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Abstract. The theorem about the characterization of a GS-quasigroup by means of a
commutative group in which there is an automorphism which satisfies certain conditions,
is proved directly.
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1. Introduction

The concept of a GS-quasigroup is defined in [1].

A quasigroup (Q, ·) is called a GS-quasigroup if it satisfies the (mutually equiva-

lent) identities

a(ab · c) · c = b,(1.1)

a · (a · bc)c = b,(1.2)

and the identity of idempotency

(1.3) aa = a.

It can be proved that GS-quasigroups are medial quasigroups, i.e. the identity

(1.4) ab · cd = ac · bd

is valid. Namely, we have successively

ac · (ab · cd)d
(1.2)
= a[ab · (ab · cd)d] · (ab · cd)d

(1.1)
= b

(1.2)
= ac · (ac · bd)d,

where from (1.4) follows.
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As a consequence of the identity of mediality the considered GS-quasigroup (Q, ·)

satisfies the identities of elasticity and the left and right distributivity, i.e. we have

the identities

a · ba = ab · a,(1.5)

a · bc = ab · ac,(1.6)

ab · c = ac · bc.(1.7)

Further, the identities

a(ab · c) = b · bc,(1.8)

(a · bc)c = ab · b(1.9)

are also valid in any GS-quasigroup. Namely, we have successively

a(ab · c) · c
(1.1)
= b

(1.1)
= b(bb · c) · c

(1.3)
= (b · bc)c

wherefrom the identity (1.8) follows. Analogously, by virtue of

a · (a · bc)c
(1.2)
= b

(1.2)
= a · (a · bb)b

(1.3)
= a(ab · b)

we get the identity (1.9).

Example 1.1. Let (G,+) be a commutative group in which there is an automor-

phism ϕ which satisfies the identity

(1.10) (ϕ ◦ ϕ)(a) − ϕ(a) − a = 0.

If the binary operation on the set G is defined by the identity

(1.11) ab = a+ ϕ(b − a),

then it can be proved that (G, ·) is a GS-quasigroup ([1]).

2. A direct characterization of GS-quasigroups

We will prove that Example 1.1 is a characteristic example of a GS-quasigroup,

namely, any GS-quasigroup can be obtained from a commutative group in the way

given in Example 1.1.
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Theorem 2.1. Let (Q, ·) be a GS-quasigroup, then there is a commutative group

(Q,+) and its automorphism ϕ which satisfies the identities (1.10) and (1.11).

P r o o f. Let 0 be a given point. If we define the addition of points in Q by

(2.1) a+ b = 0(0a · b0) · 0

then (Q,+) is a commutative group with the neutral element 0. Let us prove the

above in the following way:

a+ b
(2.1)
= 0(0a · b0) · 0

(1.4)
= 0(0b · a0) · 0

(2.1)
= b+ a,

a+ 0
(2.1)
= 0(0a · 00) · 0

(1.3)
= 0(0a · 0) · 0

(1.1)
= a.

For

−a = 0a · 0

we get

a+ (−a)
(2.1)
= 0[0a · (0a · 0)0] · 0

(1.5)
= 0 · [0a · (0a · 0)0]0

(1.1)
= 0 · 0

(1.3)
= 0.

Now, we shall prove the associativity. If we introduce the abbreviation a+ b = d we

get

(a+ b) + c = d+ c
(2.1)
= 0(0d · c0) · 0

(1.6),(1.7)
= (0 · 0d)0 · (0 · c0)0

(1.5)
= 0(0d · 0) · (0 · c0)0

(1.8),(1.9)
= (d · d0)(0c · c).

Because of

(d · d0)0
(1.9)
= dd · d

(1.3)
= d = a+ b

(2.1)
= 0(0a · b0) · 0

we get

d · d0 = 0(0a · b0)
(1.6)
= (0 · 0a)(0 · b0).

On the other hand, the following identities

(a+ b) + c = (d · d0)(0c · c) = (0 · 0a)(0 · b0) · (0c · c)
(1.4)
= (0 · 0a)(0c) · (0 · b0)c

(1.6)
= 0(0a · c) · (0 · b0)c

(1.4)
= 0(0 · b0) · (0a · c)c

are valid. Similarly we have the identity

(c+ b) + a = 0(0 · b0) · (0c · a)a.
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However, we have

(0c · a)a
(1.7)
= (0a · ca)a

(1.9)
= (0a · c)c.

So, the previous equality yields

a+ (b+ c) = (c+ b) + a = 0(0 · b0) · (0c · a)a = 0(0 · b0) · (0a · c)c = (a+ b) + c.

The mapping ϕ : Q → Q defined by ϕ(a) = 0a is an automorphism of the group

(Q,+) so that the identities (1.10) and (1.11) hold. Let us prove it like this:

ϕ(a) + ϕ(b) = 0a+ 0b
(2.1)
= [0 · (0 · 0a)(0b · 0)]0

(1.5)
= [0 · (0 · 0a)(0 · b0)]0

(1.6)
= [0 · 0(0a · b0)]0

(1.5)
= 0[0(0a · b0) · 0]

(2.1)
= 0(a+ b) = ϕ(a+ b).

Analogously, it can be proved that the mapping ψ : Q→ Q defined by ψ(a) = a0 is

also an automorphism of the group (Q,+).

For any points a, b the following identities hold:

ψ(a)+ϕ(b) = a0+0b
(2.1)
= [0·(0·a0)(0b·0)]0

(1.6),(1.7)
= [0(0·a0)·0][0(0b·0)·0]

(1.5),(1.1)
= ab.

This equality and (1.3) immediately imply

ψ(a) = a− ϕ(a).

By virtue of

−a = 0a · 0 = ψ(ϕ(a)) = ϕ(a) − ϕ(ϕ(a))

the identity (1.10) follows.

Finally, it remains to prove the identity (1.11) which can actually be achieved from

the following

ab = ψ(a) + ϕ(b) = a− ϕ(a) + ϕ(b) = a+ ϕ(b − a).
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