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Abstract. We define nice partitions of the multicomplex associated with a Stanley ideal.
As the main result we show that if the monomial ideal I is a CM Stanley ideal, then I

p is
a Stanley ideal as well, where I

p is the polarization of I .
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1. Introduction

Let K be a field and S = K[x1, . . . , xn] a polynomial ring in n variables. Let

I ⊂ S be a monomial ideal, u ∈ S/I a monomial and Z ⊆ {x1, . . . , xn}. We denote
by uK[Z] the K-subspace of S/I generated by all elements uv where v is a monomial

in K[Z]. The K-subspace uK[Z] ⊂ S/I is called a Stanley space of dimension |Z|,
if uK[Z] is a free K[Z]-module. A decomposition of S/I as a finite direct sum of

Stanley spacesP : S/I =
r

⊕

i=1

uiK[Zi] is called a Stanley decomposition. Stanley [15]

conjectured that there always exists such a decomposition with |Zi| > depth(S/I).

If Stanley conjecture holds for S/I then I is called a Stanley ideal. The conjecture

is still open but true in some special cases [1], [2], [4], [5], [6], [7], [9], [11], [12], [13],

[14].

Let Γ be a subset of Nn
∞. An element m ∈ Γ is called maximal if there is no a ∈ Γ

with a > m. We denote by M (Γ) the set of maximal elements of Γ. If a ∈ Γ, we

write infpt(a) = {i : a(i) = ∞}. An element a ∈ Γ is called a facet of Γ if for all

m ∈ M (Γ) with a 6 m one has |infpt(a)| = |infpt(m)|. Herzog and Popescu [8]

The research is partially supported by HEC, Pakistan postdoctoral fellowship Ref. No.
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modify Stanley’s definition of multicomplexes [15]. Γ is called a multicomplex if for

all a ∈ Γ and for all b ∈ N
n
∞ with b 6 a it follows that b ∈ Γ and for all a ∈ Γ there is

a maximal elementm in Γ such that a 6 m. We define an interval I of Γ as a subset

of Γ for which there exists a 6 b in Γ such that I = [a, b] = {c ∈ Γ: a 6 c 6 b}. A
partition P : Γ =

t
⋃

i=1

[ai, bi] of Γ is a presentation of Γ as a finite disjoint union of

intervals [ai, bi].

Monomial ideals I in the polynomial ring S = K[x1, . . . , xn] and multicomplexes

in N
n
∞ correspond to each other bijectively. The multicomplex associated with a

monomial ideal I is denoted by Γ(I) and similarly, I(Γ) denotes the monomial ideal

associated with the multicomplex Γ. We show that Stanley’s conjecture holds for S/I

if and only if there exists a partition of the multicomplex Γ(I) such that |infpt(bi)| >

depth(S/I) for all i. Any partition of a multicomplex satisfying this condition will

be called nice.

Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal and Γ(I) the multicomplex as-

sociated with I. In Proposition 1.3 we show that a partition P : Γ(I) =
t
⋃

i=1

[ai, bi]

of Γ(I) is nice if all bi’s are facets of Γ(I). Also, when S/I is Cohen-Macaulay, we

have this result in both directions (see Corollary 1.4).

Let Ip be the polarization of the monomial ideal I and let Γp be the multicomplex

associated with Ip. In Theorem 2.5 we prove that in the case of Cohen-Macaulay

monomial ideals, if Γ has a nice partition then Γp has a nice partition. The converse

of this theorem is still open. In [7] it is shown that Stanley’s conjecture on Stanley

decompositions of S/I holds provided it holds whenever S/I is Cohen-Macaulay.

As a consequence, Theorem 2.5 is true even for all monomial ideals I (see Re-

mark 2.6).

2. Partitions of Multicomplexes

Let Γ be a subset of Nn. We define on N
n a partial order given by

(a(1), . . . , a(n)) 6 (b(1), . . . , b(n))

if a(i) 6 b(i) for all i. According to Stanley [15] Γ is a multicomplex if for all a ∈ Γ

and all b ∈ N
n with b 6 a, it follows that b ∈ Γ. The elements of Γ are called faces.

Herzog and Popescu [8] modify Stanley’s definition of multicomplexes. Before

giving this definition we introduce some notation. We set N∞ = N ∪ {∞}. As usual
we set a 6 ∞ for all a ∈ N, and extend the partial order on N

n naturally to N
n
∞.

Thus now we take Γ as a subset of Nn
∞.

484



An element m ∈ Γ is called maximal if there is no a ∈ Γ with a > m. We denote

by M (Γ) the set of maximal elements of Γ. If a ∈ Γ, we call

infpt(a) = {i : a(i) = ∞}

the infinite part of a.

Definition 2.1. A subset Γ ⊂ N
n
∞ is called a multicomplex if

(1) for all a ∈ Γ and for all b ∈ N
n
∞ with b 6 a it follows that b ∈ Γ,

(2) for all a ∈ Γ there exists an element m ∈ M (Γ) such that a 6 m.

An element a ∈ Γ is called a facet of Γ if for all m ∈ M (Γ) with a 6 m one has

infpt(a) = infpt(m). The set of all facets of Γ will be denoted by F (Γ). In [8] it is

shown that each multicomplex has only a finite number of facets.

Monomial ideals I in the polynomial ring S = K[x1, . . . , xn] and multicomplexes

in N
n
∞ correspond to each other bijectively. The bijection is defined as follows: Let

Γ be a multicomplex, and let I(Γ) be the K-subspace in S = K[x1, . . . , xn] spanned

by all monomials xa such that a 6∈ Γ. Note that if a ∈ N
n
∞ and b ∈ N

n
∞ \ Γ, then

a + b ∈ N
n
∞ \Γ, that is, if xb ∈ I(Γ) then xaxb ∈ I(Γ) for all xa ∈ S. In other words,

I(Γ) is a monomial ideal. In particular, the monomials xa with a ∈ Γ form a K-basis

of S/I(Γ).

Conversely, given an arbitrary monomial ideal I ⊂ S, there is a unique multicom-

plex Γ with I = I(Γ), namely the smallest multicomplex (with respect to inclusion)

which contains A = {a ∈ N
n
∞ : xa 6∈ I}. Such a multicomplex exists and is uniquely

determined since an arbitrary intersection of multicomplexes is again a multicomplex.

One has the following obvious rules: let {Γj, j ∈ J} be a family of multicomplexes.
Then

(a) I
(

⋂

j∈J

Γj

)

=
∑

j∈J

I(Γj),

(b) if J is finite, then I
(

⋃

j∈J

Γj

)

=
⋂

j∈J

I(Γj).

Let Γ ⊂ N
n
∞ be a multicomplex. We define an interval I of Γ as a subset of Γ

for which there exists a 6 b in Γ such that I = {c ∈ Γ: a 6 c 6 b}. We denote an
interval given by faces a and b by [a, b]. A partition P of Γ is a presentation of Γ as

a finite disjoint union of intervals.

Lemma 2.2. Let P : Γ =
t
⋃

i=1

[ai, bi] be a partition of Γ. Then infpt(ai) = ∅ for
all i.

485



P r o o f. Assume that for some i, say for i = 1, we have infpt(a1) 6= ∅. We may
assume that a1(1) = ∞. Set a = a1 and let c be any integer. None of the faces

(c, a(2), . . . , a(n)) belong to [a1, b1]. Thus for each c there exists an i ∈ {2, . . . , t}
such that (c, a(2), . . . , a(n)) ∈ [ai, bi]. Hence for some j > 1, infinitely many of the

vectors (c, a(2), . . . , a(n)) belong to [aj, bj ]. This is only possible if (∞, a(2), . . . , a(n))

belongs to [aj , bj ]. This is a contradiction, since a1 = (∞, a(2), . . . , a(n)) ∈ [a1, b1].

�

Next we describe how Stanley decompositions and partitions are related to each

other. Let Γ ⊂ N
n
∞ be a multicomplex, [a, b] ⊂ Γ an interval and U[a,b] the

K-subspace of S generated by all monomials u = x
c(1)
1 . . . x

c(n)
n such that c =

(c(1), . . . , c(n)) ∈ [a, b]. Then obviously U[a,b] is a Stanley space if and only if

(i) infpt(a) = ∅,
(ii) i 6∈ infpt(b) ⇒ a(i) = b(i).

Indeed, in this case U[a,b] = xaK[Zb], where Zb = {xi : b(i) = ∞}.
Let I ⊂ S be a monomial ideal and Γ(I) the multicomplex associated with I. Also

let S/I =
r

⊕

i=1

xaiK[Zi] be a Stanley decomposition of S/I. Set bi(j) = ∞ if xj ∈ Zi

and bi(j) = ai(j) if xj 6∈ Zi. Then
r
⋃

i=1

[ai, bi] is a partition of Γ(I). For instance, if

a ∈ [ai, bi]∩ [aj , bj ]∩N
n for i, j ∈ {1, . . . , r} and i 6= j, then xa ∈ aiK[Zi]∪ ajK[Zj],

a contradiction. Thus
r
⋃

i=1

[ai, bi] is disjoint.

Conversely, we observe that each interval [a, b] with infpt(a) = ∅ can be written
as a disjoint union of intervals

(2.1) [a, b] =
⋃

[ci, bi]

such that each [ci, bi] corresponds to a Stanley space. Indeed, if, as we may assume,

for some integer r we have that b(k) < ∞ for k 6 r and b(k) = ∞ for k > r, then

[a, b] is the disjoint union of the intervals

[(c(1), . . . , c(r), a(r + 1), . . . , a(n)), (c(1), . . . , c(r),∞, . . . ,∞)]

with a(k) 6 c(k) 6 b(k) for k = 1, . . . , r, and each of these intervals satisfies (i) and

(ii). Therefore, due to (2.1) and Lemma 2.2, Stanley’s conjecture holds for S/I if

and only if there exists a partition P : Γ =
t
⋃

i=1

[ai, bi] of the multicomplex Γ = Γ(I)

such that

(2.2) |infpt(bi)| > depth(S/I(Γ)) for all i.
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Any partition of a multicomplex satisfying condition (2.2) will be called nice.

Proposition 2.3. A partition P : Γ =
t
⋃

i=1

[ai, bi] of the multicomplex Γ is a nice

partition if bi ∈ F (Γ) for all i.

P r o o f. Let I(Γ) =
m
⋂

i=1

Qi be the unique irredundant presentation of I as an

intersection of irreducible monomial ideals, and let Pi =
√

Qi for i = 1, . . . , m. Then

Ass(S/I) = {P1, . . . , Pm}.
By [8, Proposition 9.12] there is a bijection between Qi and the set of M (Γ) of

maximal faces of Γ. In fact, for each i there is a unique mi ∈ M (Γ) such that

Qi = I(Γ(mi)) where Γ(mi) denotes the smallest multicomplex containing mi. The

assignment Qi 7→ mi establishes this bijection. Moreover, dimS/Pi = infpt(mi) for

all i. Therefore,

min{|infpt(bi)| : bi ∈ F (Γ)} = min{|infpt(mj)| : mj ∈ M (Γ)}
= min{dim(S/Pj) : Pj ∈ Ass(S/I(Γ))}
> depth(S/I(Γ)).

The first equation follows from the definition of the facets, while the last inequality is

a basic fact of commutative algebra, see [3, Proposition 1.2.13]. These considerations

show that the given partition is nice. �

Corollary 2.4. Let I ⊂ S be a monomial ideal such that S/I is Cohen-Macaulay.

Let Γ be the multicomplex associated with I and letP : Γ =
t
⋃

i=1

[ai, bi] be a partition

of Γ. Then the following conditions are equivalent.

(a) P is nice.

(b) {b1, . . . , bt} ⊆ F (Γ).

(c) M (Γ) ⊆ {b1, . . . , bt} ⊆ F (Γ).

P r o o f. (a) ⇒ (b): In case S/I is Cohen-Macaulay we have |infpt(b)| 6

depth(S/I) for all faces of Γ, and equality holds for b if and only if b is a facet.

Thus P can be nice only if {b1, . . . , bt} ⊆ F (Γ).

(b) ⇒ (c): Let m ∈ M (Γ); then m ∈ [ai, bi] for some i. Since m 6 bi and since

m is maximal it follows that m = bi. Thus M (Γ) ⊆ {b1, . . . , bt}.
(c) ⇒ (a) follows from Proposition 2.3. �
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Remark 2.5. In the above corollary if P is nice then we can refine it in such a

way that for the refinement

P
′ : Γ =

t′
⋃

i=1

[a′
i, b

′
i]

we have {b′1, . . . , b′t′} = F (Γ). To prove this fact we first observe that |infpt(ai)| = 0

for all i, see Lemma 1.2. Since F (Γ) =
t
⋃

i=1

(F (Γ) ∩ [ai, bi]), it is enough to write

each interval [ai, bi] as a disjoint union of intervals
l
⋃

j=1

[cj , ej ] where {e1, e2, . . . , el} =

F (Γ) ∩ [ai, bi].

For simplicity, we may assume that bi(k) < ∞ for k 6 r and bi(k) = ∞ for k > r.

Then e ∈ [ai, bi] is a facet of Γ if and only if ai(k) 6 e(k) 6 bi(k) for k 6 r and

e(k) = ∞ for k > r. Thus if we set cj(k) = ej(k) for k 6 r and cj(k) = ai(k) for

k > r, then [ai, bi] =
l
⋃

j=1

[cj , ej] is the desired refinement of [ai, bi].

3. Partitions and polarization

Let S = K[x1, . . . , xn] be the polynomial ring in n variables over the field K, and

let u =
n
∏

i=1

xai

i be a monomial in S. Then

up =

n
∏

i=1

ai
∏

j=1

xij ∈ K[x11, . . . , x1a1
, . . . , xn1, . . . , xnan

]

is called the polarization of u.

Let I be a monomial ideal in S with monomial generators u1, . . . , ur. Then

(up
1, . . . , u

p
r) is called a polarization of I and is denoted by Ip. It is known that

I is Cohen-Macaulay if and only if Ip is Cohen-Macaulay. Indeed, the elements

xij − xi1, i = 1, . . . , n and j = 1, 2, . . . form a regular sequence on T/Ip, and T/Ip

modulo this regular sequence is isomorphic to S/I.

Let I = (u1, . . . , us) ⊂ S be a monomial ideal. We may assume that for each

i ∈ [n] there exists j such that xi divides uj . Let uj = x
aj1

1 . . . x
ajn

n for j = 1, . . . , s

and set ri = maxaji : j = 1, . . . , s for i = 1, . . . , n. Moreover, set r =
n
∑

i=1

ri.

Let I =
t
⋂

i=1

Qi be the unique irredundant presentation of I as an intersection of

irreducible monomial ideals. In particular, each Qi is generated by pure powers of

some of the variables. Then Ip =
t1
⋂

i=1

Qp
i is an ideal in the polynomial ring

T = K[x11, . . . , x1r1
, x21, . . . , xn1, . . . , xnrn

]

in r variables.
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We denote by Γ, Γp, Γi and Γp
i the multicomplexes associated with I, Ip, Qi and

Qp
i , respectively, and by F , F p, Fi and F

p
i the set of facets of Γ, Γp, Γi and Γp

i ,

respectively.

Each Γi has only one maximal facet, say mi, and mi(k) 6 rk − 1 for all k with

mi(k) 6= ∞. Moreover,M (Γ) = {m1, . . . , mt}. It follows that the set of facets of Γ
is a subset of the set

B = {b ∈ N
n
∞ : b(i) < ri if b(i) 6= ∞}.

We define the map

β : B → {0,∞}r, b 7→ b′,

where the components of the vectors b′ are indexed by pairs of numbers ij, where

for each i = 1, . . . , n the second index j runs in the range j = 1, . . . , ri. The map β

is defined as follows:

b′(ij) =

{

0, if b(i) < ∞ and j = b(i) + 1,

∞, otherwise.

We quote the following result by Soleyman Jahan [10, Proposition 3.8].

Proposition 3.1. With the above assumptions and notation the restriction of

the map β to F induces a bijection F → F p.

The following example demonstrates this bijection: let I = (x2
1, x1x2, x

2
3) =

(x1, x
2
3) ∩ (x2

1, x2, x
2
3) ⊂ K[x1, x2, x3]. Then the multicomplex Γ associated with I

has the facets

(0,∞, 0), (0,∞, 1), (1, 0, 0), (1, 0, 1),

while the multicomplex of the polarized ideal

Ip = (x11x12, x11x21, x31x32) ⊂ K[x11, x12, x21, x31, x32]

has the facets

(0,∞,∞, 0,∞), (0,∞,∞,∞, 0), (∞, 0, 0, 0,∞), (∞, 0, 0,∞, 0).

Let Γ =
t
⋃

i=1

[ai, bi] be a nice partition of Γ with F (Γ) = {b1, . . . , bt}. With the
notation introduced above we have

Lemma 3.2. ai(j) 6 rj for all i and j.
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P r o o f. Suppose without loss of generality that a1(1) > r1. Then b1(1) = ∞,
because if b1(1) < ∞ then it follows that a1(1) 6 b1(1) < r1, a contradiction. Now

since Γ =
t
⋃

i=1

[ai, bi] and since a = (r1, a1(2), . . . , a1(n)) ∈ Γ\[a1, b1], there exists i > 1

such that a ∈ [ai, bi]. As above, bi(1) = ∞ because if bi(a) < ∞ then r1 6 bi(1) < r1,

which is not possible. Hence we conclude that ai 6 a < a1 < bi ⇒ a1 ∈ [ai, bi], a

contradiction. �

We want to “polarize” the nice partition Γ =
t
⋃

i=1

[ai, bi]. For this purpose we

consider the set A = {a ∈ N : a(i) 6 ri} and the map γ : A → {0, 1}r with

γ(a)(ij) =

{

0, if j > a(i),

1, otherwise.

We observe that γ is injective. Indeed, for a 6= a′ there exists i such that a(i) 6= a′(i),

say, a(i) < a′(i). Then a(ij) = 0 for j = a(i) + 1, while a′(ij) = 1 for j = a(i) + 1.

Let I = [a, b] ⊂ Γ ⊂ N
n
∞ be an interval such that a = (a(1), a(2), . . . , a(n)) and

b = (b(1), b(2), . . . , b(n)). We define an i-subinterval as

{c ∈ N∞ : a(i) 6 c 6 b(i)}

and denote it by I (i) = [a(i), b(i)].

Example 3.3. Let a, b ∈ Γ ⊂ N
2
∞, a = (2, 5), b = (4,∞). Then

I (1) = [a(1), b(1)] = [2, 4] i.e. I (1) = {2, 3, 4},
I (2) = [a(2), b(2)] = [5,∞] i.e. I (2) = {5, 6, . . .}.

Now we need the following elementary lemma.

Lemma 3.4. Let I1, I2 be two intervals of a multicomplex Γ ⊂ N
n
∞ such that

I1 = [a, b] and I2 = [c, d]. Suppose I1 ∩ I2 = ∅. Then there exists i such that

I1(i) ∩ I2(i) = ∅.

Let I ⊂ S be a monomial ideal and let S/I =
r

⊕

i=1

uiK[Zi] be its Stanley de-

composition, where ui = xai for i = 1, . . . , r. Then the Hilbert series is given by

H(S/I) =
r

∑

i=1

t|ai|/(1 − t)|Zi|, where |ai| denotes the sum of the components of ai

and |Zi| the cardinality of Zi. Thus if Γ is the multicomplex associated with I and
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Γ =
t
⋃

i=1

[ai, bi] is the corresponding partition (with bi(j) = ai(j) for xj 6∈ Zi and

bi(j) = ∞ for xj ∈ Zi), then H(S/I) =
r
∑

i=1

t|ai|/(1 − t)|bi|∞ , where |bi|∞ = |infpt bi|.

Theorem 3.5. Let I ⊂ S be a monomial ideal such that S/I is Cohen-Macaulay,

and let Ip be the polarization of I. Suppose I satisfies the Stanley Conjecture. Then

Ip satisfies it too.

P r o o f. Let Γ be the multicomplex associated with I. Since I satisfies the

Stanley Conjecture, Γ has a nice partition. Let Γp be the multicomplex associated

with Ip. Then we show that Γp has a nice partition.

Let Γ =
t̂
⋃

i=1

[âi, b̂i] be a nice partition of Γ. Then by Corollary 1.4, b̂i ∈ F (Γ) for

all i. Again by Remark 1.5, we can refine this partition to another nice partition,

say P : Γ =
t
⋃

i=1

[ai, bi], such that {b1, . . . , bt} = F (Γ).

Let β and γ be the functions defined above and set β(bi) = b̄i and γ(ai) = āi for

all i = 1, . . . , t′. We will show that Pp : Γp =
t
⋃

i=1

[āi, b̄i] is a nice partition of Γ
p.

Pp is a partition if the intervals [āi, b̄i] are disjoint for all i = 1, . . . , t andPp cov-

ers all faces of Γp.

Suppose that the intervals are not disjoint and, say, there exists a face a ∈ [āi, b̄i]∩
[āj , b̄j] for some i 6= j, i, j ∈ {1, . . . , t}. Since ai 6= aj we get āi 6= āj , γ being injective.

The intervals [ai, bi] and [aj , bj ] are disjoint and so by Lemma 2.4 there exists

at least one pair of i1-subintervals, say [ai(i1), bi(i1)] and [aj(i1), bj(i1)] for i1 ∈
{1, . . . , n}, such that [ai(i1), bi(i1)] ∩ [aj(i1), bj(i1)] = ∅.
So at least one of bi(i1), bj(i1) is finite, say bi(i1) 6= ∞, thus i1 6∈ infpt(bi), so

by condition (ii) of being Stanley space, bi(i1) = ai(i1). Also we can assume that

ai(i1) < aj(i1). If not and bj(i1) = ∞ then [ai(i1), bi(i1)] ⊂ [aj(i1), bj(i1)], which is

not possible; if bj(i1) < ∞ then change i by j.

Let ai(i1) = bi(i1) = k and aj(i1) = m > k. Then by definition of γ and β we

have āi(i1k + 1) = 0 = b̄i(i1k + 1) and āj(i1l) = 1 for l 6 m, thus āj(i1k + 1) = 1.

It follows that a(i1k + 1) = 0. On the other hand, since a > āj we get a(i1k + 1) >

āj(i1k + 1) = 1, a contradiction.

Now for the second part of the proof, we will use the Hilbert series. We have

H(S/I) =
t

∑

i=1

s|ai|/(1−s)|bi|∞ . The definition of the function γ implies that |ai| = |āi|
for all i = {1, . . . , t}. Now for each polarization step, the depth of S/I increases by 1.

Also by the definition of β for each polarization step the number of infinite points

increases by 1. Thus after n1 polarization steps we have |infpt(b̄i)| = |infpt(bi)|+n1.
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So

H

( t
⋃

i=1

[āi, b̄i]

)

=

t
∑

i=1

s|ai|

(1 − s)|bi|∞+n1

=
1

(1 − s)n1

H(S/I)

is in fact the Hilbert series of H(Sp/Ip). Hence Sp/Ip =
t
⋃

i=1

[āi, b̄i].

Note thatPp is a nice partition because |b̄i|∞ = |bi|∞+n1 > depthS(S/I)+n1 =

depthSp(Sp/Ip) for all i. �

Remark 3.6. In the above theorem, the condition for S/I to be Cohen-Macaulay

is even not necessary. As in [7], in Corollary 2.2 it is shown that for each monomial

ideal I, Stanley’s conjecture holds for S/I provided it holds whenever S/I is Cohen-

Macaulay.

The converse of Theorem 2.5 is still open. If one can prove the converse, then

Stanley’s Conjecture will reduce to the case of squarefree monomial ideals I.
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