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Abstract. Let F = F (A,H,t) and F 1 = F (A
1,H1,t1) be fiber product preserving bundle

functors on the category FMm of fibred manifolds Y with m-dimensional bases and fibred
maps covering local diffeomorphisms. We define a quasi-morphism (A,H, t)→ (A1, H1, t1)
to be a GL(m)-invariant algebra homomorphism ν : A → A1 with t1 = ν ◦ t. The main
result is that there exists an FMm-natural transformation FY → F 1Y depending on a
classical linear connection on the base of Y if and only if there exists a quasi-morphism
(A, H, t) → (A1, H1, t1). As applications, we study existence problems of symmetrization
(holonomization) of higher order jets and of holonomic prolongation of general connections.
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0. Introduction

The classical theory of higher order jets was established by C.Ehresmann [6]. For

nonholonomic and semiholonomic jets we refer to the paper [16] by P.Libermann. It

is well-known that higher order jets are a very powerful tool in differential geometry

and in mathematical physics. For example, holonomic jets globalize the theory of

differential systems and semiholonomic jets play an important role in the calculus of

variations and in the theory of partial differential equations, [22], [24]. Further, the

theory of jets and connections forms the geometrical background for field theories

and theoretical physics [18], [15]. The theory of higher order jets is closely connected

with the theory of natural operations in differential geometry, [13]. Holonomic,

semiholonomic and nonholonomic prolongation functors Jr, Jr, J̃r on the category

FMm of fibred manifolds with m-dimensional bases and fibred maps covering local
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diffeomorphisms are “classical” examples of fiber product preserving bundle functors

(i.e. bundle functors F on FMm in the sense of [13] such that F (Y1 ×M Y2) =

FY1 ×M FY2 for any FMm-objects Y1 → M and Y2 →M).

We recall that a nonholonomic r-th order connection on a fibred manifold p : Y →

M is a section Γ: Y → J̃rY of the nonholonomic r-th jet prolongation J̃rY → Y of

p : Y → M . It is called a semiholonomic or a holonomic r-th order connection if it

has values in JrY or in JrY . For r = 1 we obtain the concept of general connections

Γ: Y → J1Y on p : Y → M . Higher order connections were introduced first on

groupoids by Ehresmann [7]. Then I.Kolář [12] extended the concept of higher order

connections to fibred manifolds.

Given an r-th order nonholonomic connection Γ1 : Y → J̃rY and an s-th order

nonholonomic connection Γ2 : Y → J̃sY we have an (r + s)-th order nonholonomic

connection Γ1 ∗ Γ2 := J̃sΓ1 ◦ Γ2 : Y → J̃sJ̃rY = J̃r+sY . Now, by iteration, given a

general connection Γ: Y → J1Y one can define Γ(r−1) : Y → J̃rY by Γ(1) = Γ ∗ Γ,

Γ(r−1) = Γ(r−2) ∗ Γ which is called the Ehresmann prolongation of Γ: Y → J1Y .

Clearly, Γ(r−1) is a semiholonomic r-th order connection, see [9]. However, the most

important role in differential geometry and its applications in mathematical physics

is played by classical holonomic jets and holonomic connections. That is why it is

useful to study holonomic prolongations of connections.

The following results on holonomic prolongations are known.

If r = 2, we have the well-known symmetrization (holonomization) C : J2Y →

J2Y of second order semiholonomic jets, [10]. Composing Γ(1) : Y → J2Y with C

we obtain a second order holonomic connection A2(Γ) := C ◦ Γ(1) : Y → J2Y .

In [2], M.Doupovec and the author proved that for r > 3 and m > 2 it is im-

possible to construct an r-th order holonomic connection D(Γ): Y → JrY from a

general connection Γ: Y → J1Y . In particular, for r > 3 and m > 2 there is no

symmetrization (holonomization) JrY → JrY . Further, the authors constructed

an r-th order holonomic connection Ar(Γ, ∇̃) : Y → JrY from a general connection

Γ: Y → J1Y by means of a projectable classical linear connection ∇̃ on Y .

In [19], we constructed (in a rather complicated way) an r-th order holonomic

connection Br(Γ,∇) : Y → JrY from a general connection Γ: Y → J1Y by means

of a classical linear connection ∇ on the base M .

The above facts show that it is useful to investigate the existence problem of

symmetrization of higher order jets of Y by means of classical linear connections ∇

on the base M of Y . But higher order jet prolongation functors are fiber product

preserving. That is, why it is useful to study the existence problem of natural trans-

formations FY → F 1Y depending on ∇ on M for arbitrary fiber product preserving

bundle functors F and F 1 on FMm instead of the higher order jet prolongation

ones. The complete description of fiber product preserving bundle functors F on
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FMm in terms of the so called admissible triples (A,H, t) was given by I.Kolář and

the author in [14] (see also [11]).

In the present paper we investigate the existence problem of natural transforma-

tions η(Y,∇) : FY → F 1Y depending on ∇ on the base M of Y for arbitrary fiber

product preserving bundle functors F = F (A,H,t) and F 1 = F (A1,H1,t1) on FMm.

We define a quasi-morphism ν : (A,H, t) → (A1, H1, t1) to be a GL(m)-invariant

algebra homomorphism ν : A → A1 such that t1 = ν ◦ t. The main result we prove

is that there exists an FMm-natural transformation FY → F 1Y depending on a

classical linear connection ∇ on the base of Y if and only if there exists a quasi-

morphism (A,H, t) → (A1, H1, t1). As applications we study existence problems of

symmetrization of higher order jets and of holonomic prolongation of general con-

nections.

All manifolds and maps are assumed to be of C∞. Manifolds are assumed to be

finite dimensional paracompact and without boundaries.

The main result

A finite dimensional real commutative associative algebra A with unity is called

a Weil algebra of order r if it is of the form A = R · 1 ⊕N , where N is a nilpotent

ideal with N r+1 = {0}.

In [23], A.Weil constructed the functor TA : Mf → FM of near A-points for

any Weil algebra A. TA is a product preserving bundle functor (ppb-functor). Any

algebra homomorphism µ : A → B of Weil algebras can be extended to the natural

transformation µ : TA → TB of ppb-functors.

It turned out that any ppb-functor F on manifolds is of the form F = TA for

the Weil algebra A = FR, and natural transformations µM : TAM → TBM are in

bijection with algebra homomorphisms µ = µR : A = TA
R → B = TB

R. This result

was proved (independently) by Eck [5], Kainz and Michor [8], and Luciano [17].

An admissible triple of order r and dimension m is (by definition) a system

(A,H, t), where A is a Weil algebra of order r, H : Gr
m → Aut(A) is a Lie group

homomorphism from the r-th order differential Lie group Gr
m = inv Jr

0 (Rm,Rm)0

into the Lie group Aut(A) of algebra automorphisms of A (i.e. H is an algebra ac-

tion of Gr
m on A) and t : Dr

m → A is a Gr
m-invariant algebra homomorphism from the

Weil algebra Dr
m = Jr

0 (Rm,R) (with the pull-back action Hr
m of G

r
m on Dr

m) into A

(with the action H of Gr
m on A). A morphism ν : (A,H, t) → (A1, H1, t1) of admis-

sible triples of order r and dimension m is a Gr
m-invariant algebra homomorphism

ν : A→ A1 with t1 = ν ◦ t.

In [14], I.Kolář and the author constructed a bundle functor F (A,H,t) : FMm →

FM of order r for any admissible triple (A,H, t) of order r and dimension m as
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follows. Every FMm-object p : Y →M defines the bundle

F (A,H,t)Y := {〈u,X〉 ∈ P rM [TAY,HY ] : tM (u) = TAp(X)}

over Y , where P rM ⊂ T r
mM is the principal bundle of frames of M of order r

with the standard group Gr
m, tM : T r

mM = TDr

mM → TAM is the extension of

t, TAY is the Weil bundle of near A-points and P rM [TAY,HY ] is the associated

bundle with the standard fiber TAY and the left action HY : Gr
m × TAY → TAY

by HY (ξ,X) = H(ξ)Y (X). Every FMm-map f : Y1 → Y2 over f induces F
(A,H,t)f :

F (A,H,t)Y1 → F (A,H,t)Y2 by

F (A,H,t)f(〈u,X〉) :=
〈
P rf(u), TAf(X)

〉
,

〈u,X〉 ∈ F (A,H,t)Y1, u = jr
0ϕ ∈ P rM1, X ∈ TAY1, P

rf(jr
0ϕ) = jr

0(f ◦ ϕ) ∈ P rM2.

The bundle functor F (A,H,t) is fiber product preserving.

It turned out that any fiber product preserving bundle functor (fppb-functor) F

of order r on FMm is of the form F = F (A,H,t) for an admissible triple (A,H, t) of

order r and dimensionm, and the natural transformations ν : F (A,H,t) → F (A1,H1,t1)

of fppb-functors are in bijection with morphisms ν : (A,H, t) → (A1, H1, t1) of ad-

missible triples. This result was proved in [14] (see also [11]).

Let F, F 1 : FMm → FM be fppb-functors. An FMm-natural transformation

η(Y,∇) : FY → F 1Y depending on classical linear connections ∇ on bases M of

FMm-objects p : Y →M is by definition an FMm-natural operator η = {ηY } : Q◦

B  (F, F 1) in the sense of [13], i.e. η is a family of FMm-invariant regular operators

ηY : QM → C∞
Y (FY, F 1Y ) for all FMm-objects p : Y → M , where QM is the set

of classical linear connections on M and C∞
Y (FY, F 1Y ) is the set of all fibred maps

FY → F 1Y covering the identity map of Y . If we replace (in the above definition)

FMm by the category FMm,n of fibred manifolds with m-dimensional bases and

n-dimensional fibres and their fibred local isomorphisms we obtain the concept of

FMm,n-natural transformations η(Y,∇) : FY → F 1Y depending on classical linear

connections on bases of FMm,n-objects.

We define a quasi-morphism ν : (A,H, t) → (A1, H1, t1) of admissible triples of

order r to be a GL(m)-invariant algebra homomorphism ν : A → A1 such that

t1 = ν ◦ t, where GL(m) ⊂ Gr
m is the group of linear automorphisms of R

m. (Clearly,

a quasi-morphism ν of admissible triples is a morphism of admissible triples if it is

Gr
m-invariant.)

The following theorem is the main result of the present paper.
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Theorem 1. Let F = F (A,H,t) and F 1 = F (A1,H1,t1) be fppb-functors of order r

on FMm. Then the following conditions are equivalent:

(a) There is an FMm-natural transformation FY → F 1Y depending on classical

linear connections on the base of Y .

(b) There is a quasi-morphism (A,H, t) → (A1, H1, t1).

(c) For some n > 1, there is an FMm,n-natural transformation FY → F 1Y de-

pending on classical linear connections on the base of Y .

(d) For any n > 1, there is an FMm,n-natural transformation FY → F 1Y depend-

ing on classical linear connections on the base of Y .

P r o o f. The proof of Theorem 1 will occupy the rest of this section. �

LetM be an m-dimensional manifold and u = jr
0ϕ ∈ P rM a frame of order r with

ϕ(0) = x ∈ M . Let ∇ be a classical linear connection on M . Let f be a ∇-normal

coordinate system on M with center x such that j10(f ◦ ϕ) = j10(id). The germ of

f at x is uniquely determined. Denote ξ(u,∇) := jr
0(f ◦ ϕ) ∈ Gr

m. We prove the

following lemma.

Lemma 1.

(i) Let M be an m-manifold and ∇ a classical linear connection on M . Let u =

jr
0ϕ ∈ P rM and u1 = jr

0ϕ ◦ jr
0ψ

−1 ∈ P rM , jr
0ψ ∈ Gr

m, B = T0ψ ∈ GL(m).

Then ξ(u1,∇) = jr
0B ◦ ξ(u,∇) ◦ jr

0ψ
−1.

(ii) LetM andM1 be m-manifolds and let ∇ and ∇1 be classical linear connections

on M and M1, respectively, and let g : M → M1 be (∇,∇1)-affine local diffeo-

morphism. Let u = jr
0ϕ ∈ P rM and u1 = P rg(u) = jr

0(g ◦ ϕ) ∈ P rM1. Then

ξ(u1,∇1) = ξ(u,∇).

(iii) If {∇t} is a smoothly parametrized family of classical linear connections on M ,

then ξ(u,∇t) is smooth in (t, u) ∈ R× P rM .

P r o o f of Lemma 1. ad (i). Let f be a ∇-normal coordinate system on M

with center x = ϕ(0) such that j10(f ◦ ϕ) = j10(id). Then B ◦ f is a ∇-normal

coordinate system on M with center x such that j10 ((B ◦ f) ◦ (ϕ ◦ ψ−1)) = j10(id).

Then ξ(u1,∇) = jr
0((B◦f)◦(ϕ◦ψ−1)) = jr

0B◦jr
0(f◦ϕ)◦jr

0ψ
−1 = jr

0B◦ξ(u,∇)◦jr
0ψ

−1.

ad (ii) Let f be a ∇-normal coordinate system on M with center x = ϕ(0) such

that j10(f ◦ ϕ) = j10(id). Then f ◦ g−1 is a ∇1-normal coordinate system on M1 with

center x1 = g ◦ ϕ(0) such that j10((f ◦ g−1) ◦ (g ◦ ϕ)) = j10(id). Then ξ(u1,∇1) =

jr
0((f ◦ g−1) ◦ (g ◦ ϕ)) = jr

0(f ◦ ϕ) = ξ(u,∇) .

ad (iii) It follows from the easy to see fact that the map f in the definition of

ξ(u,∇) is f = (T0ϕ)−1 ◦ (Exp∇x )−1.

The proof of of Lemma 1 is complete. �
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We continue the proof of Theorem 1. That (b) implies (a) is an immediate conse-

quence of the following example.

Example 1. Let ν : (A,H, t) → (A1, H1, t1) be a quasi-morphism of admissible

triples. For any FMm-object p : Y → M and any classical linear connection ∇ on

M we define a map ν(Y,∇) : F
(A,H,t)Y → P rM [TA1

Y,H1
Y ] by

ν(Y,∇)(w) :=
〈
u,H1

Y (ξ−1) ◦ νY ◦HY (ξ)(X)
〉
,

w = 〈u,X〉 ∈ F (A,H,t)Y , u = jr
0ϕ ∈ P rM , X ∈ TA

y Y , y ∈ Y , where ξ = ξ(u,∇)

is as in Lemma 1, νY : TAY → TA1

Y is the extension of ν : A → A1 and HY (ξ) :

TAY → TAY and H1
Y (ξ) : TA1

Y → TA1

Y are the extensions H(ξ)Y and H
1(ξ)Y

of H(ξ) ∈ Aut(A) and H1(ξ) ∈ Aut(A1). If w = 〈u1, X1〉 is another representation

of w, then u1 = jr
0ϕ ◦ jr

0ψ
−1 and X1 = HY (jr

0ψ)(X) for some jr
0ψ ∈ Gr

m. Denote

ξ1 = ξ(u1,∇). By Lemma 1 (i), ξ1 = jr
0B ◦ ξ ◦ jr

0ψ
−1, where B = T0ψ ∈ GL(m).

Then

H1
Y (ξ−1

1 ) ◦ νY ◦HY (ξ1)(X1) = H1
Y (jr

0ψ) ◦H1
Y (ξ−1) ◦ νY ◦HY (ξ)(X)

because of H1
Y (jr

0B
−1) ◦ νY ◦HY (jr

0B) = νY as ν is GL(m)-invariant. That is why

ν(Y,∇)(w) is well-defined. We have t1 = ν ◦ t and (since w ∈ F (A,H,t)Y ) tM (u) =

TAp(X). Then

t1M (u) = H1
M (ξ−1) ◦ t1M ◦ (Hr

m)M (ξ)(u) = H1
M (ξ−1) ◦ νM ◦ tM ◦ (Hr

m)M (ξ)(u)

= H1
M (ξ−1) ◦ νM ◦HM (ξ) ◦ tM (u) = H1

M (ξ−1) ◦ νM ◦HM (ξ) ◦ TAp(X)

= TA1

p ◦H1
Y (ξ−1) ◦ νY ◦H1

Y (ξ)(X).

Moreover, H1
Y (ξ−1) ◦ νY ◦ HY (ξ)(X) ∈ TA1

y Y (as natural transformations of ppb-

functors on Mf covering the identity map of Y ). Then ν(Y,∇)(w) ∈ F
(A1,H1,t1)
y Y .

Hence ν(Y,∇) : F
(A,H,t)Y → F (A1,H1,t1)Y is a fibred map covering the identity map of

Y . It is smooth because of Lemma 1(iii). Even {ν(Y,∇t)} is a smoothly parametrized

family if {∇t} is. To prove FMm-invariance of ν(Y,∇), we consider FMm-objects

p : Y → M and p1 : Y1 → M1, connections ∇ ∈ QM and ∇1 ∈ QM1 and an

FMm-map g : Y → Y1 covering (∇,∇1)-affine local diffeomorphism g : M → M1,

and verify F (A1,H1,t1)g ◦ ν(Y,∇) = ν(Y1,∇1) ◦ F
(A,H,t)g as follows. Let w = 〈u,X〉 ∈

F (A,H,t)Y , u = jr
0ϕ ∈ P rM , X ∈ TAY . Let u1 = P rg(u) ∈ P rM1. By Lemma 1(ii),

ξ(u1,∇1) = ξ(u,∇). Denote ξ = ξ(u,∇) = ξ(u1,∇1) . Then

F (A1,H1,t1)g ◦ ν(Y,∇)(w) = F (A1,H1,t1)g(
〈
u,H1

Y (ξ−1) ◦ νY ◦HY (ξ)(X)
〉
)

= 〈u1, T
A1

g ◦H1
Y (ξ−1) ◦ νY ◦HY (ξ)(X)〉

=
〈
u1, H

1
Y1

(ξ) ◦ νY1
◦HY1

◦ TAg(X)
〉

= ν(Y1,∇1)(
〈
u1, T

Ag(X)
〉
) = ν(Y1,∇1) ◦ F

(A,H,t)g(w).
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So, ν(Y,∇) : F
(A,H,t)Y → F (A1,H1,t1)Y is an FMm-natural transformation depending

on classical linear connections ∇ on the base of Y .

We continue the proof of Theorem 1. That (a) implies (d) is clear. Similarly, that

(d) implies (c) is clear, too.

The proof of the fact that (c) implies (b) is a direct modification of the corre-

sponding part of the proof of Theorem 2 in [20]. More precisely, for an FMm,n-

natural transformation η : F → F 1 depending on ∇ we define (η1, . . . , ηn) :=

η(Rm×Rn,∇0)|F0(Rm×Rn) : A
n → (A1)n, where ∇0 is the usual flat classical linear

connection on R
m. Then, similarly to Steps 1–3 of the proof of Theorem 2 in [20],

we can prove that σ : A → A1, σ(a) := η1(a, 0, . . . , 0), a ∈ A is a quasi-morphism

(A,H, t) → (A1, H1, t1).

The proof of Theorem 1 is complete. �

2. On symmetrization of jets

Let Jr and Jr be respectively the semiholonomic and holonomic r-jet prolongation

functors on FMm. Since J
r and Jr are fiber product preserving bundle functors on

FMm, we can write J
r = F (Ār,Hr,t̄r) and Jr = F (Ar ,Hr ,tr). Vector GL(m)-spaces

Ār and Ar (with respect to Hr
|GL(m) and H

r
|GL(m)) are of the form

Ār =

r⊕

k=0

⊗k
R

m∗ and Ar =

r⊕

k=0

Sk
R

m∗

with the standard tensor actions of GL(m) (this is an easy observation, e.g. by the

standard coordinate description). The algebra multiplications of Ār and Ar will

be denoted by · (they are given by rather complicated formulas, which will not

be used in the sequel). Clearly, the obvious inclusion i : Ar → Ār is a morphism

i : (Ar, Hr, tr) → (Ār, Hr, t̄r) of admissible triples (the one corresponding to the

inclusion JrY ⊂ JrY ).

Lemma 2. Let C1, C2 : Ār × Ār → Ar be GL(m)-invariant maps such that

C1|Ar×Ar = C2|Ar×Ar . Then C1 = C2.

P r o o f. We have to show that 〈C1(ū1, ū2), w〉 = 〈C2(ū1, ū2), w〉 for any

ū1, ū2 ∈ Ār and any w ∈ Sk
R

m for k = 0, . . . , r. Because of the GL(m)-

invariance of C1 and C2 we can assume that w = ⊙ke1 ∈ Sk
R

m, where e1 =

(1, 0, . . . , 0) ∈ R
m, k = 0, . . . , r. Using the invariance of C1 and C2 with re-

spect to at : R
m → R

m, at(x1, . . . , xm) = (x1, tx2, . . . , txm) for t > 0 we obtain
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〈Ci(ū1, ū2), w〉 = 〈Ci((at)
∗ū1, (at)

∗ū2), w〉 for i = 1, 2 and any t > 0 (as at preserves

w = ⊙ke1). Putting t→ 0 we get 〈Ci(ū1, ū2), w〉 =
〈
Ci(u

0
1, u

0
2), w

〉
for i = 1, 2, where

u0
i = lim

t→0
((at)

∗ūi) ∈ Ar. Then C1(u
0
1, u

0
2) = C2(u

0
1, u

0
2) completes the proof. �

Using Lemma 2, we prove the following proposition.

Proposition 1. Let s : Ār → Ar be the usual symmetrization. Then s :

(Ār, Hr, t̄r) → (Ar, Hr, tr) is a quasi-morphism of admissible triples.

P r o o f. Of course, s is GL(m)-invariant R-linear and s(1) = 1. Moreover,

since s ◦ i = idAr and t̄r = i ◦ tr (as i : (Ar, Hr, tr) → (Ār, Hr, t̄r) is a morphism of

admissible triples corresponding to the inclusion JrY ⊂ JrY ), we have s ◦ t̄r = tr.

To prove that s is multiplicative, we define two maps C1, C2 : Ār × Ār → Ar by

C1(ū1, ū2) := s(ū1) · s(ū2) and C2(ū1, ū2) := s(ū1 · ū2) .

They are GL(m)-invariant because of Hr : Gr
m → Aut(Ār) and Hr : Gr

m → Aut(Ar)

and s is GL(m)-invariant. Moreover, C1|Ar×Ar = C2|Ar×Ar because of s ◦ i =

idAr . Then C1 = C2 because of Lemma 2. But this means that s is multiplicative.

Summing up, we see that s : Ār → Ar is a GL(m)-invariant algebra homomorphism

such that s ◦ t̄r = tr. In other words, s is a quasi-morphism of admissible triples in

question. �

So, one can symmetrize semiholonomic jets by means of classical linear connections

on the base. Namely, we have the following example.

Example 2. Given an FMm-object p : Y →M and a classical linear connection

∇ on M we have the fibred map s̄(Y,∇) : J
rY → JrY over the identity of Y corre-

sponding to the symmetrization s : Ār → Ar (see Example 1 for ν = s). One can

easily see that for r = 2, s̄(Y,∇) : J
2Y → J2Y is independent of ∇ and equal to the

classical symmetrization J2Y → J2Y as in [10].

For non-holonomic jets, we have the following non-existence result.

Proposition 2. Let (Ãr , H̃r, t̃r) and (Ar, Hr, tr) be the admissibles triple cor-

responding to the non-holonomic and holonomic jet fppb-functors J̃r, Jr : FMm →

FM, respectively. For r > 2 and m > 1, there is no quasi-morphism

ν : (Ãr , H̃r, t̃r) → (Ar, Hr, tr).

Consequently, for r > 2 we cannot symmetrize nonholonomic r-jets by means of

classical linear connections on the base. More precisely, for r > 2 and m > 1 and

164



n > 1 there is no FMm,n-natural transformation η(Y,∇) : J̃
rY → JrY depending on

classical linear connections ∇ on the base of Y .

S k e t c h o f t h e p r o o f. We have Ãr = ⊗rA1 (as an algebra) and H̃r
|GL(m) =

⊗r(H1
|GL(m)) (see, e.g., Subsection 4.5 in [11]). Then Ã

r is generated by elements

a〈i〉 = 1 ⊗ . . . ⊗ a ⊗ . . . ⊗ 1 for a ∈ A1 with a2 = 0 and i = 1, . . . , r, where a is in

the i-th position. We have (a〈i〉)2 = 0 and H̃r(jr
0(tidRm))(a〈i〉) = t−1a〈i〉. Suppose

that ν is such a quasi-morphism. Then Hr(jr
0(tidRm))(ν(a〈i〉)) = t−1ν(a〈i〉) (as ν is

GL(m)-invariant) and (ν(a〈i〉))2 = 0 and ν(a〈i〉) ∈ Ar = Dr
m. Hence ν(a

〈i〉) = 0 as

r > 2. Then ν : Ãr → R ⊂ Ar is the trivial algebra homomorphism. On the other

hand, tr = id: Dr
m=̃Ar → Ar and tr = ν ◦ t̃r, a contradiction. The additional part

of the proposition is an immediate consequence of the first and Theorem 1. �

Modifying accordingly (almost directly) the proof of Proposition 2 we can even

get the following more strict result.

Proposition 3. For r > 2 and m > 1 and n > 1, there is no FMm,n-natural

transformation η(Y,∇) : J
1Jr−1Y → JrY depending on classical linear connections

∇ on the base of Y .

Remark 1. It is an easy observation that for r > 3 and m > 1, the sym-

metrization s : Ār → Ar is not Gr
m-invariant. So, for r > 3 and m > 2, there is

no morphism ν of the admissible triples of Jr and Jr. (Otherwise, since ν ◦ t̄r =

tr = id: Dr
m=̃Ar → Ar, we have ν|Ar = idAr = s|Ar , and then ν = s because of

an obvious modification of Lemma 2.) Consequently, for r > 3 and m > 2 there

is no natural transformation Jr → Jr. In other words, if r > 3 and m > 2, then

to symmetrize semiholonomic jets of p : Y → M , an auxiliary geometric object is

unavoidable. This fact has been also deduced in [2] by using other arguments. For

r = 2, the symmetrization s : Ā2 → A2 is G2
m-invariant, and then s is a morphism of

admissible triples (it corresponds to the classical independent of ∇ symmetrization

J2Y → J2Y ).

Remark 2. In [2] we proposed a symmetrization of nonholonomic jets by means

of projectable classical linear connections ∇ on Y . From Proposition 2 it follows that

using projectable classical linear connections on Y (or other objects different from

classical linear connections on the base of Y ) to symmetrize nonholonomic jets of Y

is unavoidable.

Remark 3. The bundle Jr,r−1Y := J1Jr−1Y ∩ JrY is called the special r-jet

prolongation of Y . In [10], Kolář presented a symmetrization Jr,r−1Y → JrY of

special r-jets without using any additional geometric object. In contrast, because of
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Proposition 3, to symmetrize jets from J1Jr−1Y even classical linear connections on

the base of Y do not suffice.

3. On holonomic prolongation of general connections

In [19], we constructed (in a rather complicated way) an r-th order holonomic

connection Br(Γ,∇) : Y → JrY from a general connection Γ: Y → J1Y by means

of a torsion free classical linear connection ∇ on the base M .

Moreover, Theorem 1 in [19] says that there is only one canonical construction

(i.e. the respective natural operator) of an r-th order holonomic connection D(Γ,∇) :

Y → JrY from a general connection Γ: Y → J1Y by means of a torsion-free classical

linear connection ∇ on the base of Y .

Now, using the symmetrization s̄(Y,∇) : J
rY → JrY from Example 2 we can

construct (reobtain) the r-th order holonomic connection Br(Γ,∇) : Y → JrY in

the following elegant way.

Example 3. Let Γ: Y → J1Y be a general connection on a fibred manifold

Y → M and let ∇ be a classical linear connection on M . We define an r-th order

holonomic connection

Dr(Γ,∇) := s̄(Y,∇) ◦ Γ(r−1) : Y → JrY ,

where s̄(Y,∇) : J
rY → JrY is the symmetrization (from Example 2) of semiholo-

nomic r-jets and Γ(r−1) : Y → JrY is the r-th order semiholonomic Ehresmann

prolongation of Γ.

Because of the above mentioned uniqueness result from [19] we get

Proposition 4. If ∇ is torsion-free, then Dr(Γ,∇) = Br(Γ,∇), where Dr(Γ,∇)

is as in Example 3 and Br(Γ,∇) is as in Example 5 in [19].

4. A final remark

Let p : Y → M be an FMm-object and ∇ a classical linear connection on

M . In [21], M. Modugno defined an involution e∇ : J1J1Y → J1J1Y depending

on ∇. In [3] and [4], M. Doupovec and the author defined “exchange isomorphisms”

(Ar,s
∇ )Y : JrJsY → JsJrY and (Br,s

∇ )Y : J̃rJ̃sY → J̃sJ̃rY depending on ∇. Apply-

ing (Ar,s
∇ )Y , we can lift s-order holonomic connections Γ: Y → JsY to s-th order
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holonomic connections A(Γ,∇) := (Ar,s
∇ )Y ◦ JrΓ: JrY → JsJrY on JrY → M ,

see [3].

It seems to be very probable that using our general construction of ν(Y,∇) from

Example 1, we could produce “exchange isomorphisms” FJsY → JsFY or (even)

FGY → GFY depending on ∇ for many fppb-functors F and G on FMm. Maybe

the “exchange isomorphism” (or eventually some other isomorphism) AF ⊗ AG →

AG ⊗ AF is a quasi-morphism of admissible triples of FG and GF for many fppb-

functors F and G. At this moment, we do not know if it is really true. The admissible

triple of FG depends on the admissible triples of F andG in a rather complicated way,

see [1] (or [11]). Clearly, the (hypothetic) “exchange isomorphisms” FJsY → JsFY

could be used to produce s-th order holonomic connections on FY → M from s-th

order holonomic connections on Y →M by means of ∇.

In [19], we proposed a quite different general construction of r-th order holonomic

connections Fr
q (Θ,∇) : FY → JrFY on FY → M from q-th order holonomic con-

nections Θ: Y → JqY on Y →M by means of ∇ for any bundle functor F of order k

on the category FMm,n of (m,n)-dimensional fibred manifolds and their local fibred

diffeomorphisms.
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