Czechoslovak Mathematical Journal

Zdenka Kolar-Begović
A short direct characterization of GS-quasigroups

Czechoslovak Mathematical Journal, Vol. 61 (2011), No. 1, 3-6

Persistent URL: http://dml.cz/dmlcz/141514

Terms of use:

© Institute of Mathematics AS CR, 2011

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

A SHORT DIRECT CHARACTERIZATION OF GS-QUASIGROUPS

Zdenka Kolar-Begović, Osijek

(Received April 6, 2005)

Abstract

The theorem about the characterization of a GS-quasigroup by means of a commutative group in which there is an automorphism which satisfies certain conditions, is proved directly.

Keywords: GS-quasigroup, commutative group
MSC 2010: 20N05

1. Introduction

The concept of a GS-quasigroup is defined in [1].
A quasigroup (Q, \cdot) is called a GS-quasigroup if it satisfies the (mutually equivalent) identities

$$
\begin{align*}
& a(a b \cdot c) \cdot c=b, \tag{1.1}\\
& a \cdot(a \cdot b c) c=b, \tag{1.2}
\end{align*}
$$

and the identity of idempotency

$$
\begin{equation*}
a a=a . \tag{1.3}
\end{equation*}
$$

It can be proved that GS-quasigroups are medial quasigroups, i.e. the identity

$$
\begin{equation*}
a b \cdot c d=a c \cdot b d \tag{1.4}
\end{equation*}
$$

is valid. Namely, we have successively

$$
a c \cdot(a b \cdot c d) d \stackrel{(1.2)}{=} a[a b \cdot(a b \cdot c d) d] \cdot(a b \cdot c d) d \stackrel{(1.1)}{=} b \stackrel{(1.2)}{=} a c \cdot(a c \cdot b d) d,
$$

where from (1.4) follows.

As a consequence of the identity of mediality the considered GS-quasigroup ($Q, \cdot \cdot$ satisfies the identities of elasticity and the left and right distributivity, i.e. we have the identities

$$
\begin{align*}
a \cdot b a & =a b \cdot a \tag{1.5}\\
a \cdot b c & =a b \cdot a c, \tag{1.6}\\
a b \cdot c & =a c \cdot b c \tag{1.7}
\end{align*}
$$

Further, the identities

$$
\begin{align*}
a(a b \cdot c) & =b \cdot b c \tag{1.8}\\
(a \cdot b c) c & =a b \cdot b \tag{1.9}
\end{align*}
$$

are also valid in any GS-quasigroup. Namely, we have successively

$$
a(a b \cdot c) \cdot c \stackrel{(1.1)}{=} b \stackrel{(1.1)}{=} b(b b \cdot c) \cdot c \stackrel{(1.3)}{=}(b \cdot b c) c
$$

wherefrom the identity (1.8) follows. Analogously, by virtue of

$$
a \cdot(a \cdot b c) c \stackrel{(1.2)}{=} b \stackrel{(1.2)}{=} a \cdot(a \cdot b b) b \stackrel{(1.3)}{=} a(a b \cdot b)
$$

we get the identity (1.9).
Example 1.1. Let $(G,+)$ be a commutative group in which there is an automorphism φ which satisfies the identity

$$
\begin{equation*}
(\varphi \circ \varphi)(a)-\varphi(a)-a=0 . \tag{1.10}
\end{equation*}
$$

If the binary operation on the set G is defined by the identity

$$
\begin{equation*}
a b=a+\varphi(b-a), \tag{1.11}
\end{equation*}
$$

then it can be proved that (G, \cdot) is a GS-quasigroup ([1]).

2. A direct characterization of GS-quasigroups

We will prove that Example 1.1 is a characteristic example of a GS-quasigroup, namely, any GS-quasigroup can be obtained from a commutative group in the way given in Example 1.1.

Theorem 2.1. Let (Q, \cdot) be a GS-quasigroup, then there is a commutative group $(Q,+)$ and its automorphism φ which satisfies the identities (1.10) and (1.11).

Proof. Let 0 be a given point. If we define the addition of points in Q by

$$
\begin{equation*}
a+b=0(0 a \cdot b 0) \cdot 0 \tag{2.1}
\end{equation*}
$$

then $(Q,+)$ is a commutative group with the neutral element 0 . Let us prove the above in the following way:

$$
\begin{aligned}
& a+b \stackrel{(2.1)}{=} 0(0 a \cdot b 0) \cdot 0 \stackrel{(1.4)}{=} 0(0 b \cdot a 0) \cdot 0 \stackrel{(2.1)}{=} b+a, \\
& a+0 \stackrel{(2.1)}{=} 0(0 a \cdot 00) \cdot 0 \stackrel{(1.3)}{=} 0(0 a \cdot 0) \cdot 0 \stackrel{(1.1)}{=} a .
\end{aligned}
$$

For

$$
-a=0 a \cdot 0
$$

we get

$$
a+(-a) \stackrel{(2.1)}{=} 0[0 a \cdot(0 a \cdot 0) 0] \cdot 0 \stackrel{(1.5)}{=} 0 \cdot[0 a \cdot(0 a \cdot 0) 0] 0 \stackrel{(1.1)}{=} 0 \cdot 0 \stackrel{(1.3)}{=} 0 .
$$

Now, we shall prove the associativity. If we introduce the abbreviation $a+b=d$ we get

$$
\begin{gathered}
(a+b)+c=d+c \stackrel{(2.1)}{=} 0(0 d \cdot c 0) \cdot 0 \stackrel{(1.6),(1.7)}{=}(0 \cdot 0 d) 0 \cdot(0 \cdot c 0) 0 \\
\stackrel{(1.5)}{=} 0(0 d \cdot 0) \cdot(0 \cdot c 0) 0 \stackrel{(1.8),(1.9)}{=}(d \cdot d 0)(0 c \cdot c) .
\end{gathered}
$$

Because of

$$
(d \cdot d 0) 0 \stackrel{(1.9)}{=} d d \cdot d \stackrel{(1.3)}{=} d=a+b \stackrel{(2.1)}{=} 0(0 a \cdot b 0) \cdot 0
$$

we get

$$
d \cdot d 0=0(0 a \cdot b 0) \stackrel{(1.6)}{=}(0 \cdot 0 a)(0 \cdot b 0) .
$$

On the other hand, the following identities

$$
\begin{aligned}
(a+b)+c & =(d \cdot d 0)(0 c \cdot c)=(0 \cdot 0 a)(0 \cdot b 0) \cdot(0 c \cdot c) \stackrel{(1.4)}{=}(0 \cdot 0 a)(0 c) \cdot(0 \cdot b 0) c \\
& \stackrel{(1.6)}{=} 0(0 a \cdot c) \cdot(0 \cdot b 0) c \stackrel{(1.4)}{=} 0(0 \cdot b 0) \cdot(0 a \cdot c) c
\end{aligned}
$$

are valid. Similarly we have the identity

$$
(c+b)+a=0(0 \cdot b 0) \cdot(0 c \cdot a) a .
$$

However, we have

$$
(0 c \cdot a) a \stackrel{(1.7)}{=}(0 a \cdot c a) a \stackrel{(1.9)}{=}(0 a \cdot c) c .
$$

So, the previous equality yields

$$
a+(b+c)=(c+b)+a=0(0 \cdot b 0) \cdot(0 c \cdot a) a=0(0 \cdot b 0) \cdot(0 a \cdot c) c=(a+b)+c
$$

The mapping $\varphi: Q \rightarrow Q$ defined by $\varphi(a)=0 a$ is an automorphism of the group $(Q,+)$ so that the identities (1.10) and (1.11) hold. Let us prove it like this:

$$
\begin{aligned}
\varphi(a)+\varphi(b) & =0 a+0 b \stackrel{(2.1)}{=}[0 \cdot(0 \cdot 0 a)(0 b \cdot 0)] 0 \stackrel{(1.5)}{=}[0 \cdot(0 \cdot 0 a)(0 \cdot b 0)] 0 \\
& \stackrel{(1.6)}{=}[0 \cdot 0(0 a \cdot b 0)] 0 \stackrel{(1.5)}{=} 0[0(0 a \cdot b 0) \cdot 0] \stackrel{(2.1)}{=} 0(a+b)=\varphi(a+b) .
\end{aligned}
$$

Analogously, it can be proved that the mapping $\psi: Q \rightarrow Q$ defined by $\psi(a)=a 0$ is also an automorphism of the group $(Q,+)$.

For any points a, b the following identities hold:
$\psi(a)+\varphi(b)=a 0+0 b \stackrel{(2.1)}{=}[0 \cdot(0 \cdot a 0)(0 b \cdot 0)] 0 \stackrel{(1.6),(1.7)}{=}[0(0 \cdot a 0) \cdot 0][0(0 b \cdot 0) \cdot 0] \stackrel{(1.5),(1.1)}{=} a b$.
This equality and (1.3) immediately imply

$$
\psi(a)=a-\varphi(a)
$$

By virtue of

$$
-a=0 a \cdot 0=\psi(\varphi(a))=\varphi(a)-\varphi(\varphi(a))
$$

the identity (1.10) follows.
Finally, it remains to prove the identity (1.11) which can actually be achieved from the following

$$
a b=\psi(a)+\varphi(b)=a-\varphi(a)+\varphi(b)=a+\varphi(b-a) .
$$

Acknowledgement. The author would like to thank the Editorial Board on the information about the paper from 1993 in which Havel and Sedlářová also considered the characterization of GS-quasigroups. This paper is included in the references under [2].

References

[1] V. Volenec: GS-quasigroups. Čas. pěst. mat. 115 (1990), 307-318.
[2] V. J. Havel and M. Sedlářová: On golden section quasigroups. Proceeding of the Czech Meeting 1993 on Incidence Structures, Palacký University, Olomouc, 1993, pp. 18-19.

Author's address: Zdenka Kolar-Begović, Department of Mathematics University of Osijek, Gajev $\operatorname{trg} 6$, HR-31 000 Osijek, Croatia, e-mail: zkolar@mathos.hr.

