ϕ(x) ∈ C∞(Rk) satisfying

(a) (1 + |x|)m∆nϕ(x) ∈ L2(R
2) for all m, n ∈ {0, 1, 2 . . .},

(b) R∆
ϕ = lim

n→∞
‖∆nϕ(x)‖

1/2n
2 < ∞,

where L2(R
2) is the space of square integrable functions with the norm ‖ϕ‖2 =

(∫

R2 |ϕ(x)|2 dx
)1/2

for any ϕ(x) ∈ L2(R
2); ∆ = ∂2/∂x2

1 + . . . + ∂2/∂x2
k denotes the

Laplacian on R
k. Further, PWB(Rk) = {ϕ(x) ∈ PW (Rk) : R∆

ϕ = B} for B > 0.
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Theorem. The inverse Fourier transform F−1 is a bijection on C∞
c (Rk) onto

PW (Rk), mapping C∞
B (Rk) onto PWB(Rk).

Here C∞
B (Rk) is defined as

C∞
B (Rk) = {ϕ(x) ∈ C∞

B (Rk) : Rϕ = B},

where Rϕ = sup
x∈suppϕ

|x| is the radius of the support of ϕ(x).

We note that the work [1] contains the proof of this theorem.
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