
Commentationes Mathematicae Universitatis Carolinae

Arezki Touzaline
Study of a viscoelastic frictional contact problem with adhesion

Commentationes Mathematicae Universitatis Carolinae, Vol. 52 (2011), No. 2, 257--272

Persistent URL: http://dml.cz/dmlcz/141499

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/141499
http://project.dml.cz


Comment.Math.Univ.Carolin. 52,2 (2011) 257–272 257

Study of a viscoelastic frictional

contact problem with adhesion

Arezki Touzaline

Abstract. We consider a quasistatic frictional contact problem between a vis-
coelastic body with long memory and a deformable foundation. The contact is
modelled with normal compliance in such a way that the penetration is limited
and restricted to unilateral constraint. The adhesion between contact surfaces is
taken into account and the evolution of the bonding field is described by a first
order differential equation. We derive a variational formulation and prove the
existence and uniqueness result of the weak solution under a certain condition
on the coefficient of friction. The proof is based on time-dependent variational
inequalities, differential equations and Banach fixed point theorem.

Keywords: viscoelastic, normal compliance, adhesion, frictional, variational in-
equality, weak solution

Classification: 47J20, 49J40, 74M10, 74M15

1. Introduction

Contact problems involving deformable bodies are quite frequent in the indus-
try as well as in daily life and play an important role in structural and mechanical
systems. Contact processes involve complicated surface phenomena, and are mod-
elled by highly nonlinear initial boundary value problems. Taking into account
various contact conditions associated with more and more complex behavior laws
lead to the introduction of new and non standard models, expressed by the aid
of evolution variational inequalities. An early attempt to study frictional contact
problems within the framework of variational inequalities was made in [11]. The
mathematical, mechanical and numerical state of the art can be found in [29]. In
this reference we find a detailed analysis and numerical studies of the adhesive
contact problems. Recently a new book ([31, Chapter 7–11, pp. 127–209]) intro-
duces the reader into the theory of variational inequalities with emphasis on the
study of contact mechanics and more specifically, on antiplane frictional contact
problems. Also, recently existence results were established in [1], [9], [12] in the
study of unilateral and frictional contact problems for linear elastic materials. In
[23], [24] quasistatic frictional contact problems with adhesion for linear elastic
materials were studied and existence results were given under a smallness assump-
tion on the coefficient of friction. Here as in [19], where a similar problem was
resolved, we study a mathematical model which describes a frictional and adhesive
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contact problem between a viscoelastic body with long memory and a deformable
foundation. The contact is modelled with normal compliance in such a way that
the penetration is limited and restricted to unilateral constraints. The main nov-
elty of the model considered is the coupling of memory effects with friction and
adhesion effects. We recall that models for dynamic or quasistatic processes of
frictionless adhesive contact between a deformable body and a foundation have
been studied in [2], [3], [4], [5], [7], [8], [13], [19], [20], [22], [25], [26], [27], [28],
[29], [30], [32], [33]. Following [14], [15] we use the bonding field as an additional
state variable β, defined on the contact surface of the boundary. The variable
satisfies the restrictions 0 ≤ β ≤ 1. At a point on the boundary contact surface,
when β = 1 the adhesion is complete and all the bonds are active; when β = 0
all the bonds are inactive, severed, and there is no adhesion; when 0 < β < 1
the adhesion is partial and only a fraction β of the bonds is active. We refer the
reader to the extensive bibliography on the subject in [6], [14], [15], [16], [23], [25],
[28], [29]. According to [18], the method presented here considers a compliance
model in which the compliance term does not represent necessarily a compact
perturbation of the original problem without contact. This leads us to study
such models, where a strictly limited penetration is permitted with the limit
procedure to the Signorini contact problem. In [32], [33] frictionless unilateral
contact problems with adhesion for elastic materials were studied. Also recently
in [10] a dynamic contact problem with nonlocal friction and adhesion between
two viscoelastic bodies of Kelvin-Voigt type was resolved. An existence result was
proved without any assumption on the smallness of the coefficient of friction and
the variational formulation was approximated. Moreover some numerical results
were presented. In this work as in [32], [33] we derive a variational formulation of
the mechanical problem written as the coupling between a variational inequality
and a differential equation. We prove the existence of a unique weak solution if the
coefficient of friction is sufficiently small, and obtain a partial regularity result for
the solution. However, comparing this result to that obtained in [10] and keeping
in mind the existence results found in [23], [24], we observe that in quasistatic
frictional contact problems information about the solution (second derivative of
u, initial velocity) are removed and this is paid by more restrictive assumptions
on other data, particulary on the coefficient of friction. On the other hand when
the latter is great, it has been proved for example in the study of some frictional
static contact problems (see [17]) that we have nonuniqueness of the solution.

The paper is structured as follows. In Section 2 we present some notation
and give the variational formulation. In Section 3 we state and prove our main
existence and uniqueness result, Theorem 3.1.

2. Problem statement and variational formulation

Let Ω ⊂ R
d (d = 2, 3) be a domain initially occupied by a viscoelastic body

with long memory. Ω is supposed to be open, bounded, with a sufficiently regular
boundary Γ. We assume that Γ is composed of three sets Γ̄1, Γ̄2, and Γ̄3, with the
mutually disjoint relatively open sets Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. The
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body is acted upon by a volume force of density ϕ1 on Ω and a surface traction
of density ϕ2 on Γ2. On Γ3 the body is in adhesive frictional contact with a
deformable foundation.

Thus, the classical formulation of the mechanical problem is written as follows.

Problem P1. Find a displacement u : Ω × [0, T ] → R
d and a bonding field

β : Γ3 × [0, T ] → [0, 1] such that, for all t ∈ [0, T ],

(2.1) σ(t) = Fε(u(t)) +

∫ t

0

F(t− s)ε(u(s)) ds in Ω,

(2.2) div σ(t) + ϕ1(t) = 0 in Ω,

(2.3) u(t) = 0 on Γ1,

(2.4) σ(t)ν = ϕ2(t) on Γ2,

(2.5)
uν(t) ≤ g, σν(t) + p (uν(t)) − cνβ

2(t)Rν (uν (t)) ≤ 0

(

σν(t) + p (uν(t)) − cνβ
2 (t)Rν (uν(t))

)

(uν (t)− g) = 0







on Γ3,

(2.6)

∣

∣στ (t) + cτβ
2(t)Rτ (uτ (t))

∣

∣ ≤ µp (uν (t))

∣

∣στ (t) + cτβ
2(t)Rτ (uτ (t))

∣

∣ < µp (uν(t)) ⇒ uτ = 0

∣

∣στ (t) + cτβ
2(t)Rτ (uτ (t))

∣

∣ = µp (uν (t)) ⇒

∃λ ≥ 0 s.t. uτ = −λ
(

στ (t) + cτβ
2(t)Rτ (uτ (t))

)







































on Γ3,

(2.7) β̇(t) = −
[

β(t)
(

cν (Rν (uν (t)))
2
+ cτ |Rτ (uτ (t))|

2
)

− εa

]

+
on Γ3,

(2.8) β(0) = β0 on Γ3.

Equation (2.1) represents the viscoelastic constitutive law with long memory of

the material; F is the elasticity operator and
∫ t

0
F(t − s)ε(u(s)) ds is the mem-

ory term in which F denotes the tensor of relaxation; the stress σ(t) at current
instant t depends on the whole history of strains up to this moment of time.
Equation (2.2) represents the equilibrium equation while (2.3) and (2.4) are the
displacement and traction boundary conditions, respectively, in which ν denotes
the unit outward normal vector on Γ and σν represents the Cauchy stress vector.
The conditions (2.5) represent the unilateral contact with adhesion in which cν is
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a given adhesion coefficient and Rν , Rτ are truncation operators defined in (2.5)
and (2.6), respectively, by

Rν(s) =











L if s < −L

−s if − L ≤ s ≤ 0

0 if s > 0

, Rτ (v) =

{

v if |v| ≤ L,

L v
|v| if |v| > L.

Here L > 0 is the characteristic length of the bond, beyond which the latter has
no additional traction (see [23], [29]) and p is a normal compliance function which
satisfies the assumption (2.16); g denotes the maximum value of the penetration
which satisfies g ≥ 0. When uν < 0 i.e. when there is separation between the
body and the foundation then the condition (2.5) combined with hypothesis (2.16)
and definition of Rν shows that σν = cνβ

2Rν(uν) and does not exceed the value
L‖cν‖L∞(Γ3). When g > 0, the body may interpenetrate into the foundation,
but the penetration is limited, that is uν ≤ g. In this case of penetration (i.e.
uν ≥ 0), when 0 ≤ uν < g then −σν = p(uν) which means that the reaction of
the foundation is uniquely determined by the normal displacement and σν ≤ 0.
Since p is an increasing function, the reaction is increasing with the penetration.
If uν = g then −σν ≥ p(g) and σν is not uniquely determined. If g > 0 and
p = 0, conditions (2.5) become the Signorini’s contact conditions with a gap and
adhesion

uν ≤ g, σν − cνβ
2Rν (uν) ≤ 0,

(

σν − cνβ
2Rν (uν)

)

(uν − g) = 0.

If g = 0, the conditions (2.5) combined with hypothesis (2.16) lead to the Signorini
contact conditions with adhesion, with zero gap, given by

uν ≤ 0, σν − cνβ
2Rν (uν) ≤ 0,

(

σν − cνβ
2Rν (uν)

)

uν = 0.

These contact conditions were used in [30], [32]. It follows from (2.5) that there
is no penetration between the body and the foundation, since uν ≤ 0 during
the process. Also, note that when the bonding field vanishes, then the contact
conditions (2.5) become the classical Signorini contact conditions with zero gap,
that is,

uν ≤ 0, σν ≤ 0, σνuν = 0.

Conditions (2.6) represent Coulomb’s law of dry friction with adhesion where µ
denotes the coefficient of friction and cτ is a given adhesion coefficient. Equa-
tion (2.7) represents the ordinary differential equation which describes the evolu-
tion of the bonding field, in which r+ = max{r, 0}, and it was already used in [7].

Since β̇ ≤ 0 on Γ3 × (0, T ), once debonding occurs bonding cannot be reestab-
lished and, indeed, the adhesive process is irreversible. Also from [21] it must be
pointed out clearly that condition (2.7) does not allow for complete debonding in
finite time. Finally, (2.8) is the initial condition, in which β0 denotes the initial
bonding field. In (2.7) a dot above a variable represents its derivative with re-
spect to time. We denote by Sd the space of second order symmetric tensors on
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R
d (d = 2, 3) while | · | represents the Euclidean norm on R

d and Sd. Thus, for

every u, v ∈ R
d, u · v = uivi, |v| = (v · v)

1

2 , and for every σ, τ ∈ Sd, σ · τ = σijτij ,

|τ | = (τ · τ)
1

2 . Here and below, the indices i and j run between 1 and d and the
summation convention over repeated indices is adopted. Now, to proceed with
the variational formulation, we need the following function spaces:

H =
(

L2 (Ω)
)d

, H1 =
(

H1(Ω)
)d

, Q =
{

τ = (τij) : τij = τji ∈ L2 (Ω)
}

,

Q1 = {σ ∈ Q : div σ ∈ H} .

Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

(u, v)H =

∫

Ω

uivi dx, 〈σ, τ〉Q =

∫

Ω

σijτij dx.

The strain tensor is

ε(u) = (εij(u)) =
1

2
(ui,j + uj,i) ;

div σ = (σij,j) is the divergence of σ. For every element v ∈ H1 we denote by vν
and vτ the normal and the tangential components of v on the boundary Γ given
by

vν = v · ν, vτ = v − vνν.

We also denote by σν and στ the normal and the tangential traces of a function
σ ∈ Q1, and when σ is a regular function then

σν = (σν) · ν, στ = σν − σνν,

and the following Green’s formula holds:

〈σ, ε(v)〉Q + (div σ, v)H =

∫

Γ

σν · v da ∀ v ∈ H1,

where da is the surface measure element. Now, let V be the closed subspace of
H1 defined by

V = {v ∈ H1 : v = 0 on Γ1} ,

and denote the convex subset of admissible displacements given by

K = {v ∈ V : vν ≤ g a.e. on Γ3} .

Since meas(Γ1) > 0, the following Korn’s inequality holds [11]:

(2.9) ‖ε(v)‖Q ≥ cΩ‖v‖H1
∀ v ∈ V,
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where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V with
the inner product

(u, v)V = 〈ε(u), ε(v)〉Q
and ‖ · ‖V is the associated norm. It follows from Korn’s inequality (2.9) that the
norms ‖·‖H1

and ‖·‖V are equivalent on V . Thus, (V, ‖·‖V ) is a real Hilbert space.
Moreover by Sobolev’s trace theorem, there exists dΩ > 0 which only depends on
the domain Ω, Γ1 and Γ3 such that

(2.10) ‖v‖(L2(Γ3))d ≤ dΩ‖v‖V ∀ v ∈ V.

For p ∈ [1,∞], we use the standard norm of Lp(0, T ;V ). We also use the Sobolev
space W 1,∞(0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ).

For every real Banach space (X, ‖·‖X) and T > 0 we use the notation C([0, T ];X)
for the space of continuous functions from [0, T ] to X ; recall that C([0, T ];X) is
a real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

We suppose that the body forces and surface tractions have the regularity

(2.11) ϕ1 ∈ C([0, T ];H), ϕ2 ∈ C
(

[0, T ];
(

L2 (Γ2)
)d
)

.

We define the function f : [0, T ] → V by

(2.12) (f(t), v)V =

∫

Ω

ϕ1(t) · v dx+

∫

Γ2

ϕ2(t) · v da ∀ v ∈ V, t ∈ [0, T ],

and we note that (2.11) and (2.12) imply

f ∈ C ([0, T ];V ) .

In the study of the mechanical problem P1 we assume that the elasticity operator
F : Ω× Sd → Sd, satisfies

(2.13)































































(a) there exists M > 0 such that
|F (x, ε1)− F (x, ε2)| ≤ M |ε1 − ε2| for all ε1, ε2 in Sd,
a.e. x ∈ Ω;

(b) there exists m > 0 such that

(F (x, ε1)− F (x, ε2)) · (ε1 − ε2) ≥ m |ε1 − ε2|
2
,

for all ε1, ε2 in Sd, a.e. x ∈ Ω;

(c) the mapping x → F (x, ε) is Lebesgue measurable on Ω
for any ε in Sd;

(d) x → F (x, 0) ∈ Q.
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Also we need to introduce the space of the tensors of fourth order defined by

Q∞ = {E =(Eijkl) : Eijkl = Ejikl = Eklij ∈ L∞ (Ω)} ,

which is a real Banach space with the norm

‖E‖Q∞
= max

0≤i,j,k,l≤d
‖Eijkl‖L∞(Ω) .

We assume that the tensor of relaxation F satisfies

(2.14) F ∈ C ([0, T ] ;Q∞) .

The adhesion coefficients satisfy

(2.15) cν , cτ , εa ∈ L∞ (Γ3) and cν , cτ , εa ≥ 0 a.e. on Γ3,

and we assume that the initial bonding field satisfies

(2.16) β0 ∈ L2 (Γ3) ; 0 ≤ β0 ≤ 1 a.e. on Γ3.

Next, we define respectively the functionals

jc : V × V → R, jτ : V × V → R

by

jc(u, v) =

∫

Γ3

p(uν)vν da, jτ (u, v) =

∫

Γ3

µp(uν)|vτ | da,

and let

j = jc + jτ .

We also define the functional

r : L2 (Γ3)× V × V → R

by

r(β, u, v) =

∫

Γ3

(

−cνβ
2Rν(uν

)

vν + cτβ
2Rτ (uτ ) · vτ ) da

∀ (β, u, v) ∈ L2(Γ3)× V × V.

As in [18] we assume that the normal compliance function p satisfies

(2.17)































(a) p :]−∞, g] → R;

(b) there exists Lp > 0 such that
|p (r1)− p (r2)| ≤ Lp |r1 − r2| , for all r1, r2 ≤ g;

(c) (p (r1)− p (r2)) (r1 − r2) ≥ 0, for all r1, r2 ≤ g;

(d) p(r) = 0 for all r < 0.
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We assume that the coefficient of friction µ satisfies

(2.18) µ ∈ L∞ (Γ3) and µ ≥ 0 a.e. on Γ3.

Finally we need to introduce the following set of the bonding field,

B =
{

θ : [0, T ] → L2 (Γ3) : 0 ≤ θ(t) ≤ 1, ∀ t ∈ [0, T ], a.e. on Γ3

}

.

Below, c is a generic positive constant which does not depend on t ∈ [0, T ], whose
value may change from place to place.

Now using Green’s formula, we obtain that the problem P1 has the following
variational formulation.

Problem P2. Find a displacement field u ∈ C([0, T ];K) and a bonding field
β ∈ W 1,∞(0, T ;L2(Γ3)) ∩B such that

(2.19)

〈Fε(u(t)), ε(v)− ε(u(t))〉Q +
〈

∫ t

0
F(t− s)ε(u(s)) ds, ε(v) − ε(u(t))

〉

Q

+r (β(t), u(t), v − u(t)) + j(β(t), u(t), v) − j (β(t), u(t), u (t))
≥ (f(t), v − u(t))V ∀ v ∈ K, t ∈ [0, T ],

(2.20)

β̇ (t) = −
[

β (t) (cν (Rν (uν (t)))
2
+ cτ |Rτ (uτ (t))|

2
)− εa

]

+
a.e. t ∈ (0, T ) ,

(2.21) β (0) = β0.

3. Existence and uniqueness of the solution

Our main result in this section is the following theorem.

Theorem 3.1. Let (2.11), (2.13), (2.14), (2.15), (2.16), (2.17) and (2.18) hold.
Then, there exists a constant µ0 > 0 such that Problem P2 has a unique solution

if

‖µ‖L∞(Γ3) < µ0.

The proof of Theorem 3.1 is carried out in several steps. In the first step, let
k > 0 and consider the space X defined as

X =

{

β ∈ C
(

[0, T ];L2 (Γ3)
)

: sup
t∈[0,T ]

[

exp(−kt)‖β(t)‖L2(Γ3)

]

< +∞

}

.

It is well known that X is a Banach space with the norm

‖β‖X = sup
t∈[0,T ]

[

exp(−kt)‖β(t)‖L2(Γ3)

]

.

Next for a given β ∈ X , we consider the following variational problem.
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Problem P1β. Find uβ ∈ C([0, T ];K) such that

〈Fε (uβ(t)) , ε(v)− ε (uβ(t))〉Q

+

〈
∫ t

0

F(t− s)ε (uβ(s)) ds, ε(v)− ε (uβ(t))

〉

Q

+ r (β (t) , uβ (t) , v − uβ(t)) + j (uβ(t), v)− j (uβ (t) , uβ (t))

≥ (f(t), v − uβ(t))V ∀ v ∈ K, t ∈ [0, T ].

(3.1)

We have the following result.

Proposition 3.2. There exists a constant µ1 > 0 such that Problem P1β has a

unique solution if

‖µ‖L∞(Γ3) < µ1.

For the proof of this proposition we consider the following problem.

Problem P1βη. For η ∈ C([0, T ];Q), find uβη ∈ C([0, T ];K) such that

(3.2)

〈Fε (uβη(t)) , ε (v − uβη(t))〉Q + 〈η(t), ε (v − uβη(t))〉Q

+r (β(t), uβη (t) , v − uβη(t)) + j (uβη(t), v) − j (uβη (t) , uβη(t))

≥ (f (t) , v − uβη (t))V ∀ v ∈ K, t ∈ [0, T ] .

Riesz’s representation theorem leads to the existence of an element fη ∈C([0,T ];V )
such that

(fη (t) , v)V = (f(t), v)V − 〈η(t), ε(v)〉Q ∀ v ∈ V.

Then it is clear that Problem P1βη is equivalent to the following problem.

Problem P2βη. For η ∈ C([0, T ];Q), find uβη ∈ C([0, T ];K) such that

(3.3)

〈Fε (uβη(t)) , ε (v − uβη(t))〉Q + r (β (t) , uβη(t), v − uβη(t))

+j (uβη (t) , v)− j (uβη(t), uβη (t)) ≥ (fη(t), v − uβη(t))V

∀ v ∈ K, t ∈ [0, T ].

We have the following result.

Lemma 3.3. There exists a constant µ1 > 0 such that Problem P2βη has a unique

solution if ‖µ‖L∞(Γ3) < µ1.

Proof: Let t ∈ [0, T ] and let At : V → V be the operator defined by

(Atu, v)V = 〈Fε (u) , ε(v)〉Q + r(β(t), u, v) + jc(u, v) ∀u, v ∈ V.

As in [29], using (2.13)(a), (2.15), (2.17)(b) and the properties of Rν and Rτ ,
we see that the operator At is Lipschitz continuous. Also using (2.13)(b), (2.15),
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(2.17)(c) and the properties of Rν and Rτ , we have

(Atu−Atv, u − v)V ≥ m‖u− v‖2V ∀u, v ∈ V.

Then the operator At is strongly monotone. Next, we can easily check that, for a
given u ∈ K, the functional jτ (u, ·) : K → R is convex and lower semicontinuous.
Let µ1 = m/Lpd

2
Ω, then for ‖µ‖L∞(Γ3) < µ1, since K is a nonempty closed

convex subset of V , using a standard existence and uniqueness result for elliptic
variational inequalities (see [2]), it follows that there exists a unique element
uβη(t) ∈ K which satisfies the inequality (3.3). Moreover according again to [29],
using (3.3), we have

‖uβη (t1)− uβη (t2)‖V

≤ c
(

‖β (t1)− β (t2)‖L2(Γ3)
+ ‖fη (t1)− fη (t2)‖V

)

∀ t1, t2 ∈ [0, T ].

Hence the regularity fη ∈ C([0, T ];V ) and β ∈ C([0, T ];L2(Γ3)) imply that uβη ∈
C([0, T ];K). �

Now to end the proof of Proposition 3.2, we introduce the operator

Λβ : C ([0, T ] ;Q) → C ([0, T ] ;Q)

defined by

(3.4) Λβη(t) =

∫ t

0

F(t− s)ε (uβη(s)) ds ∀ η ∈ C([0, T ];Q), t ∈ [0, T ].

Lemma 3.4. The operator Λβ has a unique fixed point ηβ .

Proof: Let η1, η2 ∈ C([0, T ];Q). Using (3.3), (3.4) and (2.14) we obtain

‖Λβη1(t)− Λβη2(t)‖Q ≤ c

∫ t

0

‖η1(s)− η2(s)‖Q ds ∀ t ∈ [0, T ].

Reiterating this inequality n times, yields

∥

∥Λn
βη1 − Λn

βη2
∥

∥

C([0,T ];Q)
≤

(cT )n

n!
‖η1 − η2‖C([0,T ];Q) .

As limn→+∞
(cT )n

n! = 0, it follows that for a positive integer n sufficiently large,
Λn
β is a contraction; then, by using the Banach fixed point theorem, it admits a

unique fixed point ηβ which is also a unique fixed point of Λβ i.e.,

(3.5) Λβηβ(t) = ηβ(t) ∀ t ∈ [0, T ].

Then by (3.3) and (3.5) we conclude that uβηβ
is the unique solution of (3.1) and

Proposition 3.2 is proved. �

Next denote uβ = uβηβ
. In the step below we consider the following problem.
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Problem P2β. Find β∗ : [0, T ] → L∞(Γ3) such that

β̇∗(t) = −
[

β∗(t)
(

cν (Rν (uβ∗ν(t)))
2 + cτ |Rτ (uβ∗τ )|

2
)

− εa

]

+
(3.6)

a.e. t ∈ (0, T ),

β∗(0) = β0.(3.7)

We obtain the following result.

Proposition 3.5. Problem P2β has a unique solution β∗ which satisfies

β∗ ∈ W 1,∞
(

0, T ;L2 (Γ3)
)

∩B.

Proof: Consider the mapping Λ : X → X given by

Λβ(t) = β0 −

∫ t

0

[

β(s)
(

cν(Rν (uβν(s)))
2 + cτ |Rτ (uβτ )|

2
)

− εa

]

+
ds,

where uβ is the solution of Problem P1β . Then we have

‖Λβ1 (t)− Λβ2(t)‖L2(Γ3)

≤ c

∫ t

0

∥

∥

∥
β1(s)

(

Rν

(

u
β1

ν(s)
))2

− β2(s)
(

Rν

(

u
β2

ν(s)
))2

∥

∥

∥

L2(Γ3)
ds

+ c

∫ t

0

∥

∥

∥
β1(s)

∣

∣Rτ

(

u
β1

τ (s)
)∣

∣

2
− β2 (s)

∣

∣Rτ

(

u
β2

τ (s)
)∣

∣

2
∥

∥

∥

L2(Γ3)
ds.

We use the definition of the truncation operators Rν and Rτ and write

β1 = β1 − β2 + β2.

It follows after some algebra calculus that

‖Λβ1 (t)− Λβ2 (t)‖L2(Γ3)

≤ c
∫ t

0 ‖β1(s)− β2 (s)‖L2(Γ3)
ds+ c

∫ t

0 ‖uβ1ν (s)− uβ2ν(s)‖L2(Γ3)
ds.

Moreover using (2.10), we get

‖Λβ1(t)− Λβ2(t)‖L2(Γ3)

≤ c

∫ t

0

‖β1 (s)− β2(s)‖L2(Γ3)
ds+ cdΩ

∫ t

0

‖uβ1
(s)− uβ2

(s)‖
V

ds.
(3.8)

Now we need to show the following lemma.

Lemma 3.6. There exists a constant µ0 ∈]0, µ1[ such that for ‖µ‖L∞(Γ3) < µ0,

we have

‖uβ2
(t)− uβ1

(t)‖
V
≤ c ‖β1(t)− β2(t)‖L2(Γ3)

∀ t ∈ [0, T ].
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Proof: Let t ∈ [0, T ]. Take uβ2
(t) in the inequality (3.1) satisfied by uβ1

(t), then
take uβ1

(t) in the same inequality satisfied by uβ2
(t). After adding the resulting

inequalities we find that

〈Fε (uβ1
(t))− Fε (uβ2

(t)) , ε (uβ2
(t))− ε (uβ1

(t))〉
Q

+
〈

∫ t

0 F(t− s)ε (uβ1
(s))− ε (uβ2

(s)) ds, ε (uβ2
(t)) − ε (uβ1

(t))
〉

Q

+r (β1(t), uβ1
(t), uβ2

(t)− uβ1
(t)) + r (β2(t), uβ2

(t), uβ1
(t)− uβ2

(t))

+j (uβ1
(t), uβ2

(t))− j (uβ1
(t) , uβ1

(t)) + j (uβ2
(t), uβ1

(t))

−j (uβ2
(t), uβ2

(t)) ≥ 0.

Using the assumption (2.13)(b) on F we deduce from the previous inequality that

(3.9)

m ‖uβ1
(t)− uβ2

(t)‖
2
V

≤
〈

∫ t

0
F(t− s)ε (uβ1

(s))− ε (uβ2
(s)) ds, ε (uβ2

(t))− ε (uβ1
(t))

〉

Q

+r (β1(t), uβ1
(t), uβ2

(t)− uβ1
(t)) + r (β2(t), uβ2

(t), uβ1
(t)− uβ2

(t))

+j (uβ1
(t), uβ2

(t))− j (uβ1
(t) , uβ1

(t)) + j (uβ2
(t) , uβ1

(t))

−j (uβ2
(t) , uβ2

(t)) .

Using the properties of Rν and Rτ (see [29]), we find that

r (β1(t), uβ1
(t) , uβ2

(t)− uβ1
(t)) + r (β2(t), uβ2

(t), uβ1
(t)− uβ2

(t))

≤
(

‖cν‖L∞(Γ3)
+ ‖cτ‖L∞(Γ3)

)

LdΩ ‖β1(t)− β2(t)‖L2(Γ3)
‖uβ1

(t)− uβ2
(t)‖

V
.

On the other hand as in [31] we have

〈

∫ t

0
F(t− s) (ε (uβ1

(s))− ε (uβ2
(s))) ds, ε (uβ2

(t)− uβ1
(t))

〉

Q

≤
(

∫ t

0
‖F(t− s)‖Q∞

‖uβ2
(s)− uβ1

(s)‖
V

ds
)

‖uβ2
(t)− uβ1

(t)‖
V

≤ c
(

∫ t

0
‖uβ2

(s)− uβ1
(s)‖

V
ds
)

‖uβ2
(t)− uβ1

(t)‖
V
.

Using the elementary inequality

cab ≤ c2
a2

2m
+m

b2

2
,
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where the constant m > 0 is introduced in (2.13)(b), we find that

〈
∫ t

0

F(t− s) (ε (uβ1
(s)) − ε (uβ2

(s))) ds, ε (uβ2
(t)− uβ1

(t))

〉

Q

≤
c2

2m

(
∫ t

0

‖uβ2
(s)− uβ1

(s)‖
V

ds

)2

+
m

2
‖uβ2

(t)− uβ1
(t)‖

2
V
.

(3.10)

Also using the assumptions (2.17)(b) and (2.17)(c) on the function p yields

(3.11)

j (uβ1
(t), uβ2

(t))− j (uβ1
(t) , uβ1

(t))

+j (uβ2
(t) , uβ1

(t))− j (uβ2
(t), uβ2

(t))

≤ Lpd
2
Ω ‖µ‖L∞(Γ3)

‖uβ2
(t)− uβ1

(t)‖
2
V
.

Now, we combine inequalities (3.9), (3.10) and (3.11) to obtain

(3.12)

m ‖uβ1
(t)− uβ2

(t)‖
2
V
≤ Lpd

2
Ω ‖µ‖L∞(Γ3)

‖uβ2
(t)− uβ1

(t)‖
2
V

+
c2

2m

(
∫ t

0

‖uβ2
(t)− uβ1

(t)‖
V

ds

)2

+
m

2
‖uβ2

(t)− uβ1
(t)‖

2
V

+
(

‖cν‖L∞(Γ3)
+ ‖cτ‖L∞(Γ3)

)

LdΩ ‖β1(t)− β2(t)‖L2(Γ3)

× ‖uβ1
(t)− uβ2

(t)‖
V
.

Using Young’s inequality we get

(3.13)

(

‖cν‖L∞(Γ3)
+ ‖cτ‖L∞(Γ3)

)

LdΩ ‖β1(t)− β2(t)‖L2(Γ3)

× ‖uβ1
(t)− uβ2

(t)‖
V

≤ c ‖β1(t)− β2(t)‖
2
L2(Γ3)

+
m

4
‖uβ2

(t)− uβ1
(t)‖

2
V
.

Then we deduce from (3.12) and (3.13) that

m

4
‖uβ2

(t)− uβ1
(t)‖

2
V
≤ Lpd

2
Ω ‖µ‖L∞(Γ3)

‖uβ2
(t)− uβ1

(t)‖
2
V

+
c2

2m

(
∫ t

0

‖uβ2
(s)− uβ1

(s)‖
V

ds

)2

+ c ‖β1 (t)− β2 (t)‖
2
L2(Γ3)

.

Let

µ0 =
m

4Lpd2Ω
=

µ1

4
.

Then if

‖µ‖L∞(Γ3)
< µ0,
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we deduce that

‖uβ2
(t)− uβ1

(t)‖
2
V
≤ c

(
∫ t

0

‖uβ2
(s)− uβ1

(s)‖
2
V

ds+ ‖β1 (t)− β2(t)‖
2
L2(Γ3)

)

.

Hence Gronwall’s argument implies that

�(3.14) ‖uβ2
(t)− uβ1

(t)‖
V
≤ c ‖β1 (t)− β2(t)‖L2(Γ3)

.

Now to end the proof of Proposition 3.5 we use (3.8) and (3.14) to get

‖Λβ1(t)− Λβ2(t)‖L2(Γ3)
≤ c

∫ t

0 ‖β1(s)− β2 (s)‖L2(Γ3)
ds.

On the other hand we have

∫ t

0

‖β1(s)− β2(s)‖L2(Γ3)
ds ≤ ‖β1 − β2‖X

exp(kt)

k
.

Therefore

‖Λβ1(t)− Λβ2(t)‖L2(Γ3)
≤ c ‖β1 − β2‖X

exp(kt)

k
∀ t ∈ [0, T ],

which yields

exp(−kt) ‖Λβ1(t)− Λβ2(t)‖L2(Γ3)
≤

c

k
‖β1 − β2‖X ∀ t ∈ [0, T ].

Hence we obtain

(3.15) ‖Λβ1 − Λβ2‖X ≤
c

k
‖β1 − β2‖X .

The inequality (3.15) shows that for k sufficiently large Λ is a contraction. Then it
has a unique fixed point β∗ which satisfies (3.6) and (3.7). To prove that β∗ ∈ B,
we use (2.17) and we refer the reader to [30, Remark 3.1]. �

Lemma 3.7. (uβ∗ , β∗) is a unique solution of Problem P2.

Proof: Existence. Let β = β∗ and let uβ∗ the solution of Problem P1β . We
conclude by (3.1), (3.6) and (3.7) that (uβ∗ , β∗) is a solution to Problem P2.

Uniqueness. Suppose that (u, β) is a solution of Problem P2 which satisfies (2.19),
(2.20) and (2.21). It follows from (2.19) that u is a solution to Problem P1β , and
from Proposition 3.2 that u = uβ . Take u = uβ in (2.19) and use the initial
condition (2.21), we deduce that β is a solution to Problem P2β . Therefore, we
obtain from Proposition 3.5 that β = β∗ and then we conclude that (uβ∗ , β∗) is
a unique solution to Problem P2. �
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Sér. II 295 (1982), 913–916.
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local de Coulomb en élasticité, Thesis, Univ. Aix. Marseille 1, 2005.
[25] Rojek J., Telega J.J., Contact problems with friction, adhesion and wear in orthopeadic

biomechanics I: General developements, J. Theor. Appl. Mech. 39 (2001), 655–677.
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