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Near heaps

Ian Hawthorn, Tim Stokes

Abstract. On any involuted semigroup (S, ·,′ ), define the ternary operation
[abc] := a · b′ · c for all a, b, c ∈ S. The resulting ternary algebra (S, [ ]) satisfies
the para-associativity law [[abc]de] = [a[dcb]e] = [ab[cde]], which defines the vari-
ety of semiheaps. Important subvarieties include generalised heaps, which arise
from inverse semigroups, and heaps, which arise from groups. We consider the
intermediate variety of near heaps, defined by the additional laws [aaa] = a and
[aab] = [baa]. Every Clifford semigroup is a near heap when viewed as a semi-
heap, and we show that the Clifford semigroup operations are determined by the
semiheap operation. We show that near heaps are exactly strong semilattices of
heaps, parallelling a known result for Clifford semigroups. We characterise those
near heaps which arise directly from Clifford semigroups, and show that all near
heaps are embeddable in such examples, extending known results of this kind
relating heaps to groups, generalised heaps to inverse semigroups, and general
semiheaps to involuted semigroups.
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Classification: Primary 20N10; Secondary 20M11

1. Background on semiheaps

We begin with a review of some established definitions and results.
A heap H is a non-empty set with ternary operation [ ] satisfying the following

laws.

• [[abc]de] = [a[dcb]e] = [ab[cde]] (para-associative law)
• [aab] = [baa] = b

We call the one-element heap the trivial heap. Every group gives a heap under
the ternary operation [abc] := ab−1c, a construction first considered in the setting
of abelian groups by Prüfer in [4]. Conversely, a group arises from a heap H by
choosing any element e ∈ H and defining a binary operation x ∗ y := [xey]; the
element e becomes the identity of the constructed group and [exe] the inverse of x.
These constructions are mutually inverse up to isomorphism. Hence the varieties
of groups and pointed heaps are term equivalent, as shown by Baer in [1].

A semiheap H is a non-empty set with a ternary operation [ ] satisfying only
the para-associative law above. Semiheaps were first considered by Wagner in [5].
A similar construction gives a semiheap when S is an involuted semigroup, that
is a semigroup equipped with a unary operation ′ for which the following laws are
satisfied:
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• a′′ = a
• (ab)′ = b′a′.

If S is an involuted semigroup, setting [abc] := ab′c for all a, b, c ∈ S gives a
semiheap operation on S. Denote by [S] the semiheap obtained from S in this
way. Every semiheap can be embedded in [S] for some involuted semigroup S: see
Section 2 of [5].

An idempotent semiheap is a semiheap satisfying

• [aaa] = a (idempotency law).

These were studied in [2]. If S is an involuted semigroup, the semiheap [S] is
idempotent if and only if aa′a = a (see [3]). An involuted semigroup with this
property is called an involuted I-semigroup. Every idempotent semiheap can be
embedded in [S] for some involuted I-semigroup S. (This specific result does not
appear in the literature, but the proof of the analogous result for generalised heaps
in [5] is easily modified to show it.)

A generalised heap is an idempotent semiheap satisfying

• [aa[bbc]] = [bb[aac]] and [[abb]cc] = [[acc]bb] (generalised heap axiom).

These were considered by Wagner in [5]. They arise naturally in the setting of
atlases in differential geometry; see [6]. An inverse semigroup is an involuted
semigroup satisfying

• aa′a = a (idempotency)
• aa′bb′ = bb′aa′

Omitting the law (ab)′ = b′a′, which follows from the others, gives Howie’s defi-
nition as on page 145 of [3]. It can be shown that the set of idempotents of an
inverse semigroup S is E(S) = {a′a | a ∈ S} so that idempotents commute in an
inverse semigroup. If S is an involuted semigroup, the semiheap [S] is a gener-
alised heap if an only if S is an inverse semigroup, and all generalised heaps can
be embedded in a generalised heap constructed in this way (see Section 3 of [5]).

We now summarize these results.

Proposition 1. Let S be an involuted semigroup.

(1) [S] is a semiheap. Every semiheap can be embedded in a semiheap of this

type.

(2) [S] is an idempotent semiheap if and only if S is an I-semigroup. Every

idempotent semiheap can be embedded in an idempotent semiheap of this

type.

(3) [S] is a generalised heap if and only if S is an inverse semigroup. Every

generalised heap can be embedded in a generalised heap of this type.

(4) [S] is a heap if and only if S is a group. All heaps are of this type.

The correspondences can be tightened further, to resemble the situation for
heaps and groups, if a further assumption is made. If H is a semiheap, we say
e ∈ H is bi-unitary if [aee] = [eea] = a for all a ∈ H . A semiheap is a heap if and
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only if every element is bi-unitary. Note that if S is an involuted monoid with
identity 1, then 1 ∈ [S] is bi-unitary.

Call a semiheap equipped with a distinguished bi-unitary element e, viewed as
a nullary operation, bi-unital . The class of bi-unital semiheaps is a variety with
one ternary and one nullary operation.

Let H be a bi-unital semiheap. Define x′ = [exe] for all x ∈ H . Then x′′ = x
for all x ∈ H as is easily checked. Also define a binary operation on H by setting
x · y = [xey]. Call the resulting algebra 〈H〉. In fact 〈H〉 is an involuted monoid
with identity e, as is shown in Section 2 of [5].

The constructions S 7→ [S] (S an involuted monoid) and H 7→ 〈H〉 (H a bi-
unital semiheap) are mutually inverse, leading to a term equivalence between the
varieties of involuted monoids and bi-unital semiheaps. Indeed the term equiva-
lence specialises to subvarieties as summarised in the following.

Proposition 2. The following subvarieties of involuted monoids and bi-unital

semiheaps are term equivalent.

bi-unital semiheap type involuted monoid type
arbitrary arbitrary

idempotent semiheap I-monoid
generalised heap inverse monoid

heap group

Each of these equivalences is established in [5] (or follows easily from arguments
given there).

2. Introducing near heaps

Historically, heaps were the first type of semiheaps considered. There are
various ways to weaken the heap axioms, and we have reviewed the most important
ones already. Another, first introduced in [2], gives rise to the class of near heaps.

A near heap is a semiheap satisfying the laws

• [aaa] = a (idempotent law)
• [aab] = [baa] (near heap axiom).

Every heap is a near heap and every near heap is a generalised heap (see Propo-
sition 15 of [2]).

Let E(S) = {aa′ | a ∈ S} denote the semilattice of idempotents in the inverse
semigroup S, partially ordered via e ≤ f if and only if e = ef . A Clifford

semigroup S is an inverse semigroup in which for all a ∈ S and e ∈ E(S), ae = ea.
It is well known that this condition is equivalent to the condition that aa′ = a′a
for all a ∈ S (see [3] for example). It is clear that if S is a Clifford semigroup
then [S] is a near heap. The converse is also true.

Proposition 3. Let S be an involuted semigroup. Then [S] is a near heap if and

only if S is a Clifford semigroup.
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Proof: If S is a Clifford semigroup then [S] is a semiheap, and if a, b ∈ S then
[aab] = aa′b = baa′ = ba′a = [baa] so [S] is a near heap as claimed.

Conversely assume that [S] is a near heap. Then S is an inverse semigroup by
Proposition 1. Then for all a ∈ S, letting aa′ = e ∈ E(S) and a′a = f ∈ E(S) we
have

aa′ = (aa′)(aa′) = aa′e = [aae] = [eaa] = ea′a = ef = fe
a′a = (a′a)(a′a) = fa′a = [faa] = [aaf ] = aa′f = ef = fe

so aa′ = a′a and S is a Clifford semigroup. �

So the first half of a new entry in Proposition 1 can now be made. A further
entry can also be added, by specialising near heaps in a direction orthogonal to
heaps.

Semilattices may be thought of as Clifford semigroups in which the law a = a′

holds; by uniqueness of inverses in inverse semigroups, this is the only possible
way to define ′ to yield a Clifford semigroup.

So if S is a semilattice, the semiheap operation on [S] is given by [abc] = abc
for all a, b, c ∈ S. The resulting near heap satisfies the law [abb] = [aab]. The
following easy result was stated in [2] (and may have first appeared earlier).

Proposition 4. Let S be an involuted semigroup. [S] is a near heap satisfying

the law [abb] = [aab] if and only if S is a semilattice. All such near heaps are of

this type, and the two varieties are term equivalent.

From now on, when we use the term semilattice in the context of semiheaps, we
mean a near heap satisfying the law [abb] = [aab]. Note that the only semilattice
which is a heap is the trivial heap, since it satisfies a = [abb] = [aab] = b for all a
and b.

A new row in the table provided in Proposition 2 can also be given.

Proposition 5. The variety of Clifford monoids is term equivalent to the variety

of bi-unital near heaps.

Proof: It suffices to show that if H is a near heap with distinguished bi-unitary
element e, then 〈H〉 is a Clifford monoid (with identity e). But becauseH is a near
heap, it is a generalised heap, so 〈H〉 is an inverse semigroup by what is shown in
Section 3 of [5], and for any x, y, [xxy] = [yxx] so xx′y = yx′x, so letting y = xx′

gives (xx′)2 = (xx′)(x′x), so in the semilattice E(S), xx′ ≤ x′x, and symmetry
establishes the equality needed to show that 〈H〉 is a Clifford semigroup. �

However, in the absence of a bi-unitary element, the correspondence breaks
down, as we next show.

3. Which near heaps are [S] for some S?

Let H be a near heap. Let ∼ be the binary relation on H given by a ∼ b
if [abb] = a and [baa] = b. The following is shown in [2]: see Proposition 6,
Corollary 7, Lemma 18 and Theorem 19.
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Proposition 6. Let H be a near heap. Then ∼ is a congruence on H for which

H/ ∼ is a semilattice, and for every a ∈ H , the congruence class containing a is

a subsemiheap of H which is a maximal subheap.

From Proposition 16 of [2], a semilattice can contain no non-trivial subheaps,
this congruence can be regarded as defining the ‘heap radical’ of the near heap;
see [2] for further discussion of radicals of semiheaps.

If H is a neap heap we call H/ ∼ the associated semilatttice.

Proposition 7. If S is a Clifford semigroup, then every element of S is congruent

under ∼ to a unique element of E(S).

Proof: Now a ∼ aa′ ∈ E(S) since

[aa(aa′)] = aa′aa′ = aa′

[(aa′)aa] = aa′a′a = aa′

[(aa′)(aa′)a] = aa′aa′a = a
[a(aa′)(aa′)] = aaa′aa′ = a.

Also aa′ ∼ bb′ implies aa′ = [(aa′)(bb′)(bb′)] = aa′bb′ = [(aa′)(aa′)(bb′)] = bb′,
proving uniqueness. �

The congruence∼maps E(S) bijectively onto the associated semilattice [S]/ ∼.
It follows that in near heaps of the form [S] where S is a Clifford semigroup, the
canonical homomorphism [S] −→ [S]/ ∼ is split (has a right inverse [S]/ ∼−→
[S]). Equivalently in these near heaps there is a subsemilattice, in this case E(S),
with an element in every congruence class of ∼.

We define a spine for a near heap H to be a subsemilattice L of H such that
every element h ∈ H is congruent under ∼ to a unique element of L. Hence a
necessary condition for a near heap H to be (isomorphic to) [S] for some Clifford
semigroup is that it has a spine.

This condition is not only necessary but also sufficient as we now show.

Theorem 8. A near heap H is equal to [S] for some Clifford semigroup if and

only if it has a spine.

Proof: As E(S) is a spine of [S], the condition is necessary.
To show that it is sufficient let H be a near heap with spine L ⊆ H . For each

element h ∈ H there is a unique eh ∈ L with eh ∼ h. Define a′ = [eaaea] and
a ∗ b = [aeab] = [aebb]. We claim that (H, ∗,′ ) is a Clifford semigroup under these
operations and that [(H, ∗,′ )] = H .

First note that

[aeab] = [aea[ebebb]] = [a[ebebea]b] = [a[ebeaea]b] = [[aeaea]ebb] = [aebb]

so the product as stated above is well defined. Furthermore (a∗b)∗c = [[aeab]ecc] =
[aea[becc]] = a ∗ (b ∗ c) so the product is associative.

Now let a ∈ H and let e = ea to simplify the notation. Then [eea′] = [ee[eae]] =
[eae] = a′ and [a′a′e] = [[eae][eae]e] = [[[eae]ea]ee] = [[ea[eea]]ee] = [[eaa]ee] =
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[eee] = e. Hence a′ ∼ e, which gives ea′ = ea = e and a′′ = [e[eae]e] = a. We also
have a ∗ a′ ∗ a = [[ae[eae]]ea] = a. Furthermore a ∗ a′ = [ae[eae]] = [a[aee]e] =
[aae] = e so (a ∗ a′) ∗ b = e ∗ b = [eeb] = [bee] = b ∗ (a ∗ a′) proving the Clifford
semigroup condition.

At this point we have proved that H is a Clifford semigroup (the condition
(a ∗ b)′ = b′ ∗ a′ follows from the others). It remains to show that the semiheap
product can be recovered from the Clifford semigroup operations. But a ∗ b′ =
[aeb′b

′] = [aeb[ebbeb]] = [abeb] and hence

a ∗ b′ ∗ c = [[abeb]ecc] = [a[ecebb]c] = [a[ec[ebebeb]b]c] = [a[[ecebeb]ebb]c]
= [a[[ececeb]ebb]c] = [a[ecec[ebebb]]c] = [a[ececb]c] = [ab[ececc]]
= [abc]

giving [(H, ∗,′ )] = H , and completing the proof. �

Not all near heaps have spines and therefore not all near heaps are of the form
[S] for a Clifford semigroup S. An example of a near heap without a spine is the
free near heap generated by two elements. A simpler example is the free fully
symmetric near heap on two generators, which we now construct.

Example 9. The free fully symmetric near heap on two generators.

Let a, b be two symbols and form the finite set of strings

H(a, b) = {a, b, a2b, ab2}

(where a2 denotes aa and so on), and define a ternary operation on H(a, b) by
setting [w1w2w3] to be the result of first sorting into alphabetical order the letters
in the string concatenation w1w2w3 to give ambn, where m+n is necessarily odd,
and then reducing to an element of H(a, b) by reducing powers modulo 2 down to
1 or 2 (or else 0 if that letter did not occur at all).

Thus for example [aaa] = a, and

[(aab)(b)(abb)] → a3b4 → ab2.

It is easy to confirm that H(a, b) is a fully symmetric semiheap in the sense that

[w1w2w3] = [wθ1wθ2wθ3 ]

where θ1, θ2, θ3 is any permutation of 1, 2, 3. Moreover it is clearly idempotent,
and hence is a near heap.

We claim that H(a, b) has no spine. The congruence ∼ has at least three
equivalence classes on H(a, b), two of which are {a} and {b}. Any spine for H(a, b)
must therefore include both a and b, although [aab] = a2b 6= ab2 = [abb] so a and
b cannot coexist in a subsemilattice.
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A similar though more complicated argument can be used in the non-fully
symmetric case, to establish that the free near heap on two generators is an
infinite near heap without a spine.

To completely fit nears heaps into the pattern suggested by Proposition 1, we
must consider whether or not all near heaps can be embedded in a near heap of
the form [S] for some Clifford semigroup S. The answer to that question is “yes”
as we shall prove.

4. Near heaps as strong semilattices of heaps

Every Clifford semigroup S is a semilattice of groups, meaning that there is
a congruence θ on S for which each θ-class is a group and S/θ is a semilattice.
By Proposition 6, every near heap is a “semilattice of heaps” in the obvious
sense. But every Clifford semigroup is not only a semilattice of groups but a
strong semilattice of groups as in [3]; full information about the multiplication in
a Clifford semigroup S can be obtained from such a strong semilattice of group
decomposition. Thus if S =

⋃
e∈E(S) Se is the decomposition of S into groups Se

(one for each e ∈ E(S)), then for every e, f ∈ L with e ≥ f , there is a group
homomorphism φe,f : Se → Sf for which

• φe,e is the identity map on Se, and
• for all e, f, g ∈ L for which e ≥ f ≥ g, φf,g ◦ φe,f = φe,g .

One then finds that for ae ∈ Se and af ∈ Sf , aeaf = φe,ef (ae)φf,ef (af ) as calcu-
lated in Sef , so that information about the multiplications in each of the groups
together with all the homomorphisms φe,f completely determines the multiplica-
tion on S.

One can define an abstract strong semilattice of groups to be any disjoint union
of groups S =

⋃
e∈L Se, L a semilattice, equipped with homomorphisms as above,

and with multiplication defined as follows: for all ae ∈ Se and af ∈ Sf ,

aeaf := φe,ef (ae)φf,ef (af ) as calculated in Sef .

It then follows easily that SeSf ⊆ Sef for all e, f ∈ L. S can be shown to be
a semigroup; indeed it is always a Clifford semigroup (with a′ defined to be the
unique b ∈ S such that aba = a, bab = b). Hence every Clifford semigroup is a
strong semilattice of groups. For the details, consult [3].

Of course, in a Clifford semigroup S, the semilattice L = E(S) is embedded in
the semigroup: it is both a subsemigroup and a quotient semigroup. Indeed L is
the spine of the near heap S. However, as we have seen, not all near heaps have
spines. In the cases that do, there will be some sort of strong semilattice of heaps
representation. The interest is in the general case.

A strong semilattice of heaps is defined to be a disjoint union of heaps S =⋃
e∈L Se, where L is a semilattice, such that there are heap homomorphisms

φe,f : Se → Sf for each e, f ∈ L for which e ≤ f , and for which

• φe,e is the identity map on Se, and
• for all e, f, g ∈ L for which e ≥ f ≥ g, φf,g ◦ φe,f = φe,g .
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Such an S is turned into a ternary algebra by setting, for all ae ∈ Se, af ∈ Sf

and ag ∈ Sg,

[aeafag] = [φe,efg(ae)φf,efg(af )φg,efg(ag)].

Notation: [Se, L, φe,f ].

Theorem 10. A strong semilattice of heaps [Se, L, φe,f ] is a near heap which is

a semilattice of the heaps Se, with the semilattice isomorphic to L.

Proof: It is obvious that the Se are closed under the ternary operation on S
(and of course are heaps). We next show S is a semiheap.

Let aα ∈ Sα for each α ∈ {e, f, g, h, i}. Then

[[aeafag]ahai]

= [[φe,efg(ae)φf,efg(af )φg,efg(ag)]ahai]

= [φefg,efghi([φe,efg(ae)φf,efg(af )φg,efg(ag)])φh,efghi(ah)φi,efghi(ai)]

= [[φe,efghi(ae)φf,efghi(af )φg,efg(ag)]φh,efghi(ah)φi,efghi(ai)]

= [[φe,efghi(ae)[φh,efghi(ah)φg,efg(ag)]φf,efghi(af )]φi,efghi(ai)],

which a very similar routine calculation shows is equal to [ae[ahagaf ]ai], and so
also by symmetry to [aeaf [agahai]], so S is a semiheap.

We turn to the near heap laws. Idempotence is immediate (since the calculation
of [aeaeae] takes place wholly within Se, which is a heap). Finally,

[aeaeaf ]

= [φe,ef (ae)φe,ef (ae)φf,ef (af )]

= [φe,ef (ae)φe,ef (ae)φf,ef (af )] since the computation is inside the heap Sef

= [φe,ef (ae)φf,ef (af )φf,ef (af )] again working in Sef

= [aeafaf ]

as required. It is obvious that [SeSfSg] ⊆ Sefg = S[efg] for all e, f, g ∈ L, so the
partition of S into the disjoint Se is a congruence θ, and that S/θ ∼= L. �

This result justifies the term “strong semilattice of heaps”. Note that L in this
proof is not in general represented as a subset of S, only as a quotient.

The following result extends Theorem 4.2.1 of [3] stating that every Clifford
semigroup is a semilattice of groups, to cover “spineless” cases.

Theorem 11. Let H be a ternary algebra, L a semilattice. The following are

equivalent.

(1) H is a near heap with L ∼= H/ ∼.

(2) H is a semilattice of heaps
⋃

e∈LHe.

(3) H is a strong semilattice of heaps [He, L, φe,f ].
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Proof: (1) ⇒ (2) has been shown already.
For (2) ⇒ (3), let H =

⋃
e∈LHe be a semilattice of heaps. Let e, f ∈ L, with

f ≤ e. Then for all ae ∈ Se and af ∈ Sf , [aeafaf ] ∈ S[eff ] = Sf . So define
ψe,f : Se → Sf by setting φe,f (ae) = [aeafaf ] for any af ∈ Sf . This is well-
defined (independent of the choice of af ∈ Sf ), because if also bf ∈ Sf , then,
using the heap laws as needed, we have

[aebfbf ] = [ae[afafbf ][afafbf ]]

= [ae[bfafaf ][bfafaf ]]

= [[aeafaf ]bf [bfafaf ]]

= [[[aeafaf ]bfbf ]afaf ]

= [[aeafaf ]afaf ] since [aeafaf ] ∈ Sf

= [aeafaf ].

Now φe,e is the identity on Se because for any ae ∈ Se, φe,e(ae) = [aebebe] = ae
for any be ∈ Se.

We next show φe,f is a homomorphism Se → Sf . So let ae, be, ce ∈ Se, with
df ∈ Sf . Then repeatedly using the heap laws in Sf ,

φe,f ([aebece]) = [[aebece]dfdf ]

= [[[aebece]dfdf ]dfdf ] since Se ⊆ Sf and Sf is a heap

= [[ae[dfcebe]df ]dfdf ]

= [[aedfdf ][dfcebe]df ]

= [[[aedfdf ]bece]dfdf ]

= [[aedfdf ]bece].

However,

[φe,f (ae)φe,f (be)φe,f (ce)] = [[aedfdf ][bedfdf ][cedfdf ]]

= [[[aedfdf ]dfdf ]be[cedfdf ]]

= [[aedfdf ]be[cedfdf ]]

= [ae[bedfdf ][cedfdf ]]

= [[ae[bedfdf ]ce]dfdf ]

= [[aedf [dfbece]]dfdf ]

= [aedf [[dbbece]dfdf ]]

= [aedb[dbbece]]

= [[aedfdf ]bece]

= φe,f ([aebece])

from the above.
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Finally we must show that for all e, f, g ∈ L for which e ≥ f ≥ g, φf,g ◦ φe,f =
φe,g . So suppose e, f, g ∈ L satisfy e ≥ f ≥ g. Then for any ae ∈ Se, af ∈ Sf and
ag ∈ Sg,

(φf,g ◦ φe,f )(ae) = [[aeafaf ]agag]

= [[[aeafaf ]agag]agag]

= [[[ae[agafaf ]ag]agag]

= [[aeagag][agafaf ]ag]

= [[[aeagag]afaf ]agag]

= [[aeagag]af [afagag]]

= [ae[afagag][afagag]]

= φe,g(ae)

since [afagag] = φf,g(af ) ∈ Sg. This completes the proof that any semilattice of
heaps is a strong semilattice of heaps.

For (3) ⇒ (1), the fact that H = [He, L, φe,f ] is a near heap was shown in
Theorem 10. For each a ∈ H , let a∗ be the ∼-class containing a. To show
that L is the same as in Proposition 6, it suffices to show that the heaps He in
H = [He, L, φe,f ] are precisely the subheaps a∗ of H . It suffices to show that for
all a ∈ H , if a ∈ He then a∗ = He. So suppose a ∈ He. Of course He ⊆ a∗ by
maximality of a∗. Conversely, if b ∈ a∗, suppose b ∈ Hf . Then [abb] = a, so in
particular, He ∋ a = [aaa] = [bba] ∈ Hef , so ef = e, as otherwise Hef ∩He = ∅.
By symmetry (since also a ∈ b∗) ef = f , so e = f and b ∈ He. Hence a

∗ ⊆ He. �

Note that the homomorphisms φe,f used to define a given strong semilattice
of heaps H = [Se, L, φe,f ] (that is, a near heap by the above result) are uniquely
determined by the near heap. First, the maximal subheap decomposition

⋃
e∈LHe

(including L up to isomorphism) depends only on the structure of H , and for
ae ∈ He and af ∈ Hf , we have [aeafaf ] = [φe,ef (ae)φf,ef (af )φf,ef (af )] ∈ Hef , a
heap, and so [aeafaf ] = φe,ef (ae), so φe,ef is wholly determined by the near heap
operation. This parallels the situation for Clifford semigroups.

However, it follows from the main result of the previous section that for any
near heap of the form [S] where S is a Clifford semigroup, the structure of [S]
completely determines the Clifford semigroup operations on S.

Corollary 12. Suppose S1 and S2 are two Clifford semigroups on the same

underlying set for which [S1] = [S2]. Then S1 = S2.

Proof: First, it is a routine exercise to check that, given a representation of the
Clifford semigroup S as a strong semilattice of groups, there is an induced repre-
sentation of [S] as a strong semilattice of heaps, using the same semilattice, the
subheaps associated with the subgroups, and the same homomorphisms. Then,
if S1 and S2 are two Clifford semigroups on the same underlying set for which
[S1] = [S2], the homomorphisms inherited from S1 and S2 (as well as the Se of
course) must be the same, and so S1 and S2 are also the same. �
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The corresponding fact for arbitrary involuted semigroups fails: the involuted
semigroup operations on S are not determined by the structure of [S]. For ex-
ample, the zero semiheap on a set, in which all ternary products are zero, arises
from distinct, even non-isomorphic, involuted semigroups on the set. It would be
interesting to determine those varieties V of involuted semigroups for which the
operations on S ∈ V are completely determined by [S] (at least up to isomor-
phism).

5. Embedding near heaps in Clifford semigroups

As we have seen, Clifford semigroups give rise to near heaps, and indeed all of
the information present in the Clifford semigroup is retained by the near heap.
However, not every near heap is [S] where S is a Clifford semigroup. So what can
be said? Can we give an embedding theorem for near heaps, thereby providing a
completed entry in Proposition 1?

Note that the cases considered in Proposition 1 can all be dealt with by first
showing that every semiheap of a given type may be embedded in a bi-unital one
of the same type, and then invoking Proposition 2. This is the approach taken in
[5]. However, that approach does not readily extend to near heaps.

First some observations about representations in terms of partial mappings.
By the Wagner-Preston theorem, any inverse semigroup G is representable as a
subsemigroup of the symmetric semigroup of one-to-one partial maps X → X for
some set X . The actual representation used is a left regular one, which maps
a ∈ G to the partial map ψa : G → G given by ψa(x) = ax for all x such that
a′ax = x; when this is done, ψa′a is the restriction of the identity map to the
domain of ψa and ψaa′ is the restriction of the identity map to its range.

Representing a Clifford semigroup in this way, the inverse semigroup of partial
maps has the property that every partial map has equal domain and range (since
aa′ = a′a), and that the partial maps having a given domain form a group (since
aa′ = a′a is an identity element). Moreover the bijections associated with a′a and
b′b agree on a′ab′b: the two heaps of maps restrict down to the same heap of maps
on the smaller domain. This is a concrete way to interpret the fact that every
Clifford semigroup is a semilattice of heaps: the semilattice is the set of domains
(=ranges) determined by E(G) = {a′a | a ∈ G}, and the heaps are the associated
partial maps with domains and ranges given by the aa′.

Likewise, it is well known that every generalised heap may be represented as
a semiheap of one-to-one partial maps X → Y (where without loss of generality
every element of x is in the domain of one of the maps and every element of y is
mapped to by one of the maps): the operation on such maps is [fgh] = f ◦g−1◦h.
Again, interpreting the near heap law shows that the maps can be organised
into subheaps according to their domains, and those maps with a given domain
also have identical ranges (not equal to their domains this time, since they are
in different sets). For a fixed represented near heap, let LX be the collection
of domains and LY the collection of ranges: both sets are semilattices under
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intersection, as for generalised heaps in general. Again, it follows easily that
two sets of heaps (corresponding to two possible domains) restrict down to the
same heap when the intersection of their domains in LX is considered. Again, all
of this is nothing but a concrete realisation of Theorem 11: every near heap is
a semilattice of heaps.

We are now in a position to give the main result of this section.

Theorem 13. Every near heap is embeddable in the semiheap obtained from

a Clifford semigroup.

Proof: Without loss of generality, let H be a near heap of partial maps X → Y
as described above. We shall show how to identify X and Y in such a way that
the resulting Clifford semigroup embeds the original near heap.

Choosing S ∈ LX , we have a fixed set (indeed heap) of bijections HS from
S to S′ ∈ LY . Choose x ∈ X and for any S ∈ LX for which x ∈ S, define
Tx = {p(x) | p ∈ HS}, a subset of Y independent of the choice of S by the
restriction property. This can be extended to arbitrary subsets ofX in the obvious
way: for W ⊆ X , define T (W ) =

⋃
x∈W Tx.

Likewise for y ∈ Y , define T ′

y = {q(y) | q−1 ∈ HS}, where S ⊆ X is such
that y ∈ f(S), and extend to subsets of Y as for T above to give T ′(S′). Now if
a = q−1(p(x)) ∈ T ′(Tx), then q(a) = p(x) ∈ Tx, so T (T

′(Tx)) ⊆ Tx, and because
the opposite inclusion obviously holds, we have T (T ′(Tx)) = Tx. It now follows
easily that there is a one-to-one correspondence between subsets of the form Tx
in Y and T ′(Tx) in X .

Now suppose x′ /∈ T ′(Tx). Suppose b ∈ T ′

x ∩ Tx. So b = p1(x
′) = p2(x) for

some bijections p1 ∈ HS1
(where S1 ∈ LX contains x′) and p2 ∈ HS2

(where
S2 ∈ LX contains x). Hence y = p−1

1 ◦ p2(x) ∈ T ′(Tx), a contradiction. Hence
Tx ∩ Tx′ = ∅. Similarly then, S(Tx) ∩ S(Tx′) = S(Tx ∩ Tx′) = S(∅) = ∅. Thus the
Tx form a partition of Y and the S(Tx) form a partition of X .

Note that for any S ∈ LX for which x ∈ S, if a ∈ T ′(Tx), then a = q−1(p(x))
for some p, q ∈ HS , so a ∈ S; hence T ′(Tx) ⊆ S for every S ∈ LX containing
x. Pick p ∈ HS and define ψx : T ′(Tx) → Tx by setting ψx(a) = p(a) for all
a ∈ T ′(Tx), a one-to-one function (being a restriction of the bijective function
p : S → f(S)). It is also surjective, as if b ∈ Tx, then a = p−1(b) ∈ T ′(Tx) satisfies
p(a) = b. (Hence only one choice of bijection was really needed in defining Tx and
so on.)

We build a bijection ψ : X → Y out of the bijections ψx in the expected way:
ψ(x) = ψx(x) for all x ∈ X . This works because the T ′(Tx) are a partition of X
(and likewise for the Tx in Y ). For convenience we make direct use of the inverse
bijection φ = ψ−1, mapping Y → X .

We now mapH into the inverse semigroup I(X) of one-to-one partial mappings
on X . Thus let θ be the mapping taking H into I(X) such that for each f ∈ H ,
θ(f) = φ ◦ f ; clearly θ(f) ∈ I(X). We show θ is an embedding of H into the
generalised heap I(X) (equipped with its usual semiheap operation).
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For f, g, h ∈ H ,

[θ(f)θ(g)θ(h)] = θ(f) ◦ θ(g)−1 ◦ θ(h)

= θ(f) ◦ (φ ◦ g)−1 ◦ φ ◦ h

= θ(f) ◦ g−1 ◦ φ−1 ◦ φ ◦ h

= φ ◦ f ◦ g−1 ◦ h

= φ ◦ [fgh]

= θ([fgh]).

So θ is a homomorphism which is obviously injective (since φ is a bijection).
Now let M be the inverse subsemigroup of I(X) generated by H1 = {θ(f) |

f ∈ H} under the operations of inversion and composition.
Note that each θ(f) ∈ M (where f ∈ H) has equal domain and range, so

θ(f) ◦ θ(f)−1 = θ(f)−1 ◦ θ(f), and if also g ∈ H , then θ(f) ◦ θ(f)−1 ◦ θ(g) =
θ([ffg]) = θ([gff ]) = θ(g) ◦ θ(f)−1 ◦ θ(f). A typical element of M is a composite
w = a1a2 · · · an of elements of I(X) of the form θ(f) or θ(f)−1 for some f ∈ H ,
and for such elements we have just shown that xx′ = x′x and xy′y = yy′x. It
therefore follows easily that ww−1 = (a1a2 · · · an)(a−1

n · · ·a−1
2 a−1

1 ) which easily

rearranges to (a1a
−1
1 )(a2a

−1
2 ) · · · (ana

−1
n ), which by symmetry also equals w−1w.

Hence M is a Clifford semigroup, embedding H . �
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