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Abstract. We consider various forms of Ramsey’s theorem, the monotone subsequence
theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets
of natural numbers. We characterize ideals with properties considered. We show that, in a
sense, Ramsey’s theorem, the monotone subsequence theorem and the Bolzano-Weierstrass
theorem characterize the same class of ideals. We use our results to show some versions
of density Ramsey’s theorem (these are similar to generalizations shown in [P. Frankl,
R. L. Graham, and V. Rödl: Iterated combinatorial density theorems. J. Combin. Theory
Ser. A 54 (1990), 95–111].
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1. Introduction

In this paper we consider various forms of Ramsey’s theorem, the monotone sub-

sequence theorem and the Bolzano-Weierstrass theorem which are connected with

ideals of subsets of natural numbers. Recall:

• Ramsey’s theorem says that for any finite coloring of two-element subsets of

natural numbers there exists an infinite homogeneous set.

• The monotone subsequence theorem says that every sequence of reals contains

an infinite monotone subsequence.

• The Bolzano-Weierstrass theorem says that every bounded sequence of reals

contains an infinite convergent subsequence.

The work of all but the second author was supported by BW grant 5100-5-0204-6. The
work of all authors was supported by BW grant 5100-5-0292-7.
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One can ask a question how “big” a homogeneous set (a monotone subsequence, a

convergent subsequence, respectively) can be? Here, we replace the word “infinite”

by “not belonging to the ideal”. It is not difficult to show that “ideal” versions of

the above theorems do not hold for some ideals, so it is reasonable to characterize

ideals for which the “ideal” forms of these theorems hold.

In our consideration we use the notion of ideal convergence extensively. In the

case of Ramsey’s theorem it seems to be natural because a well-known argument

shows that Ramsey’s theorem implies that every sequence of reals contains a mono-

tone subsequence (see e.g. [4]), hence every bounded sequence contains a convergent

subsequence. In the same way one can easily show that the ideal Ramsey’s theorem

implies the ideal monotone subsequence theorem which implies the ideal Bolzano-

Weierstrass theorem. We find some conditions on the ideals of naturals under which

the above implications can be reversed.

The above considerations are discussed in Section 3.

In Section 4 we weaken the definitions of “Ramsey” (“Mon”, “BW”) ideals by

requiring that almost all pairs are of the same color (the subsequence is almost

monotone, ideal convergent, respectively). We characterize the ideals for which

these generalizations hold and prove that these properties are equivalent for every

ideal.

In Sections 3 and 4 we also describe some methods of constructing ideals with

properties we are interested in. We investigate how the properties of ideals are

connected with the properties of the direct sum and the Fubini product of ideals.

In [9] Frankl, Graham and Rödl consider a generalization of Ramsey’s theorem

for the ideal of sets of statistical density zero. In [8] the authors show how this

result can be generalized to the class of all analytic P-ideals (see definitions below).

This generalization uses the notion of a submeasure. In Section 5 we show how

one can strengthen the submeasure version of Ramsey’s theorem for ideals with the

Bolzano-Weierstrass property.

2. Preliminaries

The set of natural numbers we denote by the symbol ω. The cardinality of a set X

is denoted by |X |. We do not distinguish between the natural number n and the set

{0, 1, . . . , n − 1}.

An ideal on ω is a family I ⊂ P(ω) (where P(ω) denotes the power set of ω)

which is closed under taking subsets and finite unions. By Fin we denote the ideal

of all finite subsets of ω. If not explicitly said otherwise we assume that all ideals

considered are proper (6= P(ω)) and contain all finite sets. We can talk about ideals

on any countable set by identifying this set with ω via a fixed bijection.
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If I is an ideal on ω, then I + = P(ω) \ I and I ∗ = {ω \ A : A ∈ I }. I + is

called the coideal and I ∗ is called the dual filter.

If I is an ideal on ω and A ∈ I +, then the restriction of I to A, denoted by

I ↾ A, is the ideal on ω given by I ↾ A = {B ⊂ ω : B ∩ A ∈ I }.

An ideal I is a P-ideal if for every sequence (An)n∈ω of sets from I there is

A ∈ I such that An \A ∈ Fin for all n, i.e., An is almost contained in A for each n.

A coideal I + is selective if for every sequence

F1 ⊃ F2 ⊃ F3 ⊃ . . .

of sets from I + there is F∞ in I + such that j ∈ Fi for all i < j and i, j ∈ F∞.

(The set F∞ is called a diagonalization of {Fi}i.)

An ideal I is called dense if every A /∈ I contains an infinite subset that belongs

to the ideal.

For two ideals I , J define their direct sum, I ⊕ J , to be the ideal on ω × 2

given by

A ∈ I ⊕ J iff {n ∈ ω : 〈n, 0〉 ∈ A} ∈ I and {n ∈ ω : 〈n, 1〉 ∈ A} ∈ J .

For A ⊂ ω × ω and n ∈ ω we denote by An the vertical section of A at n, i.e.

An = {m ∈ ω : 〈n, m〉 ∈ A}.

We define the Fubini product I ×J of I andJ to be the ideal on ω×ω given by

A ∈ I × J iff {n ∈ ω : An /∈ J } ∈ I .

In the context of Fubini products we use the “empty ideal” {∅} (sometimes we

just write ∅ instead of {∅}). Although this ideal does not contain all finite sets, its

Fubini product with other ideals usually gives very interesting ideals which contain

all finite sets (e.g. ∅ × Fin is an ideal on ω × ω which is made up of sets with finite

vertical sections).

By an order on ω × 2 we will mean the lexicographical order, i.e. (n, i) 6 (m, j)

iff n < m or m = n ∧ i 6 j. Whenever we say that a sequence (xn,i)(n,i)∈ω×2 is

monotone we mean monotone with respect to this order.

By an order on ω×ω we will mean the order given by (n, m) 6 (k, l) iff ϕ(n, m) 6

ϕ(k, l), where ϕ : ω×ω → ω is a bijection given by ϕ(n, m) = (n+m)(n+m+1)/2+m.

Whenever we say that a sequence (xn,m)(n,m)∈ω×ω is monotone we mean monotone

with respect to this order.
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Recall that A ⊂ ω is monochromatic (or homogeneous) for coloring c : [ω]2 → r

(r ∈ ω) if c ↾ [A]2 is constant.

2.1. Analytic ideals

By identifying sets of naturals with their characteristic functions, we equip P(ω)

with the Cantor-space topology and therefore we can assign the topological complex-

ity to the ideals of sets of integers. In particular, an ideal I is Fσ (analytic) if it is

an Fσ subset of the Cantor space (if it is a continuous image of a Gδ subset of the

Cantor space, respectively).

A map ϕ : P(ω) → [0,∞] is a submeasure on ω if

ϕ(∅) = 0,

ϕ(A) 6 ϕ(A ∪ B) 6 ϕ(A) + ϕ(B)

for all A, B ⊂ ω. It is lower semicontinuous if for all A ⊂ ω we have

ϕ(A) = lim
n→∞

ϕ(A ∩ n).

For any lower semicontinuous submeasure on ω, let ‖ · ‖ϕ : P(ω) → [0,∞] be the

submeasure defined by

‖A‖ϕ = lim sup
n→∞

ϕ(A \ n) = lim
n→∞

ϕ(A \ n),

where the second equality follows by the monotonicity of ϕ. Let

Exh(ϕ) = {A ⊂ ω : ‖A‖ϕ = 0},

Fin(ϕ) = {A ⊂ ω : ϕ(A) < ∞}.

It is clear that Exh(ϕ) and Fin(ϕ) are ideals (not necessarily proper) for an arbitrary

submeasure ϕ.

All analytic P-ideals are characterized by the following theorem of Solecki.

Theorem 2.1 ([14]). The following conditions are equivalent for an ideal I on ω.

(1) I is an analytic P-ideal;

(2) I = Exh(ϕ) for some lower semicontinuous submeasure ϕ on ω.

Moreover, for Fσ ideals the following characterization holds.

Theorem 2.2 ([11]). The following conditions are equivalent for an ideal I on ω.

(1) I is an Fσ ideal;

(2) I = Fin(ϕ) for some lower semicontinuous submeasure ϕ on ω.
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Below we present a few examples of analytic ideals. A lot more examples can be

found in Farah’s book [6].

Example 2.3. The ideal of sets of density 0

Id =
{

A ⊂ ω : lim sup
n→∞

|A ∩ n|

n
= 0

}

is an analytic P-ideal. If we denote

ϕd(A) = sup
{ |A ∩ n|

n
: n ∈ ω

}

,

then d(A) = ‖A‖ϕd
and Id = Exh(ϕd).

Example 2.4. The ideal

I1/n =

{

A ⊂ ω :
∑

n∈A

1

n
< ∞

}

is an Fσ P-ideal. If ϕ is a submeasure defined by the formula

ϕ(A) =
∑

n∈A

1

n

then I1/n = Fin(ϕ).

Example 2.5. The ideal of arithmetic progressions free sets

W = {W ⊂ ω : W does not contain arithmetic progressions of all lengths}

is an Fσ ideal which is not a P-ideal. The fact that W is an ideal follows from the

non-trivial theorem of van der Waerden. This ideal was first considered by Kojman

in [10].

Example 2.6. The ideal of nowhere dense subsets of rational numbers Q

NWD(Q) = {A ⊂ Q : A is nowhere dense in R}

is an analytic ideal which is neither a P-ideal nor Fσ.
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2.2. Bolzano-Weierstrass property

Let I be an ideal on ω, A ⊂ ω, and let (xn)n∈ω be a sequence of reals. By

(xn) ↾ A we mean a subsequence (xn)n∈A. We say that (xn) ↾ A is I -convergent to

x ∈ R if {n ∈ A : |xn − x| > ε} ∈ I for every ε > 0.

An ideal I on ω is called:

(1) Fin-BW if for any bounded sequence (xn)n∈ω of reals there is A ∈ I + such

that (xn) ↾ A is convergent;

(2) h-Fin-BW if I ↾ A is Fin-BW for every A ∈ I +;

(3) BW if for any bounded sequence (xn)n∈ω of reals there is A ∈ I + such that

(xn) ↾ A is I -convergent;

(4) h-BW if I ↾ A is BW for every A ∈ I +.

By the well-known Bolzano-Weierstrass theorem, the ideal Fin is Fin-BW. For the

discussion and applications of these properties see [7], where we examine all BW-like

properties. In particular, it is known that the ideal Id of sets of density 0 is not

BW, and every Fσ ideal is h-Fin-BW.

In the sequel we will use the following characterizations of BW-like properties.

Theorem 2.7 ([7]). Let ϕ be a lower semicontinuous submeasure. The following

conditions are equivalent.

(1) The ideal Exh(ϕ) is BW.

(2) The ideal Exh(ϕ) is Fin-BW.

(3) There is δ > 0 such that for any partition A1, A2, . . . , An of ω there exists i 6 n

with ‖Ai‖ϕ > δ.

The next propositions are slight generalizations of Proposition 3.3 from [7].

Proposition 2.8. Let r ∈ ω. An ideal I is Fin-BW if and only if for every family

of sets {As : s ∈ r<ω} fulfilling the conditions

(S1) A∅ = ω,

(S2) As = Asˆ0 ∪ . . . ∪ Asˆ(r−1),

(S3) Asˆi ∩ Asˆj = ∅ for every i 6= j,

there exist x ∈ rω and B ⊂ ω, B /∈ I such that B \ Ax↾n is finite for all n.

Proposition 2.9. Let r ∈ ω. An ideal I is BW if and only if for every family of

sets {As : s ∈ r<ω} fulfilling the conditions

(S1) A∅ = ω,

(S2) As = Asˆ0 ∪ . . . ∪ Asˆ(r−1),

(S3) Asˆi ∩ Asˆj = ∅ for every i 6= j,

there exist x ∈ rω and B ⊂ ω, B /∈ I such that B \ Ax↾n ∈ I for all n.
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2.3. Some points in βω and its ideal generalizations

An ultrafilter U on ω is called:

(1) a P-point if for every partition A0, A1, . . . of ω into sets not belonging to U

there exists S ∈ U such that |An ∩ S| < ω for every n ∈ ω;

(2) a Q-point if for every partition A0, A1, . . . of ω into finite sets there exists S ∈ U

such that |An ∩ S| 6 1 for every n ∈ ω;

(3) selective (or Ramsey) if for every partitionA0, A1, . . . of ω into sets not belonging

to U there exists S ∈ U such that |An ∩ S| 6 1 for every n ∈ ω.

In [2], the authors introduced the following generalizations of the above notions.

An ideal I on ω is called:

(1) a local P-point if for every partition A0, A1, . . . of ω into sets from I there

exists S ∈ I + such that |An ∩ S| < ω for every n ∈ ω;

(2) a local Q-point if for every partition A0, A1, . . . of ω into finite sets there exists

S ∈ I + such that |An ∩ S| 6 1 for every n ∈ ω;

(3) locally selective if for every partition A0, A1, . . . of ω into sets from I there

exists S ∈ I + such that |An ∩ S| 6 1 for every n ∈ ω;

(4) a weak P-point if I ↾ A is a local P-point for every A ∈ I +;

(5) a weak Q-point if I ↾ A is a local Q-point for every A ∈ I +;

(6) weakly selective if I ↾ A is locally selective for every A ∈ I +.

3. Ramsey’s theorem

3.1. Local version

An ideal I on ω will be called:

(1) Ramsey if for every finite coloring of [ω]2 there exists a homogeneous A ∈ I +;

(2) Mon if for every sequence (xn)n∈ω there exists A ∈ I + such that (xn) ↾ A is

monotone.

Using the same argument as in the classical case we can prove the following fact.

Fact 3.1. Let I be an ideal on ω. In the following list of conditions on I each

implies the next.

(1) I is Ramsey,

(2) I is Mon,

(3) I is Fin-BW.

Remark. The ideal I1/n is Fin-BW but is not Mon. However, we do not know

if the first implication of the above fact is reversible.
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Proposition 3.2. Let I and J be ideals on ω. Then I ⊕ J is Ramsey if

and only if I is Ramsey or J is Ramsey. The same holds for Mon and Fin-BW

properties.

P r o o f. Straightforward. �

Proposition 3.3. Let I and J be ideals on ω. If I 6= ∅ and J 6= ∅ then

I × J is not Fin-BW (hence is not Mon and Ramsey).

P r o o f. If I 6= ∅ and J 6= ∅ then Fin×Fin ⊂ I × J . In [7] we showed that

Fin×Fin is not Fin-BW so I × J is not Fin-BW either. �

Proposition 3.4. Let I and J be ideals on ω.

(1) I × J is Ramsey ⇐⇒ either I is Ramsey and J = ∅, or I = ∅ and J is

Ramsey.

(2) If either I is Mon and J = ∅, or I = ∅ and J is Mon then I ×J is Mon.

(3) If ∅ × J is Mon then J is Mon.

(4) I ×J is Fin-BW ⇐⇒ either I is Fin-BW and J = ∅, or I = ∅ and J is

Fin-BW.

P r o o f. (1) (⇒): By Proposition 3.3 we know that either I = ∅ or J = ∅.

Suppose that I = ∅, J 6= ∅ and ∅ × J is Ramsey. Let c : [ω]2 → r. We define

χ : [ω × ω]2 → r in the following way. If k 6= l then χ({(n, k), (m, l)}) = c({k, l}). If

k = l then χ({(n, k), (m, l)}) = 0. There is A /∈ ∅ × J which is homogeneous for χ.

So there is n ∈ ω with An /∈ J . It is easy to see that An is homogeneous for c.

Thus J is a Ramsey ideal.

A similar argument shows that if I 6= ∅, J = ∅ and I × ∅ is Ramsey then I

is Ramsey.

(⇐) Suppose that I 6= ∅ is a Ramsey ideal and J = ∅. For any coloring

χ : [ω × ω]2 → r we define a coloring c : [ω]2 → r by c({n, k}) = χ({(n, 0), (k, 0)}).

Let A ∈ I + be a homogeneous set for c. Then it is easy to see that A×{0} /∈ I ×∅

is homogeneous for χ.

A similar argument shows that if I = ∅ andJ 6= ∅ is a Ramsey ideal then ∅×J

is a Ramsey ideal as well.

(2) This can be done by the argument similar to the one from the proof of the

implication (⇐) from point (1).

(3) Let (xn)n∈ω be a sequence of reals. We define a sequence (yn,k)(n,k)∈ω×ω by

yn,k = xk for any n, k ∈ ω. Now there is B /∈ ∅ × J such that (yn,k)(n,k)∈B is

monotone. Since B /∈ ∅ × J so there is n ∈ ω with A = {k ∈ ω : (n, k) ∈ B} /∈ J .

It is easy to see that (xk)k∈B is monotone. Thus J is Mon.
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(4) (⇒): By Proposition 3.3 we know that either I = ∅ or J = ∅.

Let I = ∅ and let (xn)n∈ω be a bounded sequence. Let yn,m = xm for n, m ∈ ω.

Let A /∈ ∅ × J be such that (yn,m)(n,m)∈A is convergent. Let n ∈ ω be such

that An = {m ∈ ω : (n, m) ∈ A} /∈ J . Then the subsequence (xm)m∈An
is also

convergent.

Now assume that I = ∅ and (xn)n∈ω is a bounded sequence. We define a sequence

yn,m = xn for n, m ∈ ω. Let A /∈ I ×∅ be such that (yn,m)(n,m)∈A is convergent. Let

B /∈ I and f : B → ω be such that f ⊂ A. Then y(n,f(n)) = xn so the subsequence

(xn)n∈B is convergent.

(⇐) It is easy to show that I ×∅ and ∅×J are Fin-BW whenever I andJ are

Fin-BW. �

Remark. We do not know if the implication (3) of the above proposition can be

reversed.

Lemma 3.5. Let I be an ideal on ω which is not dense. Then I is Ramsey (so

Mon and Fin-BW as well).

P r o o f. Apply the ordinary Ramsey’s theorem to a set which witnesses that the

ideal I is not dense. �

The following example shows that there are dense Ramsey ideals.

Example 3.6. Let A be an infinite maximal almost disjoint family of infinite

subsets of ω. Let IA be the ideal which consists of all subsets of ω which can be cov-

ered by finitely many members of A. It is easy to see that IA is dense. On the other

hand, the coidealI +
A is selective (see [15]), so IA is h-Ramsey (by Proposition 3.17),

thus the ideal IA is Ramsey (see the first remark in Subsection 3.2).

Lemma 3.7. Let I be an analytic P-ideal on ω. If I is a local Q-point then

I is not dense.

P r o o f. Let I = Exh(ϕ) be an analytic P-ideal which is a local Q-point.

We claim that there is δ > 0 such that {n ∈ ω : ϕ({n}) > δ} is infinite. Indeed,

suppose that for every δ > 0 the set {n ∈ ω : ϕ({n}) > δ} is finite. Let A0 = {i ∈

ω : ϕ({i}) > 1} and An+1 = {i ∈ ω : 1/2n+1 6 ϕ({i}) < 1/2n} and B = {n ∈

ω : ϕ({n}) = 0}. Then {An : n ∈ ω} ∪ {{n} : n ∈ B} is a partition of ω into finite

sets, hence there is a selector S /∈ I of this family. Since B ∈ I so S \ B /∈ I . On

the other hand, ‖S \ B‖ϕ 6
∑

i>n

1/2i → 0, so S \ B ∈ I , a contradiction.

Let A = {n ∈ ω : ϕ({n}) > δ} /∈ I . Let B ⊂ A. Then B /∈ I ⇐⇒ |B| < ω. �
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Lemma 3.8. Let I be an analytic P-ideal on ω which is a local Q-point. Then

I is Ramsey (hence Mon and Fin-BW).

P r o o f. It is Ramsey by Lemmas 3.7 and 3.5. �

Lemma 3.9. Let I be an ideal on ω. If I is Mon then it is locally selective.

P r o o f. Let (yn)n∈ω be a decreasing sequence in the interval (0, 1). For each

i ∈ ω let (xi
n)n∈ω be an increasing sequence in the interval (yi+1, yi).

Let {Ai}i∈ω, Ai ∈ I be a partition of ω. Let i, j : ω → ω be such that for each

n ∈ ω we have n ∈ Ai(n) and n is the j(n)th element of Ai(n) (i.e. j(n) = |Ai(n) ∩n|).

Define a sequence (an)n∈ω by the formula

an = x
i(n)
j(n).

By the Mon property there exists an A /∈ I such that (an)n ↾ A is monotone.

Since (an)n is one-to-one, we have only two possibilities:

(1) (an)n ↾ A is strictly increasing, or

(2) (an)n ↾ A is strictly decreasing.

Suppose the former case and take any k ∈ A. Since

{n ∈ A : an > ak} =
{

n ∈ A : an > x
i(k)
j(k)

}

= (Ai(k) ∩ (n,∞)) ∪

i(k)−1
⋃

m=0

Am,

we have

A ⊂ {n ∈ A : an 6 ak} ∪ {n ∈ A : an > ak} ⊂ (k + 1) ∪

i(k)
⋃

m=0

Am ∈ I ,

which is a contradiction.

Suppose the latter case. Since (an)n ↾ Ai is increasing for each i ∈ ω, |A∩Ai| 6 1.

By extending A to a selector we get the thesis. �

By Lemma 3.9 every Mon ideal is locally selective. Since every locally selective

ideal is a local Q-point, and if an analytic P-ideal is a local Q-point then it is Ramsey

(Lemma 3.8), we get the following corollary.

Corollary 3.10. Let I be an analytic P-ideal on ω. The following assertions are

equivalent:

(1) I is Ramsey,

(2) I is Mon.
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Remark. Every Ramsey ideal is locally selective, but the inverse implication does

not hold, since the ideal NWD(Q) is locally selective but is not Mon. Moreover, there

is no connection between Fin-BW and locally selective ideals. Indeed, NWD(Q) is

not Fin-BW (see [7]) but it is locally selective. On the other hand, I1/n is Fin-BW

and is not locally selective.

By Corollary 3.10 and the above remark, I1/n is an example of a Fin-BW ideal

which is not Mon. The authors do not know any example of a Mon ideal which is not

Ramsey. We are only able to prove the equivalence of both the properties with the

additional assumptions on the ideal (note that in the proof of Theorem 3.11 we use

the assumption that I is a weak Q-point only to show the implication“(3) ⇒ (4)”).

Theorem 3.11. Let I be an ideal on ω which is a weak Q-point. The following

conditions are equivalent.

(1) I is Ramsey;

(2) I is Mon;

(3) I is Fin-BW;

(4) for every family {As : s ∈ r<ω} of sets fulfilling conditions (S1), (S2), (S3) from

the assumption of Proposition 2.8, there are x ∈ rω and C /∈ I such that C is

a diagonalization of {Ax↾n}n, i.e. m ∈ Ax↾n for all n < m and m, n ∈ C.

P r o o f. (3) ⇒ (4): Two cases are possible:

(i) there is an x ∈ rω such that C =
⋂

n∈ω
Ax↾n /∈ I , or

(ii) for each x ∈ rω ,
⋂

n∈ω
Ax↾n ∈ I .

In the first case C is a desired diagonalization, so assume the second case.

Since I is Fin-BW we can apply Proposition 2.8 to get x ∈ rω and B ⊂ ω, B /∈ I

such that B \ Ax↾n is finite for all n. We may assume that
⋂

n∈ω
Ax↾n = ∅.

We can choose a strictly increasing sequence n0 < n1 < n2 < . . . such that for

every k, B \ Ax↾nk
⊂ nk+1. Using the fact that I is a weak Q-point, there is

C ⊂ B, C ∈ I + which has at most one point in each of the intervals [nk, nk+1).

Let C = {kn : n ∈ ω} be an increasing enumeration of C. Let C0 = {k2n : n ∈ ω}

and C1 = {k2n+1 : n ∈ ω}. Then C0 and C1 are diagonalizations of the sequence

(Ax↾n)n∈ω and one of them has to be in I +.

(4) ⇒ (1): We define a family {As : s ∈ r<ω} of subsets of ω:

• A∅ = ω,

• Asˆi = {n ∈ As : c(|s ˆ i|, n) = i}, i = 0, 1, . . . , r − 1.

Let x ∈ rω and let C /∈ I be such that m ∈ Ax↾n for all n < m and m, n ∈ C.
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For every i ∈ r let

Ci = {n ∈ C : x(n − 1) = i}.

Take j < r with Cj /∈ I . Since C is a diagonalization of {Ax↾n}n, for eachm, n ∈ Cj

(n < m) we have m ∈ Ax↾n, so c(n, m) = j. Thus Cj is homogeneous. �

Remark. There are weak Q-points which are Ramsey (e.g. all ideals which are

not dense, the ideal from Example 3.6). But there also are weak Q-points which are

not Ramsey (e.g. NWD(Q)).

Remark.

(1) If we consider the class of maximal ideals then by [3, Thm. 4.9] the Mon and

Ramsey properties are equivalent to the fact that I ∗ is a Ramsey ultrafilter.

(2) By [3, Thm. 4.7] in the class of maximal ideals, I is Fin-BW if and only if

I ∗ is a P-point.

(3) It is consistent with ZFC that there are maximal ideals which are Ramsey (hence

Mon and Fin-BW) – for, under CH, there are selective ultrafilters.

(4) It is consistent with ZFC that there is a maximal Fin-BW ideal which is not

Ramsey – for, under CH, there is a P-point ultrafilter which is not a Ramsey

ultrafilter.

(5) It is consistent with ZFC that there are no maximal ideals which are Fin-

BW (hence Ramsey and Mon) – for it is consistent that there are no P-point

ultrafilters (see [13]).

Remark. In the working version of this paper we have asked some questions about

multicolor versions of Ramsey’s theorem. We have asked, among other, whether for

every ideal I which is Ramsey and for every coloring χ : [ω]2 → {0, 1, 2} there is a

homogeneous set A /∈ I for χ? This question was solved in the negative by Meza

Alcántara in [1, Thm. 2.7.6]. He also gives a criterion for Mon (and h-Mon, see

definitions below) ideals.

3.2. Global version

An ideal I on ω will be called

(1) h-Ramsey if I ↾ A is Ramsey for every A ∈ I +;

(2) h-Mon if I ↾ A is Mon for every A ∈ I +.

Remark. It is easy to see that if an ideal I is h-Ramsey (h-Mon, h-Fin-BW)

then I is Ramsey (Mon, Fin-BW respectively). However, the reverse implications

do not hold. Indeed, take an ideal I which is Ramsey (e.g. Fin) and an ideal J

which is not Fin-BW (e.g. Id), then I ⊕ J is Ramsey (by Proposition 3.2) but is

not h-Fin-BW.
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Remark. h-Ramsey ideals were already considered by Farah in [5]. He considered

in his paper coideals instead of ideals and called them Ramsey coideals. Recently,

h-Ramsey ideals have been considered also in [12]. The authors call them Ramsey

superfilters and apply them to topological selection principles.

One can easily see that the following fact holds.

Fact 3.12. Let I be an ideal on ω. In the following list of conditions on I each

implies the next.

(1) I is h-Ramsey,

(2) I is h-Mon,

(3) I is h-Fin-BW.

Remark. Here, as in the case of the local version, the second implication of the

above proposition cannot be reversed. The ideal I1/n is h-Fin-BW (see [7]) but is

not h-Mon. Whereas the second implication is in fact an equivalence as is shown in

Theorem 3.16.

Proposition 3.13. Let I and J be ideals on ω. Then I ⊕ J is h-Ramsey

if and only if I and J are h-Ramsey. The same holds for h-Mon and h-Fin-BW

properties.

P r o o f. Straightforward. �

Proposition 3.14. Let I and J be ideals on ω.

(1) I × J is h-Ramsey ⇐⇒ either I is h-Ramsey and J = ∅, or I = ∅ and

J is h-Ramsey.

(2) I × J is h-Fin-BW ⇐⇒ either I is h-Fin-BW and J = ∅, or I = ∅ and

J is h-Fin-BW.

P r o o f. The proof is very similar to the proof of Proposition 3.4. �

Remark. The above proposition also holds for the h-Mon property because it is

equivalent to the h-Ramsey property (Theorem 3.16).

The same argument as in the proof of Lemma 3.9 yields

Lemma 3.15. Let I be an ideal on ω. If I is h-Mon then it is weakly selective.

Remark. The ideal NWD(Q) is weakly selective but is not h-Mon. Moreover,

there is no connection between the h-Fin-BW and weakly selective ideals. Indeed,

NWD(Q) is not h-Fin-BW (see [7]) but it is weakly selective. On the other hand,

I1/n is h-Fin-BW and is not weakly selective.
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And below is a global version of Theorem 3.11.

Theorem 3.16. Let I be an ideal on ω. The following are equivalent.

(1) I is h-Ramsey;

(2) I is h-Mon;

(3) I is h-Fin-BW and a weak Q-point;

(4) for every A ∈ I + and every family {As : s ∈ r<ω} of sets fulfilling the condition

A∅ = A and conditions (S2), (S3) from the assumption of Proposition 2.8, there

are x ∈ rω and C /∈ I such that C is a diagonalization of {Ax↾n}n, i.e.m ∈ Ax↾n

for all n < m and m, n ∈ C.

P r o o f. (2) ⇒ (3): By Lemma 3.15 every h-Mon ideal is weakly selective hence

it is a weak Q-point.

(3) ⇒ (4) and (4) ⇒ (1) – like in the local case. �

Remark. There are weak Q-points which are h-Ramsey (e.g. Fin and the ideal

from Example 3.6). But there also are weak Q-points which are not h-Ramsey

(e.g. NWD(Q)).

The next proposition and remark were already noted by Farah in [5].

Proposition 3.17 ([5]). If I + is a selective coideal then I is h-Ramsey.

P r o o f. Using the selectivity of I + it is easy to show that condition (4) of

Theorem 3.16 holds. �

Remark. The above proposition cannot be reversed. The ideal I = ∅ × Fin is

h-Ramsey but I + is not selective.

3.3. Filter version

One could consider a stronger property than Ramsey, requiring that the homoge-

neous set is from the dual filter I ∗. Analogously, one could consider “filter” versions

of Mon and Fin-BW properties. However, as we show below, these properties are, in

a sense, too strong.

Proposition 3.18. Let I be an ideal on ω. If for every bounded sequence

(xn)n∈ω of reals there is A ∈ I ∗ such that (xn) ↾ A is convergent then I is a

maximal ideal.

P r o o f. Suppose that I is an ideal with the required property which is not

maximal. Let A ⊂ ω be such that A /∈ I and ω \A /∈ I . Let (xn)n∈ω be a sequence

such that xn = 0 if n ∈ A and xn = 1 if n ∈ ω\A. Let C ∈ I ∗ be such that (xn) ↾ C

is convergent. Then either C ∩ A is finite or C \ A is finite, a contradiction. �
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Corollary 3.19. Let I be an ideal on ω. The following are equivalent.

(1) For every bounded sequence (xn)n∈ω of reals there is A ∈ I ∗ such that (xn) ↾ A

is convergent;

(2) I ∗ is a P-point.

Corollary 3.20. Let I be an ideal on ω. The following are equivalent.

(1) For every finite coloring of [ω]2 there exists a homogeneous A ∈ I ∗;

(2) for every sequence (xn)n∈ω there exists A ∈ I ∗ such that (xn) ↾ A is monotone;

(3) I ∗ is selective.

4. Ideal version of Ramsey’s theorem

Let I be an ideal on ω and r ∈ ω. We say that A ⊂ ω is I -monochromatic

(or I -homogeneous) for a coloring c : [ω]2 → r if there is k ∈ r such that for every

a ∈ A

{b ∈ A : c({a, b}) 6= k} ∈ I .

The following easy propositions characterize I -homogeneous and homogeneous

sets in terms of Fubini products of ideals.

Proposition 4.1. Let I be an ideal on ω and c : [ω]2 → r. The following are

equivalent.

(1) There is A ∈ I + which is I -homogeneous for c.

(2) There are A ∈ I + and k ∈ r such that {(a, b) ∈ A2 : c({a, b}) 6= k} ∈ ∅ × I .

(3) There are A ∈ I + and k ∈ r such that {(a, b) ∈ A2 : c({a, b}) 6= k} ∈ I × I .

Proposition 4.2. Let I be an ideal on ω and c : [ω]2 → r. The following are

equivalent.

(1) There is A ∈ I + which is homogeneous for c.

(2) There are A ∈ I + and k ∈ r such that {(a, b) ∈ A2 : c({a, b}) 6= k} ∈ I × ∅.

We say that a sequence (xn)n∈A is I -increasing if for every N ∈ A

{n ∈ A : xN > xn} ∈ I .

Analogously we define I -decreasing, I -nonincreasing and I -nondecreasing se-

quences. We say that (xn)n is I -monotone if (xn)n is I -nonincreasing or I -

nondecreasing. An ideal I on ω will be called
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(1) Ramsey∗ if for every finite coloring of [ω]2 there exists an I -homogeneous A ∈

I +;

(2) Mon∗ if for every sequence (xn)n∈ω there exists A ∈ I + such that (xn) ↾ A is

I -monotone;

(3) h-Ramsey∗ if I ↾ A is locally Ramsey∗ for every A ∈ I +;

(4) h-Mon∗ if I ↾ A is locally Mon∗ for every A ∈ I +.

Remark. It is easy to see that if the ideal I is h-Ramsey∗ (h-Mon∗, h-BW)

then I is Ramsey∗ (Mon∗, BW respectively). However, the reverse implications do

not hold. Indeed, the ideal Fin⊕Id is BW but is not h-BW. By Theorem 4.3 and

Corollary 4.4 this example also works for the other properties.

Remark. Clearly if I is Ramsey (h-Ramsey) then I is Ramsey∗ (h-Ramsey∗).

Analogous implications hold for Mon and BW properties. These implications do not

reverse. Indeed, any maximal ideal which is not a P-point is h-BW but is not Fin-

BW (by Corollary 3.19). Theorem 4.3 and Corollary 4.4 show that the same example

works for the other properties.

Theorem 4.3. Let I be an ideal on ω. The following are equivalent:

(1) I is Ramsey∗,

(2) I is Mon∗,

(3) I is BW.

P r o o f. (1) ⇒ (2): For every a, b ∈ ω, a < b let

χ({a, b}) =

{

0 if xa < xb,

1 otherwise.

Since I is Ramsey∗, there is an A 6∈ I which is I -monochromatic. Observe that

if {b ∈ A : χ({a, b}) 6= 0} ∈ I for all a ∈ A then (xn)n ↾ A is I -increasing, and if

{b ∈ A : χ({a, b}) 6= 1} ∈ I for each a ∈ A then (xn)n ↾ A is I -nonincreasing.

(2) ⇒ (3): Suppose that I is Mon∗ and (xn)n∈ω is a bounded sequence. Let

A 6∈ I be such that (xn) ↾ A is I -monotone. Without loss of generality we can

assume that (xn) ↾ A is I -nondecreasing.

Let x = sup
n∈A

xn, and fix ε > 0. Let N ∈ A be such that xN > x − ε. Then

{n ∈ A : |xn − x| > ε} ⊂ {n ∈ A : xn < xN},

and the latter set is an element of I by the Mon∗ property of I . Thus (xn) ↾ A is

I -convergent to x.
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(3) ⇒ (1): Let c : [ω]2 → r. We define a family {As : s ∈ r<ω} of subsets of ω:

• A∅ = ω,

• Asˆi = {n ∈ As : c(|s ˆ i|, n) = i}, i = 0, 1, . . . , r − 1.

The family {As : s ∈ r<ω} satisfies (S1), (S2) and (S3) from Proposition 2.9. But

I is BW hence there are x ∈ rω and a set B /∈ I such that B \Ax↾n ∈ I for every

n ∈ ω. Moreover, there are C ⊂ B and j ∈ r such that C /∈ I and x(k − 1) = j for

every k ∈ C.

We claim that C is I -homogeneous for the coloring c. Let n ∈ C. Then

{k ∈ C : c({n, k}) 6= j} ⊂ C \ Ax↾n ⊂ B \ Ax↾n ∈ I .

�

The global versions of these properties are also equivalent.

Corollary 4.4. Let I be an ideal on ω. The following are equivalent:

(1) I is h-Ramsey∗,

(2) I is h-Mon∗,

(3) I is h-BW.

And filter versions of these properties are very strong.

Corollary 4.5. Let I be an ideal on ω. The following are equivalent.

(1) For every finite coloring of [ω]2 there exists an I -homogeneous A ∈ I ∗,

(2) for every sequence (xn)n∈ω there exists A ∈ I ∗ such that (xn) ↾ A is I -

monotone,

(3) for any bounded sequence (xn)n∈ω of reals there is A ∈ I ∗ such that (xn) ↾ A

is I -convergent,

(4) I is a maximal ideal.

P r o o f. Implications (1) ⇒ (2) ⇒ (3) ⇒ (1) are proved like above.

(3) ⇒ (4): Like in the proof of Proposition 3.18.

(4) ⇒ (3): Folklore (see e.g. [7]). �

Proposition 4.6. Let I and J be ideals on ω. Then

(1) I ⊕ J is Ramsey∗ if and only if I is Ramsey∗ or J is Ramsey∗. Of course,

the same holds for the Mon∗ and BW properties.

(2) I ⊕ J is h-Ramsey∗ if and only if I and J are h-Ramsey∗. Of course, the

same holds for the h-Mon∗ and h-BW properties.
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P r o o f. Straightforward. �

Proposition 4.7 ([7]). Let I and J be ideals on ω.

(1) If Fin ⊂ I then I × J is Ramsey∗ (h-Ramsey∗) if and only if I is Ramsey∗

(h-Ramsey∗).

(2) ∅ × J is Ramsey∗ (h-Ramsey∗) if and only if J is Ramsey∗ (h-Ramsey∗).

Remark. Our paper [7] is devoted to BW and h-BW ideals. For instance, we show

examples of ideals which are and which are not BW and h-BW, we give characteri-

zations of the BW property in terms of submeasures and extendability to a maximal

P-ideal for analytic P-ideals. Moreover, we show applications to Rudin-Keisler and

Rudin-Blass orderings of ideals and quotient Boolean algebras. In particular, we

show that an ideal I is not BW if and only if its quotient Boolean algebraP(ω)/I

has a countably splitting family.

Remark. It seems interesting to examine the ideal versions of Ramsey’s theorem

for the coloring of triples, quadruples, and more. We leave these problems for further

study. Let us just note here that it is not difficult to show that if a coideal I + is

selective then the ideal versions of Ramsey’s theorem hold for coloring n-tuples for

every n ∈ ω.

5. Applications

For some classes of ideals we get the following strengthening of the fact that they

are Ramsey∗.

Proposition 5.1. Let I be a Fin-BW ideal on ω. Then for every finite coloring

of [ω]2 there exists a Fin-homogeneous A ∈ I +.

P r o o f. We proceed as in the proof of implication (3) ⇒ (1) of Theorem 4.3,

but we use Proposition 2.8 instead of Proposition 2.9. �

Corollary 5.2. Let I be a P-ideal on ω which is Ramsey∗. Then for every finite

coloring of [ω]2 there exists a Fin-homogeneous A ∈ I +.

P r o o f. By Theorem 4.3 I is BW, so it is Fin-W (see [7]). �
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Theorem 5.3. Let I = Exh(ϕ) be an analytic P-ideal which is Ramsey∗. Then

there exists δ = δ(ϕ) such that for every finite coloring of [ω]2 there exists a Fin-

homogeneous A ⊆ ω with ‖A‖ > δ.

P r o o f. We say that {F1, . . . , FN} is an (N, δ)-partition of the set A ⊂ ω if

F1 ∪ . . . ∪ FN = A and ϕ(Fi) 6 δ for every i 6 N . In [7, proof of Theorem 4.2] it is

shown that there is δ > 0 such that

Iδ = {A ⊂ ω : (∃N, k ∈ ω)(∀n ∈ ω)(∃F) F is (N, δ)-partition of A ∩ [k, n]}

is a proper Fσ ideal which extends I . Moreover, it is easy to see that ‖A‖ϕ > δ for

every A /∈ Iδ.

The ideal Iδ is Fσ so it is Fin-BW (see [7, Proposition 3.4]). Hence for every

coloring c : [ω]2 → r there are i ∈ r and A ∈ I +
δ such that {b ∈ A : c({a, b}) 6= i}

is finite for every a ∈ A (by Proposition 5.1). Thus A is Fin-homogeneous for c and

‖A‖ > δ. �

Remark. Note that in the above theorem the constant δ does not depend on r.

In [9] the authors prove, among other, the following theorem.

Theorem 5.4 ([9]). For any finite coloring c : [ω]2 → r there exist δ = δ(r) > 0

and i 6 r such that

d({x ∈ ω : d({y ∈ ω : d(Z(x, y)) > δ}) > δ}) > δ,

where

Z(x, y) = {z ∈ ω : c({x, y}) = c({x, z}) = c({y, z}) = i},

and d(·) and d(·) denote the upper density and lower density, respectively.

In [8] the following variant of Ramsey’s theorem was proved (note that in Theo-

rem 5.5 the constant δ depends on r).

Theorem 5.5 ([8]). Let I = Exh(ϕ) be an analytic P-ideal. For any finite

coloring c : [ω]2 → r there exist δ = δ(ϕ, r) > 0 and i 6 r such that

‖{x ∈ ω : ‖{y ∈ ω : ‖Z(x, y)‖ > δ}‖ > δ}‖ > δ.

For Ramsey∗ ideals we can prove a similar result.

Proposition 5.6. LetI be Ramsey∗ ideal. Then for any finite coloring c : [ω]2 →

r there exist i 6 r and A ∈ I + such that for every x ∈ A

{y ∈ A : {z ∈ A : c({x, y}) 6= i or c({x, z}) 6= i or c({y, z}) 6= i} ∈ I } ∈ I .
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P r o o f. Let A ∈ I + be I -homogeneous for c : [ω]2 → r (with color i). For

every x ∈ A we put Bx = {y ∈ A : c({x, y}) 6= i} ∈ I . Then for every x ∈ A and

for every y ∈ A \Bx and for every z ∈ A \ (Bx ∪By) we have c({x, y}) = c({y, z}) =

c({x, z}) = i. But Bx, Bx ∪ By ∈ I and that completes the proof. �

Using Theorem 5.3 one can easily show the following. Note that the constant δ

does not depend on the number of colors.

Corollary 5.7. Let I = Exh(ϕ) be an analytic P-ideal which is Ramsey∗. Then

there exists δ = δ(ϕ) such that for every finite coloring c : [ω]2 → r there exist i ∈ r

and A ⊆ ω with ‖A‖ > δ such that for every x ∈ A

‖{y ∈ A : ‖{z ∈ A : c({x, y}) = c({x, z}) = c({y, z}) = i}‖ > δ‖ > δ.
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