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ADJOINT BI-CONTINUOUS SEMIGROUPS AND SEMIGROUPS

ON THE SPACE OF MEASURES

Bálint Farkas, Darmstadt

(Received September 10, 2009)

Abstract. For a given bi-continuous semigroup (T (t))t>0 on a Banach space X we de-
fine its adjoint on an appropriate closed subspace X◦ of the norm dual X′. Under some
abstract conditions this adjoint semigroup is again bi-continuous with respect to the weak
topology σ(X◦, X). We give the following application: For Ω a Polish space we consider
operator semigroups on the space Cb(Ω) of bounded, continuous functions (endowed with
the compact-open topology) and on the space M(Ω) of bounded Baire measures (endowed
with the weak∗-topology). We show that bi-continuous semigroups on M(Ω) are precisely
those that are adjoints of bi-continuous semigroups on Cb(Ω). We also prove that the class
of bi-continuous semigroups on Cb(Ω) with respect to the compact-open topology coincides
with the class of equicontinuous semigroups with respect to the strict topology. In general,
if Ω is not a Polish space this is not the case.

Keywords: not strongly continuous semigroups, bi-continuous semigroups, adjoint semi-
group, mixed-topology, strict topology, one-parameter semigroups on the space of measures
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1. Introduction

The probably simplest example of a semigroup on the space Cb(R), namely the

shift semigroup, fails to be strongly continuous and even measurable with respect

to the sup-norm. To overcome this and a probably more important fact, namely

the failure of strong continuity of many transition semigroups, several different ap-

proaches have been developed, such as those of π-semigroups by Priola [28] or weakly

continuous semigroups by Cerrai [5]. One could even simply consider other locally

convex topologies on Cb(R) than the sup-norm-topology as, e.g., was done by Dorroh,

Neuberger [6]. A more recent abstract approach is that of integrable semigroups on

norming dual pairs due to Kunze, see [16], [17], and [18]. In this paper, we give pref-

erence to the notion of bi-continuous semigroups initiated by Kühnemund [19], [20].
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The reason for prefering this class of semigroups is the fact that there is already

a vast abstract theory developed for them: there are generation, approximation and

perturbation results (see Kühnemund [19], [20] and Farkas [11], [12]). Even the Hille-

Phillips functional calculus was formulated in this setting, and was used to prove

convergence rates for rational approximation schemes and for efficient Laplace inver-

sion formulas, see Jara [15]. More recently mean-ergodic theorems for bi-continuous

semigroups have been studied by Albanese, Lorenzi, Manco [1]. On the other hand,

bi-continuous semigroups have appeared in several applications concerning parabolic

equations and equations with unbounded coefficients on the space of bounded contin-

uous functions. We mention here the papers: Albanese, Lorenzi, Manco [1], Albanese,

Mangino [2], Es-Sarhir, Farkas [9], [10], Farkas, Lorenzi [13], Lorenzi, Zamboni [23],

Metafune, Pallara, Wacker [26]. It is the aim of the present note to complement

the existing theory of bi-continuous semigroups by the construction of the adjoint

semigroup (this is done in Section 2).

Beside these, semigroups on spaces of measures have been attracting much at-

tention recently, see Manca [24], Lant, Thieme [22]. It is not surprising, how-

ever, that such questions were addressed much earlier, for example by Sentilles [31],

who studied operator semigroups of Cb(Ω) (bounded continuous functions) and on

M(Ω) (bounded measures), where Ω is a locally compact space. The important

construction there was that of a strict-topology, which will be also crucial in this

paper (it is the topology considered by Dorroh, Neuberger in [6]). In this re-

spect we will rely on the paper by Sentilles [30]. In Section 3 below, the adjoint

bi-continuous semigroup construction mentioned above will be applied to study-

ing bi-continuous semigroups on the space M(Ω) of bounded Baire measures. We

further show that bi-continuous semigroups in some cases may be included in the

theory of equicontinuous semigroups on locally convex spaces, but we also give an

example, a rather pathological one, showing that this is not always possible (Sec-

tion 4). Our result on the automatic equicontinuity of semigroups (Theorem 3.4)

has been obtained independently by M. Kunze even in a more general situation,

see [17].

Let us first recall some terminology and set up the framework (see Kühne-

mund [19], [20]). For considering bi-continuous semigroups one needs a Banach

space (X, ‖ · ‖) which is endowed with an additional locally convex topology τ . The

two topologies need somehow be connected, hence we assume the following:

Hypothesis A.

(i) τ is Hausdorff and coarser than the norm-topology.

(ii) The locally convex space (X, τ) is sequentially complete on τ -closed, norm-

bounded sets.
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(iii) The dual space (X, τ)′ is norming for (X, ‖ · ‖), i.e.,

‖x‖ = sup
ϕ∈(X,τ)′

‖ϕ‖61

|ϕ(x)|.

Now, τ -bi-continuous semigroups are defined as follows:

Definition 1.1. A one-parameter semigroup (T (t))t>0 of bounded linear opera-

tors on a Banach space X is called a (τ -)bi-continuous semigroup, if

(i) the orbit R+ ∋ t 7→ T (t)x is τ -continuous for all x ∈ X (τ -strongly continuous),

(ii) t 7→ T (t) is a norm-bounded function, say, on [0, 1], in which case it is exponen-

tially bounded on R+.

(iii) (T (t))t>0 is locally-bi-equicontinuous, which means that for a norm-bounded

τ -null sequence xn the convergence T (t)xn → 0 holds in the topology τ and

uniformly in compact intervals.

The main feature of this definition is that it mixes properties with respect to two

topologies : the norm-topology of Banach spaces (thus it allows for norm-estimates)

and a weaker notion of convergence. As in (iii) above, for functions T : R+ → L (X)

we use the term “locally. . . ”, if the property “. . . ” is satisfied for operators T (t),

t ranging over compact intervals of R+.

Let us first present some examples for bi-continuous semigroups.

Example 1.2. Illustrative examples of bi-continuous semigroups are those on the

space Cb(Ω) when this space is endowed with the compact-open topology τc. To

be more specific, consider a locally compact Hausdorff or a metrisable topological

space Ω (or even more generally a completely regular kf -space, i.e., a space Ω for

which the continuity of a function f : Ω → R is decided already on compact sets).

The linear space of continuous and bounded functions f : Ω → R becomes a Banach

space when endowed with the supremum-norm ‖ · ‖∞. The additional topology that

we consider is the compact-open topology τc generated by the family of semi-norms

{pK(f) := sup
x∈K

|f(x)| : K ⊆ Ω compact}.

It is trivial that for X = Cb(Ω) and τ = τc Hypothesis A is satisfied. Now some

important examples of bi-continuous semigroups in this settings:

1. The shift semigroup on Cb(R) is bi-continuous for the compact-open topology.

2. If Ω is a Polish space Dorroh and Neuberger have studied semigroups (T (t))t>0

on Cb(Ω) induced by jointly-continuous flows, see [6], [7]. Kühnemund [19,

Sec. 3.2] has shown that these semigroups are bi-continuous with respect to the

topology τc.
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3. Given a separable Hilbert space H , Ornstein-Uhlenbeck semigroups on Cb(H)

have proved to be bi-continuous semigroups with respect to the compact-open

topology, see Kühnemund [19, Sec. 3.3] (or [12]).

4. Metafune, Pallara, Wacker proved in [26] that solutions of certain second order

parabolic equations with unbounded coefficients give rise to τc-bi-continuous

semigroups on Cb(Rd).

There are many other instances of bi-continuous semigroups of this kind. With-

out claiming completeness we mention the following references: Albanese, Lorenzi,

Manco [1], Lorenzi, Zamboni [23], Es-Sarhir, Farkas [9], Farkas, Lorenzi [13].

The next example concerns the weak∗-topology on the dual of a Banach space

(and includes, among others, the shift semigroup on L∞(R)).

Example 1.3. Let E be a Banach space, X = E′ and τ = σ(E′, E) the weak∗-

topology. If (T (t))t>0 is a strongly continuous semigroup on E with respect to the

norm, then its adjoint (T ′(t))t>0 is bi-continuous on X with respect to the weak∗-

topology (see [19, Sec. 3.5]). It is a consequence of the Krein-Šmulian Theorem

(see [29, Sec. IV.6]) and it is shown in [11] that if E is separable, then every τ -bi-

continuous semigroup on X is of this form. We show in Section 4 that one cannot

drop the separability assumption.

The last example illustrates that bi-continuous semigroups naturally appear in

operator theory, too.

Example 1.4. Let (T (t))t>0 and (S(t))t>0 be C0-semigroups (strongly contin-

uous for the norm) on a Banach space E. Consider X = L (E) endowed besides

the operator norm also with the strong operator topology τstop. It is obvious that

Hypothesis A is satisfied. The implemented semigroup (U(t))t>0 is defined by

U(t) := LS(t)RT (t),

where L and R stand for the left and the right multiplication, respectively by the

indicated linear operator. It is easy to see that (U(t))t>0 is a semigroup on X which

is bi-continuous with respect to τstop (see Kühnemund [19, Sec. 3.4] and Alber [3]).

The mixed topology

To close the introduction we present a construction for the so-called mixed topol-

ogy, which allows us to handle the “two-topologies feature” of bi-continuous semi-

groups by means of a single locally convex topology. Let (X, τ) be as in Hypothesis A

and let P be a family of seminorms determining τ such that p 6 ‖ · ‖ for all p ∈ P,
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and ‖ · ‖ = sup
p∈P

p(x). For (pn) ⊆ P and (an) ∈ c0, an > 0 (positive null-sequence)

consider the seminorm

p̃(pn,an)(x) := sup
n∈N

anpn(x).

Let τm be a locally convex topology, called the mixed topology, determined by the

family of seminorms

P̃ :=
{

p̃(pn,an) : (pn) ∈ P, (an) ∈ c0, an > 0
}

.

It is clear that τ is coarser and the norm-topology is finer than τm. Wiweger in [33]

presents a very general construction for the mixed topology (without the assumptions

in Hypothesis A and even on not necessarily locally convex spaces). As a consequence

of Examples D) and E) and of Theorem 3.1.1 of [33] one obtains that τm is the

finest locally convex topology on X that coincides with τ on norm-bounded sets, for

instance, if

1) X = Cb(Ω) is endowed with the sup-norm, Ω is a completely regular space, and

τ = τc is the compact-open topology on Cb(Ω) (cf. Example 1.2);

2) or, X = E′, E is a Banach space and τ = σ(E′, E) is the weak∗-topology

(cf. Example 1.3).

By a routine argument one proves the following lemma (or see [33, Theorem 2.3.1]):

Lemma 1.5. A sequence xn ∈ X is convergent in the topology τm if and only if

it is norm-bounded and τ convergent.

The following result translates the notion of bi-continuous semigroups to the lan-

guage of mixed topologies.

Proposition 1.6. The class of τ -bi-continuous semigroups and the class of τm-

strongly continuous and locally sequentially τm-equicontinuous semigroups coincide.

P r o o f. Let (T (t))t>0 be a τ -bi-continuous semigroup. Since [0, 1] ∋ h → T (h)x

is norm-bounded and τ -continuous for all x, we obtain by Lemma 1.5 that these

orbits are also τm-continuous. The sequential τm-equicontinuity of the family

{T (t) : t ∈ [0, t0]}

is simply a reformulation of Definition 1.1 (iii) in view of Lemma 1.5.

For the converse, let (T (t))t>0 be a τm-strongly continuous and locally sequentially

equicontinuous semigroup. Then the orbits [0, 1] ∋ h → T (h)x are norm-bounded

since they are τm-continuous. The τ -strong continuity is immediate, while the local

bi-equicontinuity follows again by Lemma 1.5. �
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2. Adjoints of bi-continuous semigroups

Given a bi-continuous semigroup (T (t))t>0 we would like to define its adjoint in

such a way that it be again a bi-continuous semigroup hence fitting in this theory.

First, we have to specify the space with the properties listed in Hypothesis A. The

next proposition offers a candidate.

Proposition 2.1. Given a Banach space X with the additional topology τ sat-

isfying Hypothesis A, denote by X◦ the set of all norm-bounded linear functionals

which are τ -sequentially continuous on norm-bounded sets of X . Then X◦ is a closed

linear subspace of the norm-dual X ′, hence it is a Banach space.

P r o o f. That X◦ is a linear subspace is trivial. Take ϕn ∈ X◦ with

‖ϕn − ϕ‖ → 0, where ϕ ∈ X ′. We have to show that ϕ ∈ X◦. To this end,

consider a norm-bounded τ -null sequence (xn). Then ϕ(xn) → 0 follows from

|ϕ(xn)| 6 |ϕ(xn) − ϕk(xn)| + |ϕk(xn)|

6 K‖ϕ − ϕk‖ + |ϕk(x − xn)| 6
ε

2
+

ε

2
= ε,

first by taking k ∈ N sufficiently large and then for fixed k using the continuity

assumptions on ϕk. �

So the norm inherited from X ′ makes X◦ a Banach space. We equip X◦ addition-

ally with the weak topology τ◦ := σ(X◦, X). It is our aim to consider bi-continuous

semigroups with respect to this topology on X◦. For this purpose we have to verify

the validity of Hypothesis A. Clearly, τ◦ is Hausdorff since X separates the points

of X◦, and also X is norming. Trivially, τ◦ is coarser than the norm-topology on X◦.

It remains to check only the τ◦-sequential completeness on closed, norm-bounded

sets, but this generally may fail to hold, so we incorporate this requirement into our

hypotheses.

Hypothesis B. Suppose that X◦∩B(0, 1) is sequentially complete for σ(X◦, X).

The next example shows that this assumption is indeed restrictive, i.e. it is not a

consequence of the general framework of Hypothesis A.

Example 2.2. Let E be a non-reflexive Banach space, X = E′ its norm dual

and τ = σ(E′, E) the weak∗-topology. Suppose also that E′ is separable, whence

σ(E′′, E′) is metrisable on bounded sets. Then X◦ = (X, τ)′ = E and τ◦ = σ(E, E′),

the weak∗-topology. Take y ∈ E′′ \ E arbitrary with ‖y‖E′ 6 1, and take yn ∈ E

with ‖yn‖E 6 1 converging to y in the weak∗-topology σ(E′′, E′) (such a sequence

exists by Goldstine’s Theorem). This shows that τ◦ = σ(E, E′) (being the restriction
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of σ(E′′, E′) to E) is not complete on BX◦(0, 1). For a concrete example take E = c0,

E′ = ℓ1, E′′ = ℓ∞, y = 1 the constant 1 sequence, and yn the sequence with first

n members 1 the others 0. So X = ℓ1 with τ = σ(ℓ1, c0), and yn → y in ℓ∞ for

σ(ℓ∞, ℓ1).

The framework of Hypothesis A is now established. We are ready to define adjoint

bi-continuous semigroups. The proof of the next proposition is straightforward.

Proposition 2.3. Let B ∈ L (X) be a norm-bounded linear operator which is

also τ -sequentially continuous on norm-bounded sets. Then the adjoint B′ ∈ L (X ′)

leaves X◦ invariant.

For a linear operator B ∈ L (X) that is also τ -sequentially continuous on norm

bounded sets, denote by B◦ the restriction of B′ ∈ L (X ′) to X◦.

Take now a bi-continuous semigroup (T (t))t>0 on (X, τ). Then the operators T (t)◦

obviously form a semigroup (T ◦(t))t>0, which is τ◦-strongly continuous by definition.

The exponential boundedness of (T ◦(t))t>0 is trivial. To establish the local bi-

equicontinuity, we assume the following on the underlying space.

Hypothesis C. Every norm-bounded τ◦-null sequence (ϕn) ⊂ X◦ is τ equicon-

tinuous on norm bounded sets.

Under this and the previous hypotheses we have the following result.

Proposition 2.4. Let (T (t))t>0 be a τ -bi-continuous semigroup on (X, τ), and

suppose that Hypotheses B and C are satisfied. Then the semigroup (T ◦(t))t>0 is a

τ◦-bi-continuous semigroup on X◦ (recall: by definition τ◦ = σ(X◦, X)).

P r o o f. By what is said in the paragraph preceding Hypothesis C it remains to

show the local τ◦-bi-equicontinuity of (T ◦(t))t>0. To this end take a norm-bounded

τ◦-null sequence and x ∈ X . For t0 > 0 one has the τ -compactness of {T (t)x : t ∈

[0, t0]}, thus by the equicontinuity of ϕn we have

[T ◦(t)ϕn](x) = ϕn(T (t)x) → 0

uniformly on [0, t0] (use here that for the equicontinuous family ϕn the pointwise

convergence is the same as the uniform convergence on compact sets; actually what

is needed here is an adaptation of Theorem III. 4.5. Schaefer [29] to our situation).

This means precisely the τ◦-bi-equicontinuity of (T ◦(t))t>0. �

315



3. Semigroups on the space continuous functions and of measures

In this section, we would like to carry out the adjoint construction from the pre-

vious section in the particular case when X = Cb(Ω), the space of bounded and

continuous functions. For this purpose we first need to study the mixed topology

on Cb(Ω), and recall some results from Sentilles [31] and, in slightly modified form,

from Farkas [12].

Let Ω be a Polish space or a σ-compact locally compact Hausdorff space. Consider

the mixed topology τm which is the finest locally convex topology that coincides

with τc on sup-norm bounded sets of Cb(Ω) (see the end of Section 1). The dual

of (Cb(Ω), τm) is the spaceM(Ω) of bounded Baire measures in Ω. We briefly indicate

a way to see this. By assumption Ω is completely regular. The dual of Cb(Ω) (as a

Banach space) is isomorphic to the space M(βΩ) of all bounded Baire measures on

the Stone-Čech compactification βΩ of Ω, and the isomorphism is given by ϕ(f) =
∫

βΩ f dµ. (One can represent a continuous linear function even by regular Borel

measures, in this respect we refer to Knowles [21] and Mařík [25].)

If Ω is Polish then it is Gδ, and if Ω is locally compact it is open in βΩ, see,

e.g., Walker [32, Chap. 1]. Furthermore, as Ω is Lindelöf and Gδ in βΩ, it is also a

Baire set there (a space with this property was called absolute Baire by Negrepon-

tis [27], see also Frolík [14]). Therefore it is possible to identifyM(Ω) with a subspace

of M(βΩ) in the following way:

ι : M(Ω) → M(βΩ),

[ι(ν)](B) := ν(Ω ∩ B) for all ν ∈ M(Ω) and B ⊆ βΩ a Baire set.

Then ι is an injection with

rg ι = {µ : µ ∈ M(βΩ), |µ|(βΩ \ Ω) = 0}.

One can see that a measure µ ∈ M(βΩ) gives rise to a linear functional ϕ ∈ Cb(Ω)′

which is not only norm-continuous, but also τc-continuous on norm-bounded sets,

if and only if it belongs to rg ι, i.e. if we use the above identification, it is a Baire

measure on Ω (see, e.g., [12] or Sentilles [30]).

The mixed topology, also called the strict topology and denoted by β0 := τm in

this setting, has the following remarkable properties.

Theorem 3.1 (Sentilles [30]). Let Ω either be a σ-compact, locally compact

space, or a Polish space. Then the following assertions are true:

a) β0 = µ(Cb(Ω), M(Ω)), the Mackey topology, where M(Ω) denotes the space of

all bounded Baire-measures on Ω.
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b) A linear operator T : Cb(Ω) → Cb(Ω) is β0-continuous, if and only if it is β0-

sequentially continuous. The same holds for linear functionals.

c) Every (ϕn) ⊂ (Cb(Ω), β0)
′ σ(M(Ω), Cb(Ω))-null sequence is β0-equicontinuous.

As a consequence of b) we have Cb(Ω)◦ = M(Ω). We now turn our attention to

τc-bi-continuous semigroups.

Bi-continuous semigroups on Cb(Ω)

By Proposition 2.1, for a linear operator B ∈ L (Cb(Ω)) which is τc-continuous

on norm-bounded sets the (Banach space) adjoint B′ leaves M(Ω) invariant, its

restriction is denoted by B◦. The next lemma is proved in [12].

Lemma 3.2. Let Ω be a Polish space, and let T : R+ → L (Cb(Ω)) be a τc-

strongly continuous function consisting of operators that are τc-continuous on norm-

bounded sets. For a norm-bounded, weak∗-compact set K ⊆ M(Ω) and t0 > 0 the

set of measures

{T ◦(t)ν : t ∈ [0, t0], ν ∈ K }

is tight.

The next proposition is also taken from [12]. We repeat it here with a slight

modification and the additional assertion concerning β0-continuity.

Proposition 3.3. Let T : R+ → L (Cb(Ω)) be τc-strongly continuous and locally

norm-bounded. Suppose that T (t) takes norm-bounded τc-null sequences into τc-null

sequences. Then for all compact sets K ⊆ Ω and ε > 0, there exists M > 0 and

K ′ ⊆ Ω compact such that

sup
x∈K

|(T (t)f)(x)| 6 M sup
x∈K′

|f(x)| + ε‖f‖∞

holds uniformly for t in compact intervals of R+. In particular, it is locally-β0-

equicontinuous, or, which is the same, it is τc-bi-equicontinuous.

P r o o f. Let ε > 0, t0 > 0 and let K ⊆ Ω be a compact set. Take a compact set

K ′ ⊆ Ω such that |T ◦(t)δx|(Ω \K ′) 6 ε for all t ∈ [0, t0] and x ∈ K. Such a compact

set exists by Lemma 3.2. We then obtain

sup
x∈K

|T (t)f(x)| = sup
x∈K

∣

∣

∣

∣

∫

Ω

f dT ◦(t)δx

∣

∣

∣

∣

6 sup
x∈K

∫

K′

|f | d|T ◦(t)δx| + sup
x∈K

∫

Ω\K′

|f | d|T ◦(t)δx|

6 sup
t∈[0,t0]

‖T (t)‖ · sup
x∈K′

|f(x)| + ε‖f‖,

which is the assertion. �
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A variant of this result has been obtained independently by M. Kunze, see [17,

Theorem 4.4].

Let us summarise the above.

Theorem 3.4. Let Ω be a Polish space and let us consider the setF of τc-strongly

continuous semigroups (T (t))t>0 on Cb(Ω) for which each T (t) is τc-sequentially

continuous on sup-norm bounded sets. Then the class of τc-bi-continuous semigroups

and the class of β0-locally equicontinuous, β0-strongly continuous semigroups both

coincide with F .

Bi-continuous semigroups on M(Ω)

We will now study the adjoint of a τc-bi-continuous semigroup. To do that we

have to verify Hypotheses B and C. The validity of Hypothesis B, i.e., that M(Ω) is

σ(M(Ω), Cb(Ω))-sequentially complete if Ω is a Polish space, was already known to

Alexandroff [4]. Hypothesis C is satisfied by Theorem 3.1 c). Thus the abstract re-

sults from Section 2 yield the following (recall: we abbreviate τ◦ := σ(Cb(Ω), M(Ω)).

Theorem 3.5. Let Ω be a Polish space and (T (t))t>0 a τc-bi-continuous semi-

group on Cb(Ω). Then the semigroup (T (t)◦)t>0 defined as T (t)◦ := T (t)′|M(Ω) is a

τ◦-bi-continuous semigroup on the space of bounded Baire measures M(Ω).

It is little surprising that the converse of this statement is also true:

Theorem 3.6. Let Ω be a Polish space. Let (S(t))t>0 be a τ◦-bi-continuous

semigroup on the space M(Ω). Then there is a τc-bi-continuous semigroup (T (t))t>0

on Cb(Ω) with T ◦(t) = S(t).

P r o o f. For f ∈ Cb(Ω) we set

(T (t)f)(x) :=

∫

Ω

f d(S(t)δx),

where δx denotes the Dirac measure at the point x ∈ Ω. We then have

sup |(T (t)f)(x)| 6 ‖S(t)‖ · ‖f‖∞,

so T (t)f is a bounded function. If xn → x in Ω for n → ∞, then δxn
→ δx

inM(Ω) with respect to τ◦. Since S(t) is τ◦-continuous onM(Ω), we have S(t)δxn
→

S(t)δx and hence the continuity of T (t)f follows. Altogether we obtain that T (t) ∈

L (Cb(Ω)). Obviously (T (t))t>0 is an exponentially bounded semigroup. We have

to show that for each fixed t > 0 the operator is τc-bi-continuous, and that the
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semigroup (T (t))t>0 is τc-strongly continuous. Then by Theorem 3.4 (T (t))t>0 is a

τc-bi-continuous semigroup, and by construction T (t)◦ = S(t) holds.

We first prove that for t > 0 fixed T (t) is τc-bi-continuous. Assume the contrary,

i.e., that there are a sup-norm bounded sequence fn ∈ Cb(Ω) τc-convergent to 0

(i.e. β0-convergent to 0), a compact set K ⊆ Ω and ε > 0 such that

sup
x∈K

|(T (t)fn)(x)| > ε for all n ∈ N.

For each n ∈ N take a point xn ∈ K with

|(T (t)fn)(xn)| > ε.

We can suppose by virtue of compactness that xn → x for some x ∈ K. Then δxn
→

δx in τ◦, and we obtain that S(t)δxn
is a τ◦-convergent sequence. By Theorem 3.1 c)

this sequence is β0-equicontinuous. So by Schaefer [29, Sec. III.4.5] we can deduce

|(T (t)fn)(xn)| 6 sup
m∈N

∣

∣

∣

∣

∫

Ω

fn dS(t)δxm

∣

∣

∣

∣

→ 0 for n → ∞.

This is a contradiction.

To see the τc-strong continuity let K ⊆ Ω be a compact set. Assume by contra-

diction that there are f ∈ Cb(Ω), ε > 0 and tn ∈ [0, 1] with tn → 0 for n → ∞ such

that

sup
x∈K

|(T (tn)f)(x) − f(x)| > ε for all n ∈ N.

For each n ∈ N take a point xn ∈ K with

∣

∣

∣

∣

∫

Ω

f d(S(tn)δxn
− δxn

)

∣

∣

∣

∣

= |(T (tn)f)(xn) − f(xn)| > ε.

By compactness we can pass to a subsequence and assume that xn converges to

some x ∈ K. This means δxn
τ◦-converges to δx. By the local τ◦-bi-equicontinuity

of (S(t))t>0, we have

sup
s∈[0,1]

∣

∣

∣

∣

∫

Ω

f d(S(s)δxn
− δxn

)

∣

∣

∣

∣

→ 0 for n → ∞,

a contradiction. �
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4. Counterexamples

A surprising fact is that though τc is generally not metrisable, the continuity of

norm-bounded linear operators on norm-bounded sets can be described by convergent

sequences. It is clear that some kind of countability plays an important role here

(cf. metric or σ-compact spaces). Indeed, the simplest non-countable space gives rise

to a counterexample to Theorem 3.4, when Ω is not a Polish space. More specifically,

we construct below a bi-continuous semigroup which is not β0-locally-equicontinuous.

For other illuminating, related examples we refer to Kunze [17, Sec. 3].

Example 4.1. Let Ω = ω1 be the first uncountable ordinal number and υ the

order topology. Suppose that fn → 0 in the topology τc. We claim that there exists

α ∈ ω1 such that fn → 0 uniformly on [α, ω1). Suppose the contrary, i.e., for all

α < ω1 there exists k ∈ N, k > 0 such that for all N ∈ N there exist n > N and

x ∈ [α, ω1) with |fn(x)| > 1/k. For all α ∈ ω1 we have kα ∈ N and we may assume

that kαξ
= k for a cofinal sequence αξ ∈ ω1. By induction we choose a sequence

xαξ1
< xαξ1

.
+1 < xαξ2

< xαξ2

.
+1 < . . . < xαξj

< xαξj

.
+1 < . . .

with fnj
(xαξj

) > 1/k. Since K :=
{

lim
j→∞

xαξj
, xαξj

: j ∈ N
}

is compact and

sup
y∈K

|fnj
(y)| >

1

k
for all j ∈ N,

we have arrived to a contradiction. Thus we have the existence of α ∈ ω1 as asserted

above. Now, consider the family {[ξ, ω1) : ξ > α}, which has the finite intersection

property and thus by compactness possesses an accumulation point x ∈ βΩ. All fn

extend to the Stone-Čech compactification βΩ and |fn(y)| < ε for all y ∈ [α, ω1) if

n > N . Take n ∈ N, n > N . By the continuity of fn on βΩ we have a neighbour-

hood U of x such that for all y ∈ U

|fn(y) − fn(x)| 6 ε.

There exist ξ ∈ (α, ω1) with ∅ 6= U ∩ [ξ, ω1) ∋ z, so

|fn(x)| 6 |fn(x) − fn(z)| + |fn(z)| 6 ε + ε.

Thus fn(x) → 0, which shows that δx is τc-sequentially-continuous (on norm-bounded

sets). However, it is clear that it is not τc-continuous on norm-bounded sets.

Consider now the C0-semigroup (T (t))t>0 generated by the bounded operator

A := 1⊗ δx. Since A is idempotent the semigroup T takes the form

T (t) = etA = I − A + etA.
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This semigroup is bi-continuous but none of T (t), t > 0 is τc-continuous on norm

bounded sets.

We close the paper by the following counterexample complementing Example 1.3.

Example 4.2. We present a σ(E′, E)-bi-continuous semigroup on X = E′ that is

not the adjoint of a strongly continuous semigroup on E (where by Example 1.3 E is

a fortiori non-separable). A Banach space E is said to have the Mazur property if

every weakly∗-sequentially continuous linear functional on E is weakly∗-continuous.

Not every Banach space has this property, for instance E = ℓ∞ lacks it. (We refer

to further details and examples, e.g., to Edgar [8].) Now let E be a Banach space

without the Mazur property and let X := E′. Consider a weakly∗-sequentially

continuous functional ϕ on E′ that is not weakly∗-continuous, and let x ∈ E′ be an

element with ϕ(x) = 1. Set A := x ⊗ ϕ, which is obviously a bounded idempotent

linear operator on E′. Now the semigroup with the asserted properties is given as in

Example 4.1: T (t) := etA = I − A + etA.
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