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AN ASYMPTOTIC FORMULA FOR SOLUTIONS
OF NONOSCILLATORY HALF-LINEAR
DIFFERENTIAL EQUATIONS

ONDREJ DOSLY AND JANA REZNICKOVA

ABSTRACT. We establish a Hartman type asymptotic formula for nonoscilla-
tory solutions of the half-linear second order differential equation

(rme)) +c®(y) =0, (y) = |ylP2y, p>1.

1. INTRODUCTION

In this paper we prove an asymptotic formula for nonoscillatory solutions of the
half-linear second order differential equation

/ —
(1) (r(t)®(y") +c®)@(y) =0, D(y):=ly[" 2y, p>1,
where r, ¢ are continuous functions and r(t) > 0 for large t. Here, equation is
viewed as a perturbation of the nonoscillatory equation of the same form

(2) (r(t)@(a")) + &(t)(x) = 0

with a continuous function é. It is shown that if the integral

/t lels) — () hP(s) ds

where h is the so-called principal solution of , see [9, T3], is convergent and tends
to zero sufficiently rapidly as ¢ — oo, then solutions of and have similar
asymptotic behavior as ¢t — oo. In the linear case p = 2, our criterion reduces to
[10, Theorem 9.1].

The problem to find exact asymptotic formulas for solutions of the linear
Sturm-Liouville differential equation

(rt)z") +c(t)x =0

is treated in the literature as Hartman-Wintner problem and attracted considerable
attention in recent years. We refer to the papers [3| [I5] [I6] and the references given
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therein. It is a subject of the present investigation to elaborate a similar asymptotic
theory for half-linear equation .

2. PRELIMINARIES

The linear Sturmian separation theorem extends verbatim to , so this equation
can be classified as oscillatory or nonoscillatory similarly as in the linear case. We
refer to [I, Chap. 3], [5], or to [6] for more details concerning essentials of the
half-linear oscillation theory. In our asymptotic formula the so-called principal and
nonprincipal solutions of appear. Nonoscillation of implies the existence of
a solution of the Riccati type differential equation

—-1’
(related to (I]) by the substitution w = r®(y’/y)) which is defined on some interval
[T, 00). Among all solutions of there exists the minimal one w, minimal in
the sense that for any other solution w of we have w(t) > w(t) for large t.
The principal solution T of is then the solution which “generates” the minimal
solution w via the Riccati substitution @w = r®(&'/Z), i.e., it is given by the formula

(3) W'+ e(t) + (p— Drti)w|? =0, ¢= pp

s =Cosp{ [ () (s) ds ),

where ®~1(y) = |y|9 2y is the inverse function of ® and C is a nonzero real
constant. The nonprincipal solution of is any solution linearly independent of
the principal one.

We have the following inequality for minimal solutions of , see [6l, Theorem
4.4.2).

Lemma 1. Let ¢(t) > ¢(t) for large t, i.e., is the Sturmian majorant of (2),
and suppose that is nonoscillatory. Then the minimal solutions w of and
w of the Riccati equation associated with satisfy the inequality w(t) > w(t) for
large t.

At the end of this section we recall the linear asymptotic criterion given in [10,
Theorem 9.1].

Proposition 1. Consider the pair of linear differential equations

(4) (rt)u") +c(t)u=0
and
(5) (r(t)a')' +e(t)z =0,

and let xg,x1 be the principal and nonprincipal solutions of , respectively.
Suppose that

/Oo(c(t) —&(t))xa(t)dt  converges
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and
/ <tr>i?<t> <o, = tfﬁfw‘/ (r)ad(r) dr]

Then possesses a pair of solutions u;, ¢ = 0,1, such that their logarithmic
derivatives satisfy

3. MAIN RESULT

In this section we present the main result of the paper. We establish an asymptotic
formula for solutions of .

Theorem 1. Let h be the positive principal solution of such that
(7) litm inf |G(t)] > 0, G(t) := r(t)h(t)@(h'(t))

and

() /°°Rfl<t>dt:oo, R(t) = r(OR2 ()W (£) 2.

Further suppose that c(t) > ¢&(t) for large t, equation is monoscillatory, the
integral

(9) / h (c(t) - é(t))hp(t) dt < o0,
and that the function T'(t) = [7( é(8))hP(s) ds satisfies

/ TR () dt < .

Then possesses a pair of solutions y;, i = 0,1, such that their logarithmic
derivatives satisfy

v _ M@, 1
(10 w(®)  hlt) <R(t) [*R1(s) ds>’
yit) _ KW(t) 2 o 1
(D MOLON pR(t) [* R=1(s)ds " (R(t) [*R1(s) ds>
ast — o0.

Proof. Denote v = h?(w — wy), where w, = r®(h’//h) and w is any solution of
which is extensible up to co. Then by a direct computation (see, e.g. [7]) one
can find that v solves the so-called modified Riccati equation

(12) v+ (c(t) — é@X))hP(t) + (p — D' ~9(t)h™9(t)H (t,v) = 0,
where
H(t,v) = v+ Gt)|" — q@ 1 (G(t)v — |G(t)]1.
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Using the fact that ¢(t) > &(t) we have by Lemma [I] that w(t) > wy(t) for large ¢,
i.e., v(t) > 0 and since H(t,v) > 0 (see, e.g. [8]), the function v is nonincreasing,
hence there exists a nonnegative limit lim;_, oo v(t) =: V0.

Conditions and imply that v, = 0. Indeed, suppose that v, > 0. The
function H can be written in the form

H(t,v) = ‘G(t)‘qF(z), Fiz)=]14+2—gz—-1, z=v/G.

Condition implies that z = g((ft)) attains values in a compact interval, say
[A, B] C R, for large t. Consider the function

0 FG) 240,
F(z):=
Q(qgl), 2=0.

This function is positive and continuous in R (actually, it is a C? function), hence
there exists m > 0 such that F|(z) > m for z € [A, B, i.e., F(2) > mz?. Hence we
have for large ¢ (suppressing the argument t)

v 2

v’+(cfa)hu(pf1)r1*Qh*q|G|qm( ) <0,

i.e., substituting for G from

N

o 4 (= DR +m(p— 1) 5 <0,
where R is given by . Integrating the last inequality from T to t, letting t — oo,
and using the fact that @D holds, we get

m(p — 1)viﬁw]% < m(p—l)/;o 1;2((;) dt
<(T) — / (c(t) — &(t))hP(t) dt < oo,

T

a contradiction with . Hence vy, = 0, i.e. z(00) = 0, so we may apply the second
order Taylor formula to F at the center z = 0. Since F(0) = F’(0) = 0, we have

F(z) = q(q2— 1)22[1 +0o(1)], as z—0

and hence
-1 _
H(t,v(t)) = %‘G(mq 21)2(t)(1 +0o(1)) as t— 0.
This means that we may write in the form (since (p —1)(¢—1) =1)

q(1+0o(1)) v? B
2 R(t)

(13) v+ (c(t) — é(t))hP(t) +

as can be verified by a direct computation.
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The last equation is the Riccati equation associated with the linear differential

equation (related to this equation by the Riccati substitution v = q(%f(l))%)
(14) <2R<t)u’>I + (c(t) = é(t))hP (t)u = 0.
q(1+o0(1))
Now, we consider equation as a perturbation of the one-term equation
2R(t '
(15) <( ) m') =0
q(1+o0(1))

which plays the role of unperturbed equation in Proposition [1} Taking into
account that (8) holds, i.e. also [* R™(¢)(1 + o(1)) dt = oo

zo(t) =1, x(t) = / R7(s)(1+0(1))ds

are the principal and nonprincipal solutions of ([15]), respectively. Now, applying
Proposition [I] to the pair of equations and (14) implies that has a pair of
solutions ug, u; with logarithmic derivatives

ug(t) (1+0( ))
(t)_0<2R (s)(1+o(1)) d )
4 ret) 1)
u(t) ST R=1(s)(1 4+ 0(1)) ds +0( t) ["R=1(s)(1 + (1))ds>

which means that (| . possesses a pair of solutions

o 2R ugo( 1 )
o q(1+o0(1)) uo B ftR—l(s)ds ,

oo 2R 2 ( 1 )
P g(Tro) wi g fTR(s)(1+o0(1))ds  \[TRL

2
Zm(l"'o(l))

as t — o0o. Here we have used that

(/R )(1+ o1 ))ds)-o(/R ) as £ — oo

which follows from that fact that under

fR (1—|—0( ))d3:
t—»oo fR

Now, substituting w = h™Pv 4+ wy,, where w is a solution of , we have for ¢t — oo

= POy -p g0 (1) + wn(t) = w NEEERN
0 = gty =m0 + ) =0 +o( 7 N |-
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il (r)am] i ()

o0 =D )ty 210
yi(t)  K(t) 2(1+0(1)) 177" K(1) 2 ) 1

u() Al {” GO [ Rl] TR0 R0 R (R(t) I Rl>'
The proof is complete. U

Remark 1. (i) In the linear case p = 2, Theorem [I| reduces essentially to Pro-
position |1} Indeed, the nonprincipal solution x; of can be expressed by the
D’Alembert formula as

i.e.
2y (t) _ ap(t) 1

z1(t)  wo(t)  r(t)a2(t) [ r—V(s)zg(s)ds
and we see that , are the same as @ in case p = 2. The difference is in
the assumption c(t) > ¢&(t) and in additional assumption (7)), this restriction is
discussed in the next part of this remark.

(ii) In our main result we suppose (7)) and (8). Condition (8] is closely related
to the integral characterization of the principal solution of half-linear differential
equations, we refer to [2] and [4] for discussion concerning this assumption. In the
linear case p = 2 it is just the definition of the principal solution. Condition is
technical, we needed it (together with the assumption c¢(t) > é(¢) for large t) to
prove an asymptotic formula for the function v in . The subject of the present
investigation is to find a similar asymptotic formula in case when lim; ., G(t) = 0.

(iii) Under some additional assumptions on the functions r, ¢, é (regular mono-
tonicity), asymptotic formulas for solutions of can be formulated in terms of
slowly and regularly varying functions, we refer to [I1], (12, [I4] for details.
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