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Abstract. Conditions, under which the elements of a locally convex vector space are the
moments of a regular vector-valued measure and of a Pettis integrable function, both with
values in a locally convex vector space, are investigated.
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1. Introduction

The Hausdorff moment problem [1], [6], [7], [9], [11] reads as follows: given a

prescribed set of real numbers {an}
∞
0 , find a bounded non-decreasing function u(t)

on the closed interval [0, 1] such that its moments are equal to the prescribed values;

that is,
∫ 1

0

tn du(t) = an, n = 0, 1, 2, . . . .

The integral is a Riemann-Stieltjes integral. Equivalently, find a nonnegative measure

µ on borelian subsets in [0, 1] with

∫

[0,1]

tn dµ(t) = an, n = 0, 1, 2, . . . .
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We shall need the operator ∇k (k = 0, 1, 2, . . .) defined by

∇0an = an, ∇1an = an − an+1,

∇kan = an −

(

k

1

)

an+1 +

(

k

2

)

an+2 − . . .+ (−1)kan+k, n = 1, 2, . . . .

for any sequence of real or complex numbers {an}
∞
0 .

Note that we confine ourselves to the interval [0, 1] for simplicity, this is, however,

no limitation of generality, the results hold for any bounded interval [a, b].

Definition 1.1. For each f ∈ L1([0, 1]), the elements

(1.1) an =

∫ 1

0

tnf(t) dt, n = 0, 1, 2, . . .

are called the moments of f . For a measure µ on [0, 1], the elements

(1.2) an =

∫ 1

0

tnµ(dt), n = 0, 1, 2, . . .

are called the moments of µ.

Put

lk,m =

(

k

m

)

∇k−mam (k,m = 0, 1, 2, . . .).

See [11] where ∆kan = (−1)k∇kam is used.

For a sequence of (scalar, possibly vector) elements {an}, define an operator

LN(t)[a] by

LN(t)[a] = (1 +N)lN([Nt])(a) (N = 1, 2, . . .).

[Nt] means the largest integer contained in Nt. We have

∫ 1

0

|LN (t)[a]| dt =
N + 1

N

N−1
∑

m=0

|lN,m(a)|, N = 1, 2, . . . .

If f is in L1([0, 1]) (similarly a measure µ) and an are its moments, then

(1.3) lim
N→∞

∫ 1

0

tnLN(t)[a] dt = an, n = 0, 1, . . . .

Hence for every continuous function g(t) there exists

lim
N→∞

∫ 1

0

g(t)LN (t)[a] dt =

∫ 1

0

g(t) dµ(t).
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If an are moments of f (similarly of µ), then

(1.4)

∫ 1

0

LN(t)[a] dt = (N + 1)

∫ 1

0

∫ 1

0

(

N

[Nt]

)

s[Nt](1 − s)N−[Nt]f(s) ds dt

=

∫ 1

0

∫ 1

0

KN (t, s) dtf(s) ds (N = 1, 2, . . . , 0 6 s, t 6 1)

where

KN (t, s) = (1 +N)

(

N

[Nt]

)

s[Nt](1 − s)N−[Nt] .

It is easy to show that, for every t,

∫ 1

0

KN (t, s) ds =
N + 1

N

N−1
∑

m=0

∫ 1

0

(

N

m

)

sm(1 − s)N−m ds 6 M <∞,

and, for every s,

(1.5)

∫ 1

0

KN (t, s) dt =
N + 1

N

N−1
∑

m=0

∫ 1

0

(

N

m

)

sm(1 − s)N−m dt 6 M <∞,

for N = 1, 2, . . .

We shall use a part of the following theorem (see [11], pp. 100–114, [4], Theorem 1)

giving four equivalence statements.

Theorem 1.2. Given a sequence an, n = 0, 1, 2, . . . , of complex numbers, there

exists

(1a) a function f ∈ L1 such that an are the moments of f ;

(2a) a function f ∈ Lp, 1 < p 6 ∞, such that an are the moments of f ;

(3a) a complex, regular Borel measure µ such that an are the moments of µ;

(4a) a nonnegative regular Borel measure µ such that an are the moments of µ;

if and only if the functions Lk(t){an}

(1b) converge in the L1-norm;

(2b) are bounded in the Lp-norm;

(3b) are bounded in L1-norm;

(4b) are nonnegative.
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2. Vector-valued measures

Let X be a quasi-complete, locally convex topological vector space. For each N ,

let ΦN : C([0, 1]) → X be a linear mapping. The set of maps ΦN is said to be weakly

equi-compact if there is a weakly compact subset W of X such that

{ΦN (ψ) ; ψ ∈ C([0, 1]), ‖ψ‖ 6 1, N = 1, 2, . . .} ⊂W.

Let B([0, 1]) stand for the σ-algebra of all Borel sets in [0, 1].

Definition 2.1. Given a sequence an, n = 0, 1, 2, . . . of elements of X , we say

that an, n = 0, 1, 2, . . . are the moments of a regular measure µ : B([0, 1]) → X if

an are of the form

an =

∫ 1

0

tnµ(dt).

First we derive a necessary and sufficient condition for a sequence an, n = 0, 1, 2, . . .

to be the moments of a regular measure µ.

Theorem 2.2. Given a sequence an, n = 0, 1, 2, . . . of elements of X , there exists

a regular measure µ : B([0, 1]) → X such that an are the moments of µ if and only

if the set of maps ΦN : C([0; 1]) → X , N = 1, 2, . . . defined by

ΦN (ψ) =

∫ 1

0

ψ(t)LN (t) dt, ψ ∈ C([0, 1])

is weakly equi-compact.

P r o o f. Necessity. Suppose that such a measure exists. Then, for each ψ ∈

C([0, 1]), see (1.4),

ΦN (ψ) =

∫ 1

0

ψ(t)

∫ 1

0

KN (t, s)µ(ds) dt =

∫ 1

0

(
∫ 1

0

KN(t, s)ψ(t) dt

)

µ(ds).

Let now R(µ) = {µ(A) : A ∈ B([0, 1])}, the range of µ, and let Q be the closed, abso-

lutely convex hull ofR(µ). ThenR(µ) is relatively weakly compact inX (see [10]) and

so by the Krein theorem (e.g., [10]), Q is weakly compact. Now, for all ψ ∈ C([0, 1]))

with ‖ψ‖ 6 1, we have, for s ∈ [0, 1], by (1.5),

∣

∣

∣

∣

∫ 1

0

KN (t, s)ψ(t) dt

∣

∣

∣

∣

6 ‖ψ‖

∫ 1

0

|KN (t, s)|(t) dt 6 M.

But for every measurable ϕ with |ϕ(t)| 6 1 for all t ∈ [0, 1], we have

∫ 1

0

ϕ(t)µ(dt) ∈ Q.
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Therefore, ΦN (ψ) is in MQ for all N and all ψ ∈ C([0, 1]) with ‖ψ‖ 6 1. That is,

the set of ΦN is weakly equi-compact.

Sufficiency. Suppose now that the set of ΦN is weakly equi-compact. Then there

exists a weakly compact subset W of X such that {ΦN(ψ) : ψ ∈ C([0, 1]), ‖ψ‖ 6 1,

N = 1, 2, . . .} ⊂ W . Take x′ ∈ X ′, the dual of X . Then there exists a constant αx′

such that

| 〈ΦN (ψ), x′〉 | 6 αx′

for all N and all ψ with ‖ψ‖ 6 1. Therefore, for each N ,

sup
‖ψ‖61

∣

∣

∣

∣

∫ 1

0

ψ(t) 〈LN(t), x′〉 dt

∣

∣

∣

∣

6 αx′ ;

that is
∫ 1

0

| 〈LN(t), x′〉 | dt 6 αx′ .

Therefore, part (3a)–(3b) of Theorem 1.2 implies that there exists a scalar-valued

measure µx′ such that

(2.1) 〈an, x
′〉 =

∫ 1

0

tnµx′(dt)

and by (1.3),

(2.2) lim
N

〈ΦN (ψ), x′〉 =

∫ 1

0

ψ(t)µx′(dt)

for all ψ ∈ C([0, 1]). That is, for each fixed ψ, {〈ΦN (ψ), x′〉} is convergent for all

x′ ∈ X ′. Thus {ΦN(ψ)} is weakly Cauchy and therefore weakly convergent since

{ΦN(ψ) : N = 1, 2, . . .} is contained in the weakly compact set ‖ψ‖W . Denote its

weak limit by Φ(ψ). Then, for all ψ with ‖ψ‖ 6 1, Φ(ψ) ∈ W . Since W is weakly

compact, Φ is weakly compact (i.e., it takes the unit ball of C([0, 1]) to a relatively

weakly compact set). So, by extensions [3], [8] of a theorem of Bartle, Dunford and

Schwartz, [2], Proposition l, to (quasi-complete) locally convex spaces, there exists a

regular measure µ : B([0, 1]) → X such that

Φ(ψ) =

∫ 1

0

ψ(t)µ(dt)

for all ψ ∈ C([0, 1]). Taking ψ = tn gives, for all x′ ∈ X ′,

〈Φ(tn), x′〉 =

∫ 1

0

tn 〈µ(dt), x′〉 .
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But, by (2.1) and (2.2)

〈Φ(tn), x′〉 =

∫ 1

0

tnµx′(dt) = 〈an, x
′〉 .

Hence

an =

∫ 1

0

tnµ(dt).

�

Now we shall prove a theorem concerning moments of Pettis integrable functions.

Recall that a function f(t) : [a, b] → X is called Pettis integrable if to every Borel

set E in [a, b] there corresponds an element xE ∈ X such that for all x′ ∈ X ′

x′(xE) =

∫

E

x′[f(t)] dt.

We then write ∫

E

f(t) dt = xE .

In particular, if the space X is reflexive, then f(t) is Pettis integrable if and only if

x′[f(t)] ∈ L1 for all x
′ ∈ X ′.

If f : [0.1] → X is a Pettis (or Bochner) integrable function, then the members of

the sequence an of elements in X are called the moments of f if they are of the form

an =

∫ 1

0

tnf(t) dt, n = 1, 2, . . .

Theorem 2.3. Given a sequence an, n = 0, 1, 2, . . . , of elements of X and a Pettis

integrable function f , then an are the moments of f if and only if

(2.3) lim
N

∫ 1

0

ψ(t)(LN (t) − f(t)) dt = 0

for all ψ ∈ C([0, 1]) with ‖ψ‖ 6 1.

P r o o f. Suppose that the an are the moments of f . Let V be an absorbent

neighborhood of 0 in X . For all ψ ∈ C([0, 1]),

∫ 1

0

ψ(t)(LN (t) − f(t)) dt =

∫ 1

0

ψ(t)

(
∫ 1

0

KN(t, s)f(s) ds− f(t)

)

dt

=

∫ 1

0

f(s)

(
∫ 1

0

KN (t, s)ψ(t) dt− ψ(s)

)

ds.
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Also, there exists a constant δ > 0 such that for all γ with |γ| < δ,

∫ 1

0

γf(s) ds ∈ V.

But for each ψ ∈ C([0, 1]) with ‖ψ‖ 6 1, there exists an integer N0(ψ) such that

for all N > N0(ψ),
∣

∣

∣

∣

∫ 1

0

KN(t, s)ψ(t) dt− ψ(s)

∣

∣

∣

∣

< δ.

Hence, if ψ is in C([0, 1]) with ‖ψ‖ 6 1, N > N0(ψ) implies

∫ 1

0

ψ(t)(Ln(t) − f(t)) dt ∈ V.

Conversely, define

ΦN (ψ) =

∫ 1

0

ψ(t)Ln(t) dt, N = 1, 2, . . . ,

Φ(ψ) =

∫ 1

0

ψ(t)f(t) dt, ψ ∈ C([0, 1]),

and suppose that lim
N

ΦN (ψ) = Φ(ψ) for all ψ ∈ C([0, 1]) with ‖ψ‖ 6 1. Then, for

all x′ ∈ X ′ and all such ψ,

lim
N

〈ΦN (ψ), x′〉 = 〈Φ(ψ), x′〉 .

So, for every x′ ∈ X ′,

〈an, x
′〉 = lim

N
lN [Nt] 〈an, x

′〉 = lim
N

∫ 1

0

tn 〈LN(t), x′〉 dt =

〈
∫ 1

0

tnf(t) dt, x′
〉

and hence

an =

∫ 1

0

tnf(t) dt.

�

For the sake of completeness we shall introduce here the theorems concerning the

problems of moments for vector measures with finite variation and Bochner integrable

functions with values in a Banach space X ([4]).
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Theorem 2.4. Given a sequence an, n = 0, 1, 2, . . . of elements of X , there exists

a regular measure µ : B([0, 1]) → X of finite total variation such that an are the

moments of µ if and only if there exists a finite constant H such that

∫ 1

0

‖LN(t)‖ dt 6 H, N = 1, 2, . . .

Recall the definition of a Bochner integrable function. If f : [a, b] → X is simple,

i.e., f(s) =
n
∑

i=1

χEi
(s)xi, where χE denotes the indicator function of the set E ⊂ [a, b],

xi ∈ X , then for any E ∈ B([a, b])

∫

E

f dλ =
n

∑

i=1

λ(E ∩ Ei)xi,

where λ is a probability measure on [a, b]. Such functions are λ-measurable. Any

function f : [a, b] → X which is the λ-almost everywhere limit of a sequence of simple

functions is (called) λ-measurable.

A λ-measurable function f : [a, b] → X is called Bochner integrable if there exists

a sequence of simple functions (fn) such that

lim

∫

[a,b]

‖fn(s) − f(s)‖ dλ(s) = 0.

In this case
∫

E
f dλ is defined for each measurable set E in [a, b] by

∫

E

f dλ = lim
n

∫

E

fn dλ.

A λ-measurable function f : [a, b] → X is Bochner integrable if and only if
∫

[a,b] ‖f‖ dλ <∞ ([5]).

Theorem 2.5. Given a sequence an, n = 0, 1, 2, . . ., of elements of X , there exists

an X-valued Bochner integrable function f on [0, 1] such that an are the moments

of f if and only if

lim
N,J→∞

∫ 1

0

‖LN(t)(a) − LJ(t)(a)‖ dt = 0.
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