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CONTINUOUS DEPENDENCE ON PARAMETERS OF CERTAIN

SELF-AFFINE MEASURES, AND THEIR SINGULARITY
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Abstract. In this paper, we first prove that the self-affine sets depend continuously on
the expanding matrix and the digit set, and the corresponding self-affine measures with
respect to the probability weight behave in much the same way. Moreover, we obtain some
sufficient conditions for certain self-affine measures to be singular.
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1. Introduction

Let A ∈ Md(R) be an expanding real matrix. Here a d×d real matrix A (i.e., A ∈
Md(R)) is expanding if all its eigenvalues have absolute values strictly bigger than

one. For a finite subset D = {d1 = 0, d2, . . . , dN} ⊂ Rd of cardinality N , we will

consider the iterated function system (IFS) {ϕj}N
j=1 defined by

(1.1) ϕj(x) = A−1(x + dj), 1 6 j 6 N (x ∈ Rd).

We first know from [8] that there exists a unique compact set T := T (A, D), called the

attractor (or self-affine set) of the IFS, with the property that T =
N
⋃

j=1

ϕj(T ). D is

called the digit set of the IFS. Then, for a probability weight P = (p1, p2, . . . , pN ),

i.e., 0 < pj < 1 (j = 1, 2, . . . , N),
N
∑

j=1

pj = 1, there exists a unique probability
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measure µ := µA,D,P satisfying the self-affine identity

(1.2) µ =
N

∑

j=1

pjµ ◦ ϕ−1
j .

Such a measure µA,D,P is supported on T (A, D), and is called a self-affine measure.

For more details on IFSs, we refer to [2], [3], [4], [8].

The self-affine measures µA,D,P , including self-similar measures as a special case,

have received much attention in recent years. The previous research on such a mea-

sure and its Fourier transform revealed some surprising connections with a number

of areas in mathematics, such as harmonic analysis, number theory, dynamical sys-

tems, and others (see, e.g. [5], [9], [13], [15]). The previous studies have also left some

well-known open problems, such as the nature of the Bernoulli convolutions (cf. [1],

[6], [13]), and how to determine the singularity or absolute continuity of µA,D,P ,

which have motivated the present research.

In this note, we will consider the following two questions:

(1) When some parameters of IFS change continuously, what happens to the cor-

responding attractors and self-affine measures?

(2) On what conditions with respect to the parameters of IFS, the corresponding

self-affine measures are singular with respect to the Lebesgue measure?

We organize the paper as follows. In Section 2 we prove that the self-affine sets

depend continuously on the expanding matrix and the digit set in the sense of the

Hausdorff metric, and the self-affine measures also depend continuously on the ex-

panding matrix, the digit set and the probability weight in the sense of the Hutchin-

son metric. In Section 3 we give some properties of singularity of the self-affine

measures, and prove that the class of self-affine measures is singular.

2. Continuous dependence on parameters of

self-affine sets and self-affine measures

2.1. Continuous dependence on parameters of self-affine sets

Let (X, ̺) be a complete metric space, and let H(X) denote the collection of all

non-empty compact subsets of X . We first introduce some notation:

̺(x, B) := min{̺(x, y) : y ∈ B}, x ∈ X, B ∈ H(X);

̺(A, B) := max{̺(x, B) : x ∈ A}, A, B ∈ H(X);

a ∨ b := max{a, b}, a, b ∈ R.
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Definition 2.1. Let A, B ∈ H(X). The Hausdorff metric is defined by

h(A, B) := ̺(A, B) ∨ ̺(B, A).

An alternative definition is given by

h(A, B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ}

where Aδ is the δ-neighborhood of A given by Aδ = {y : inf
x∈A

̺(x, y) 6 δ}. It is easy
to show that h is a complete metric on H(X) and (H(X), h) is a complete metric

space which is often called a fractal space (see [4]).

We first introduce two lemmas on the Hausdorff metric (see [4]).

Lemma 2.1. Let Ai, Bi ∈ H(X), i = 1, 2, . . . , N . Then

h

( N
⋃

i=1

Ai,

N
⋃

i=1

Bi

)

6 sup
16i6N

h(Ai, Bi).

Lemma 2.2. Let f be a contractive mapping on (X, ̺) with ratio s. Define

f(B) := {f(x) : x ∈ B}, B ∈ H(X). Then f is a contractive mapping of H(X) →
H(X) with the same ratio s, i.e., h(f(A), f(B)) 6 s · h(A, B) for all A, B ∈ H(X).

For x ∈ Rd, |x| denotes the Euclidean norm of x. Now we substitute (Rd, ̺)

for (X, ̺) where ̺(x, y) := |x − y| for all x, y ∈ Rd. For A ∈ Md(R), the norm of A

is denoted by ‖A‖ := sup
|x|=1

|Ax|.

Theorem 2.3. Given any n ∈ N suppose that Tn := Tn(An, Dn) is the self-

affine set of the IFS: {ϕjn}N
j=1 with the expanding matrix An ∈ Md(R) and the

digit set Dn = {d1n, d2n, . . . , dNn} ⊂ Rd. Let T := T (A, D) be the self-affine set

of the IFS: {ϕj}N
j=1 with the expanding matrix A ∈ Md(R) and the digit set D =

{d1, d2, . . . , dN} ⊂ Rd. If ‖An −A‖ → 0, |djn − dj | → 0 (j = 1, 2, . . . , N) as n → ∞,
then Tn converges to T in the Hausdorff metric.

P r o o f. For each y ∈ T we have

̺(ϕjn(y), ϕj(y)) = |A−1
n (y + djn) − A−1(y + dj)|

6 ‖A−1
n − A−1‖ · |y| + ‖A−1

n − A−1‖ · |djn| + ‖A−1‖ · |djn − dj |.
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Since T is a compact set, there exists a positive constant C1 such that |y| 6 C1 for

all y ∈ T . By the convergence of {djn}, there exists a positive constant C2 such that

|djn| 6 C2 for all n ∈ N and 1 6 j 6 N . Thus we have

̺(ϕjn(T ), ϕj(T )) = max
x∈T

min
y∈T

̺(ϕjn(x), ϕj(y))

6 max
x∈T

min
y∈T

(̺(ϕjn(x), ϕjn(y)) + ̺(ϕjn(y), ϕj(y)))

6 max
x∈T

min
y∈T

(̺(ϕjn(x), ϕjn(y)) + ‖A−1
n − A−1‖ · |y|

+ ‖A−1
n − A−1‖ · |djn| + ‖A−1‖ · |djn − dj |)

6 max
x∈T

min
y∈T

(̺(ϕjn(x), ϕjn(y))) + ‖A−1
n − A−1‖ · (C1 + C2)

+ ‖A−1‖ · |djn − dj |
= ̺(ϕjn(T ), ϕjn(T )) + ‖A−1

n − A−1‖ · (C1 + C2)

+ ‖A−1‖ · |djn − dj |
= ‖A−1

n − A−1‖ · (C1 + C2) + ‖A−1‖ · |djn − dj |.

Similarly, we get

̺(ϕj(T ), ϕjn(T )) 6 ‖A−1
n − A−1‖ · (C1 + C2) + ‖A−1‖ · |djn − dj |.

Therefore

h(ϕjn(T ), ϕj(T )) = ̺(ϕjn(T ), ϕj(T )) ∨ ̺(ϕj(T ), ϕjn(T ))(2.1)

6 ‖A−1
n − A−1‖ · (C1 + C2) + ‖A−1‖ · |djn − dj |.

By Lemma 2.1, Lemma 2.2 and (2.1) we have

h(Tn, T ) = h

( N
⋃

j=1

ϕjn(Tn),

N
⋃

j=1

ϕj(T )

)

6 sup
16j6N

h(ϕjn(Tn), ϕj(T ))

6 sup
16j6N

(h(ϕjn(Tn), ϕjn(T )) + h(ϕjn(T ), ϕj(T )))

6 sup
16j6N

(‖A−1
n ‖ · h(Tn, T ) + h(ϕjn(T ), ϕj(T )))

6 ‖A−1
n ‖ · h(Tn, T ) + ‖A−1

n − A−1‖ · (C1 + C2)

+ ‖A−1‖ · sup
16j6N

|djn − dj |.

Thus it follows that

(2.2) h(Tn, T ) 6
‖A−1

n − A−1‖ · (C1 + C2) + ‖A−1‖ · sup16j6N |djn − dj |
1 − ‖A−1

n ‖
.

498



If

‖An − A‖ → 0 and |djn − dj | → 0 (j = 1, 2, . . . , N)

as n → ∞, then we have

1 − ‖A−1
n ‖ → 1 − ‖A−1‖ > 0, ‖A−1

n − A−1‖ → 0 and sup
16j6N

|djn − dj | → 0.

Hence, when n → ∞, it follows from (2.2) that

h(Tn, T ) → 0.

We have completed the proof. �

Remark 2.4. Let {Kn}n∈N ⊂ H(X) and K ∈ H(X). If Kn is convergent to K

in the Hausdorff metric, we know from [2] that

K =

∞
⋂

n=1

∞
⋃

i=n

Ki.

Hence, by Theorem 2.3, the self-affine set T can be constructed by a sequence of

self-affine sets {Tn}n∈N, that is,

T =

∞
⋂

n=1

∞
⋃

i=n

Ti.

Thus we obtain an approach to constructing a self-affine set by choosing the expand-

ing matrix and the digit set.

2.2. Continuous dependence on parameters of self-affine measures

In order to investigate the continuous dependence of self-affine measures on pa-

rameters of IFS, we now introduce the Hutchinson metric. Let (X, ̺) be a compact

metric space. We denote by M the collection of all probability measures on X , and

by C(X) the collection of all continuous functions mapping X to R. f ∈ C(X) is

called a Lipschitz function if there exists a constant Mf such that

|f(x) − f(y)| 6 Mf · ̺(x, y) for all x, y ∈ X,

where Mf is called the Lipschitz constant of f . In particular, if Mf = 1, we write

f ∈ Lip1.
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Definition 2.2. The Hutchinson metric dH on M is defined by

dH(µ, ν) := sup

{
∫

X

f dµ −
∫

X

f dν : f ∈ Lip1

}

for all µ, ν ∈ M.

It may be shown that dH is a metric on M and (M, dH) is a complete metric

space (see [4]). Now we recall the result on self-affine sets. Under the assumption of

Theorem 2.3, we know that Tn is convergent to T in the Hausdorff metric. Hence,

there exists a compact subset E of Rd such that T ⊂ E and Tn ⊂ E for all n ∈ N.

Taking X = E, we have the following theorem.

Theorem 2.5. Keep the assumption of Theorem 2.3. Given any n ∈ N suppose

that µn := µAn,Dn,Pn
is the self-affine measure of the IFS: {ϕjn}N

j=1 with the proba-

bility weight Pn = (p1n, p2n, . . . , pNn). Let µ := µA,D,P be the self-affine measure of

the IFS: {ϕj}N
j=1 with the probability weight P = (p1, p2, . . . , pN ). If ‖An −A‖ → 0,

|pjn − pj | → 0 and |djn − dj | → 0 (j = 1, 2, . . . , N) as n → ∞, then µn converges

to µ in the Hutchinson metric.

P r o o f. We first claim that

(2.3) sup
g∈Lip1

( N
∑

j=1

pjn

∫

g ◦ ϕj dµ −
N

∑

j=1

pj

∫

g ◦ ϕj dµ

)

6 |T | ·
N

∑

j=1

|pjn − pj |

where |T | denotes the diameter of T . In fact, taking x0 ∈ T , we write g̃(x) =

g(x) − g(x0) for all g ∈ Lip1. Then g̃ ∈ Lip1 and g̃(x0) = 0. Therefore we have

N
∑

j=1

pjn

∫

g ◦ ϕj dµ −
N

∑

j=1

pj

∫

g ◦ ϕj dµ

=

N
∑

j=1

pjn

∫

g̃ ◦ ϕj dµ −
N

∑

j=1

pj

∫

g̃ ◦ ϕj dµ

=

N
∑

j=1

(pjn − pj)

∫

g̃(ϕj(x)) − g̃(x0) dµ(x)

6

N
∑

j=1

|pjn − pi|
∫

|ϕj(x) − x0| dµ(x)

6 |T | ·
N

∑

j=1

|pjn − pj |,

which yields (2.3) since g is arbitrary.
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For each g ∈ Lip1, by (1.2) we get

∫

g dµn −
∫

g dµ =

N
∑

j=1

pjn

∫

g ◦ ϕjn dµn −
N

∑

j=1

pj

∫

g ◦ ϕj dµ(2.4)

=
N

∑

j=1

pjn

(
∫

g ◦ ϕjn dµn −
∫

g ◦ ϕjn dµ

)

+

N
∑

j=1

pjn

(
∫

g ◦ ϕjn dµ −
∫

g ◦ ϕj dµ

)

+
N

∑

j=1

pjn

∫

g ◦ ϕj dµ −
N

∑

j=1

pj

∫

g ◦ ϕj dµ

= ‖A−1
n ‖ ·

N
∑

j=1

pjn

×
(

∫

‖A−1
n ‖−1g ◦ ϕjn dµn −

∫

‖A−1
n ‖−1g ◦ ϕjn dµ

)

+

N
∑

j=1

pjn

(
∫

g ◦ ϕjn dµ −
∫

g ◦ ϕj dµ

)

+

N
∑

j=1

pjn

∫

g ◦ ϕj dµ −
N

∑

j=1

pj

∫

g ◦ ϕj dµ.

Since ‖A−1
n ‖−1g ◦ ϕjn ∈ Lip1, it follows from (2.3) and (2.4) that

dH(µn, µ) = sup
g∈Lip1

{
∫

g dµn −
∫

g dµ

}

(2.5)

6 ‖A−1
n ‖ · dH(µn, µ)

+ sup
g∈Lip1

N
∑

j=1

pjn

(
∫

g ◦ ϕjn dµ −
∫

g ◦ ϕj dµ

)

+ |T |
N

∑

j=1

|pjn − pj |.

Since T is a compact set, there exists a positive constant C1 such that

|y| 6 C1 for all y ∈ T.

By the convergence of {djn}, there exists a positive constant C2 such that

|djn| 6 C2 for all n ∈ N and 1 6 j 6 N.
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It follows from (2.5) that

dH(µn, µ)

6
1

1 − ‖A−1
n ‖

(

sup
g∈Lip1

N
∑

j=1

pjn

∫

(g ◦ ϕjn − g ◦ ϕj) dµ + |T |
N

∑

j=1

|pjn − pj |
)

6
1

1 − ‖A−1
n ‖

( N
∑

j=1

pjn

∫

|(A−1
n − A−1)(x + djn) + A−1(djn − dj)| dµ(x)

)

+
1

1 − ‖A−1
n ‖

(

|T |
N

∑

j=1

|pjn − pj|
)

6
1

1 − ‖A−1
n ‖

(

‖A−1
n − A−1‖ · (C1 + C2) + ‖A−1‖ ·

N
∑

j=1

pjn|(djn − dj)|
)

+
1

1 − ‖A−1
n ‖

(

|T |
N

∑

j=1

|pjn − pj|
)

.

If

‖An − A‖ → 0, |pjn − pj | → 0 and |djn − dj | → 0 (j = 1, 2, . . . , N)

as n → ∞, then

1 − ‖A−1
n ‖ → 1 − ‖A−1‖ > 0, ‖A−1

n − A−1‖ → 0, |pjn − pj | → 0

and

|djn − dj | → 0 for 1 6 j 6 N,

which yields

dH(µn, µ) → 0 as n → ∞.

The proof is completed. �

In Section 3, we will give an example illustrating that there exists a Borel set B

such that µn(B) is not convergent to µ(B), even though µn is convergent to µ in the

Hutchinson metric. Actually, µn converges to µ in Hutchinson metric if and only if

µn converges weakly to µ (see [4]).
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3. Singularity of self-affine measures

Let M be the expanding real matrix of the IFS, D = {d1 = 0, d2, . . . , dN} ⊂ Rd

the digit set, and P = (p1, p2, . . . , pN ) the probability weight. We define the function

mD,P (x) by putting

mD,P (x) =

N
∑

j=1

pje
2πi〈dj,x〉, x ∈ Rd.

Let M∗ denote the conjugate transpose of M , in fact M∗ = MT . We first introduce

the following lemma established by Li [11].

Lemma 3.1. With the same notation as above, if there exists a nonzero point

ξ0 ∈ Rd such that

(3.1) mD,P (M∗kξ0) 6= 0 for all k ∈ Z

and

(3.2)
∞
∑

k=0

|1 − |mD,P (M∗kξ0)|| < +∞,

then the self-affine measure µM,D,P is singular.

Corollary 3.2. Suppose thatM ∈ Md(Z) is an integer-valued expanding matrix

and D = {d1 = 0, d2, . . . , dN} ⊂ Zd. For any probability weight P = (p1, . . . , pN ),

if there exists a non-zero integer point ξ0 ∈ Zd such that for any positive integer k,

mD,P (M∗−kξ0) 6= 0, then the corresponding self-affine measure µM,D,P is singular.

P r o o f. Since M ∈ Md(Z) and D = {d1 = 0, d2, . . . , dN} ⊂ Zd, for the non-zero

integer point ξ0 ∈ Zd we have

mD,P (M∗kξ0) = 1 and |1 − |mD,P (M∗kξ0)|| = 0 (k = 0, 1, 2, . . .).

Therefore Corollary 3.2 follows from Lemma 3.1 directly. �

The above result in the case of the dimension d = 1 was also obtained by Hu [7]

and Niu [12] by using different techniques. From this corollary, we get the following

proposition.
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Proposition 3.3. Suppose that M ∈ Md(Z) is an integer-valued expanding

matrix and D = {d1 = 0, d2, . . . , dN} ⊂ Zd. Let µM,D,P be the self-affine measure

with respect to the probability weight P = {p1, p2, . . . , pN}. If there exists j ∈
{1, 2, . . . , N} such that pj > 1/2, then µM,D,P is singular.

P r o o f. If there exists j, say j = 1, such that p1 > 1/2, we claim that for any

positive integer k and ξ ∈ Rd, mD,P (M∗−kξ) 6= 0. We argue by contradiction to

verify the claim. Assume that there exist k and ξ such that mD,P (M∗−kξ) = 0, then

p1 +

N
∑

j=2

pje
2πi〈dj ,M∗−kξ〉 = 0.

Therefore

p1 =

∣

∣

∣

∣

N
∑

j=2

pje
2πi〈dj,M∗−kξ〉

∣

∣

∣

∣

6 p2 + . . . + pN = 1 − p1,

which yields p1 6 1/2, a contradiction. Thus we have, for any positive integer k,

mD,P (M∗−kξ) 6= 0, for all ξ ∈ Rd,

which implies that µM,D,P is singular by Corollary 3.2. The proof is completed. �

Now we give an example illustrating that the fact that a self-affine measure

sequence {µn}∞n=1 converges to µ in the Hutchinson metric does not imply that

{µn(A)}∞n=1 converges to µ(A) for every Borel set A.

Example 3.1. Taking M = 2, D = {0, 1}, Pn = (1
2
− 1

n , 1
2

+ 1
n ), and P = (1

2
, 1

2
),

we write µn = µM,D,Pn
and µ = µM,D,P , then supp(µn) = supp(µ) = [0, 1]. By

Theorem 2.5, µn is convergent to µ in the Hutchinson metric. However, we see that

there exists a Borel set B ⊂ R such that the sequence {µn(B)}∞n=3 does not converge

to µ(B). In fact, by Proposition 3.3, µn is singular with respect to the Lebesgue

measure restricted to [0, 1] denoted by L. Then there exist Borel sets Bn such that

µn(Bn) = 0 and L([0, 1] \ Bn) = 0.

Writing B =
∞
⋂

n=3

Bn, we have

µn(B) = 0 and L([0, 1] \ B) = 0.

Evidently, µ is equal to L. Since L(B) = 1 = µ(B), we have

lim
n→∞

µn(B) 6= µ(B).

504



Let M = pId where Id is the d × d identity matrix on Rd and p > 2 is a natural

number, and let D = {d1 = 0, d2, . . . , dN} ⊂ Zd with dj = (aj1, aj2, . . . , ajd)T ⊂ Rd

(2 6 j 6 N). Then the following result is obtained.

Proposition 3.4. Let µM,D,P be the self-affine measure with respect to the

probability weight P = {p1, p2, . . . , pN}. If there exists l ∈ {1, 2, . . . , d} such that
g.c.d.(a2l, a3l, . . . , aNl) = 1 where g.c.d. is the abbreviation of greatest common di-

visor, then µM,D,P is singular for almost all probability weights.

P r o o f. Since g.c.d.(a2l, a3l, . . . , aNl) = 1, there exists j such that p ∤ ajl.

Without loss of generality, we may assume j = 2. By Corollary 3.2, if µ is not

singular, then for a given integer point el = (0, . . . , 0, 1, 0, . . . , 0) ⊂ Rd where the

lth coordinate is 1, there exists a positive integer k such that mD,P (M∗−kel) = 0,

i.e., P = {p1, p2, . . . , pN} satisfies the equations














p1 + p2e
2πia2l/p−k

+
N
∑

j=3

pje
2πiajl/p−k

= 0,

p1 + p2 +
N
∑

j=3

pj = 1.

Note that e2πia2l/p−k 6= 1 as p ∤ a2l. When p3, . . . , pN are fixed, the above set of linear

equations has a unique solution (p1, p2). By Fubini’s theorem, the set of all weights

whose corresponding measures are not singular has (N − 1)-dimensional Lebesgue

measure 0. In other words, for almost all weights, the self-affine measure µM,D,P is

singular. �

Now we wish to investigate the singularity of the self-affine measures concerned

with Pisot numbers. An algebraic integer is a root of a polynomial whose leading

coefficient is 1 and the rest of the coefficients are all integers. The algebraic integer

β > 1 is a Pisot number if all its algebraic conjugates have modulus less than 1

(cf. [14]), e.g. the golden ratio (
√

5+1)/2 is a Pisot number, being a root of x2−x−1 =

0. We first state two lemmas on the Pisot number β (see [10], [14]).

Lemma 3.5. Let β > 1 be a Pisot number. Then there exists 0 < θ < 1 such

that ‖βk‖ < θk for large k, where ‖x‖ denotes the distance from x to the nearest

integer.

Lemma 3.6. Let β > 1 be a Pisot number. Consider the trigonometric polyno-

mial Q(x) =
N
∑

j=1

cje
2πibjx, where cj ∈ R, bj ∈ Q and

N
∑

j=1

cj 6= 0. Let B ∈ Z \ {0} be

such that Bj = Bbj , 1 6 j 6 N , are integers. Then there exists m ∈ Z \ {0} such
that Q(mBβk) 6= 0 for all k ∈ Z.
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Using the above properties of the Pisot number, we prove that a class of self-affine

measures are singular.

Theorem 3.7. Let M = (cij) ∈ Md(R) and D = {d1 = 0, d2, . . . , dN}, where
M is a triangular matrix with cii = β > 1 for 1 6 i 6 d, β is a Pisot number and

dj = (aj1, aj2, . . . , ajd)
T ⊂ Rd (2 6 j 6 N). If one of the following two conditions

holds,

(1) M is a lower triangular matrix and aj1 ∈ Q for 2 6 j 6 N ;

(2) M is an upper triangular matrix and ajd ∈ Q for 2 6 j 6 N ,

then for any weight P = (p1, p2, . . . , pN ), µM,D,P is singular.

P r o o f. (i) If the condition (1) holds, we consider the trigonometric polynomial

Q(x) = p1 +

N
∑

j=2

pje
2πiaj1x.

Let B ∈ Z \ {0} be such that Bj = Baj1, 2 6 j 6 N , are integers. By Lemma 3.6,

there exists m ∈ Z \ {0} such that Q(mBβk) 6= 0 for all k ∈ Z. Take

ξ0 = (mB, 0, . . . , 0)T ∈ Rd \ {0} and Ak := M∗k − βkId for all k ∈ Z.

Then Akξ0 = 0 for all k ∈ Z. Thus we conclude that there exists ξ0 = (mB,

0, . . . , 0)T ∈ Rd \ {0} such that

mD,P (M∗kξ0) = p1 +

N
∑

j=2

pje
2πi〈dj,M∗kξ0〉

= p1 +

N
∑

j=2

pje
2πi〈dj,βkIdξ0〉e2πi〈dj ,Akξ0〉

= p1 +

N
∑

j=2

pje
2πimBaj1βk

= Q(mBβk) 6= 0

for all k ∈ Z. Hence the condition (3.1) is satisfied. Next we employ Lemma 3.5

to verify the condition (3.2). If lk is the integer nearest to βk, we can write βk =

lk + {βk} so that ‖βk‖ = |{βk}|. Furthermore, it follows from the above equality
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and Lemma 3.5 that for large k,

∣

∣1 − |mD,P (M∗kξ0)|
∣

∣ =

∣

∣

∣

∣

∣

1 −
∣

∣

∣

∣

p1 +

N
∑

j=2

pje
2πimBaj1βk

∣

∣

∣

∣

∣

∣

∣

∣

∣

6

N
∑

j=2

|pj | · |1 − e2πimBaj1βk |

6 θk
N

∑

j=2

|pj | · |2πmBaj1|,

which yields
∞
∑

k=0

∣

∣1 − |mD,P (M∗kξ0)|
∣

∣ < +∞.

That is, the condition (3.2) is satisfied, thus µM,D,P is singular by Lemma 3.1.

(ii) If the condition (2) holds, we consider the trigonometric polynomial

Q(x) = p1 +
N

∑

j=2

pje
2πiajdx.

Let B ∈ Z \ {0} be such that Bj = Bajd, 2 6 j 6 N , are integers. By Lemma 3.6,

there exists m ∈ Z \ {0} such that Q(mBβk) 6= 0 for all k ∈ Z. Take

ξ0 = (0, 0, . . . , 0, mB)T ∈ Rd \ {0} and Ak := M∗k − βkId for all k ∈ Z.

Then Akξ0 = 0 for all k ∈ Z. The remainder of the proof is the same as in (i). We

have completed the proof. �

Remark 3.8. In the case of the dimension d = 1, M = β and D = {b1 =

0, b2, . . . , bN} ⊂ Q, Lau, Ngai and Rao [10] proved that for any weight P =

(p1, p2, . . . , pN) with
N
∑

j=1

pj = 1, µM,D,P is singular. In addition, for M = βId and

D = {b1 = 0, b2, . . . , bd+1} ⊂ Rd where b2, . . . , bd+1 are d linearly independent vec-

tors in Rd, Li [11] proved that for any weight P = (p1, p2, . . . , pd+1) with
d+1
∑

j=1

pj = 1,

µM,D,P is singular.
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