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Abstract. We consider the boundary value problem involving the one dimensional p-
Laplacian, and establish the precise intervals of the parameter for the existence and non-
existence of solutions with prescribed numbers of zeros. Our argument is based on the
shooting method together with the qualitative theory for half-linear differential equations.
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1. Introduction

In this paper we consider the existence and non-existence of sign-changing solutions

for the one-dimensional p-Laplacian boundary value problem

(|u′|p−2u′)′ + λa(x)f(u) = 0, 0 < x < 1,(1.1)

u(0) = u(1) = 0,(1.2)

where p > 1 and λ > 0 is a parameter. Problems of the form (1.1)–(1.2) describe

some nonlinear phenomena in mathematical sciences and have been studied in recent

years by many authors (see [1], [2], [6], [7], [9], [11], [13], [14] and references therein).

In (1.1) we assume that a satisfies

a ∈ C1[0, 1], a(x) > 0 for 0 6 x 6 1,
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and that f satisfies f ∈ C(R), sf(s) > 0 for s 6= 0, f is locally Lipschitz continuous

on R \ {0}; moreover, there exist limits f0 and f∞ with f0, f∞ ∈ [0,∞] such that

f0 = lim
|s|→0

f(s)

|s|p−2s
and f∞ = lim

|s|→∞

f(s)

|s|p−2s
.

By a solution u of (1.1) we mean a function u ∈ C1[0, 1] with |u′|p−2u′ ∈ C1[0, 1]

which satisfies (1.1) at all points in (0, 1). For each k ∈ N we denote by S+
k (S

−
k )

the set of all solutions u for (1.1)–(1.2) which have exactly k − 1 zeros in (0, 1) and

satisfy u′(0) > 0 (respectively, u′(0) < 0).

Let λk be the k-th eigenvalue of

(1.3)

{

(|ϕ′|p−2ϕ′)′ + λa(x)|ϕ|p−2ϕ = 0, 0 < x < 1,

ϕ(0) = ϕ(1) = 0,

and let ϕk be an eigenfunction corresponding to λk. It is known that

0 < λ1 < λ2 < . . . < λk < λk+1 < . . . , lim
k→∞

λk = ∞,

and that ϕk has exactly k−1 zeros in (0, 1). (See, e.g., [3], [4], [8].) For convenience,

we put λ0 = 0.

By [12, Theorem 1], if there exists an integer k ∈ N such that either

λf0 < λk < λf∞ or λf∞ < λk < λf0,

then S+
k 6= ∅ and S−

k 6= ∅. As a consequence, in the case f0 6= f∞, if either

(1.4) λ ∈ (λk/f∞, λk/f0) or λ ∈ (λk/f0, λk/f∞)

for some k ∈ N, then S+
k 6= ∅ and S−

k 6= ∅. Here, we agree that 1/0 = ∞ and

1/∞ = 0.

In this paper we will consider the non-existence of solutions with prescribed num-

bers of zeros, and also investigate the existence of solutions in the case f0 = f∞ ∈

(0,∞). To this end we define f∗ and f∗ by

f∗ = inf
s∈R\{0}

f(s)

|s|p−2s
and f∗ = sup

s∈R\{0}

f(s)

|s|p−2s
,

respectively. Then it follows that f0, f∞ ∈ [f∗, f
∗].
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Theorem 1.1. Assume that λ ∈ (0, λk/f∗) ∪ (λk/f∗,∞) for some k ∈ N. Then

S+
k = ∅ and S−

k = ∅.

Corollary 1.1. Assume that λk−1/f∗ < λk/f∗ for some integer k ∈ N. If λ ∈

(λk−1/f∗, λk/f∗), then the problem (1.1)–(1.2) has no nontrivial solution.

R em a r k 1.1. Let us consider, for instance, the case where

(1.5) f∗ = f0 < f∞ = f∗.

In this case, by (1.4) and Theorem 1.1, we find that S+
k 6= ∅ and S−

k 6= ∅ if λ ∈

(λk/f∞, λk/f0), and that S+
k = S−

k = ∅ if λ ∈ (0, λk/f∞) ∪ (λk/f0,∞). Hence,

λk/f∞ and λk/f0 are critical values for the existence of solutions in S+
k and S−

k . For

example, if f(s)/|s|p−2s is nondecreasing, then (1.5) holds.

Next, let us consider the existence of solutions in the case f0 = f∞ ∈ (0,∞). In

this case we require that

(1.6)
f(s)

|s|p−2s
6≡ constant for any interval (−δ, δ) with δ > 0.

It is clear that we have f∗ < f∗, if (1.6) holds.

Theorem 1.2. Assume that f0 = f∞ = f∗ ∈ (0,∞) and (1.6) holds. Let k ∈ N.

(i) If λ = λk/f∗ then S+
k = ∅ and S−

k = ∅.

(ii) There exists δk ∈ (λk/f∗, λk/f∗) such that, if λ ∈ (λk/f∗, δk), then the problem

(1.1)–(1.2) has at least four solutions u+
k , v

+
k , u

−
k , and v−k such that u

+
k , v

+
k ∈ S+

k

and u−
k , v

−
k ∈ S−

k .

Theorem 1.3. Assume that f0 = f∞ = f∗ ∈ (0,∞) and (1.6) holds. Let k ∈ N.

(i) If λ = λk/f∗ then S+
k = ∅ and S−

k = ∅.

(ii) There exists δk ∈ (λk/f∗, λk/f∗) such that, if λ ∈ (δk, λk/f∗), then the problem

(1.1)–(1.2) has at least four solutions u+
k , v

+
k , u

−
k , and v−k such that u

+
k , v

+
k ∈ S+

k

and u−
k , v

−
k ∈ S−

k .

R em a r k 1.2. In Theorems 1.2 and 1.3, if λ ∈ (0, λk/f∗) ∪ (λk/f∗,∞), then

S+
k = ∅ and S−

k = ∅ by Theorem 1.1.

In the proofs of Theorems 1.1, 1.2 and 1.3, we first consider the solution u(x; µ) of

(1.1) satisfying the initial condition with a parameter µ ∈ R, and then we investigate

the behavior of u(x; µ) as µ → 0 and µ → ∞. We will show the non-existence

of solutions by employing variants of the Sturm comparison theorem for half-linear
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differential equations, and prove the existence of solutions with prescribed numbers

of zeros by making use of the half-linear Prüfer transformation which involves the

generalized trigonometric functions.

This paper is organized as follows. In Section 2 we give some variants of the Sturm

comparison theorem, and in Section 3 we prove Theorem 1.1. In Section 4 we give

the proofs of Theorems 1.2 and 1.3.

2. Comparison lemmas

Let us consider a pair of half-linear differential equations

(2.1) (|u′|p−2u′)′ + c(x)|u|p−2u = 0, 0 6 x 6 1,

and

(2.2) (|U ′|p−2U ′)′ + C(x)|U |p−2U = 0, 0 6 x 6 1,

where c, C ∈ C[0, 1] satisfy C(x) > c(x) for x ∈ [0, 1]. The Sturm comparison

theorem for the half-linear differential equation is formulated as follows: [4, Theo-

rem 1.2.4] (See also [3], [5] and [10].)

Lemma 2.1. Assume that a nontrivial solution u of (2.1) satisfies u(x1) =

u(x2) = 0 with some 0 6 x1 < x2 6 1. Then every nontrivial solution U of (2.2) has

a zero in (x1, x2) or it is a multiple of the solution u on [x1, x2]. The latter possibility

is excluded if C(x) 6≡ c(x) for x ∈ [x1, x2].

We will give some variants of Lemma 2.1.

Lemma 2.2. Assume that a solution u of (2.1) satisfies u(0) = u(1) = 0 and has

exactly k − 1 zeros in (0, 1). Let U be a solution of (2.2) satisfying U(0) = 0 and

U ′(0) 6= 0. Then U possesses one of the following properties:

(i) U has at least k zeros in (0, 1);

(ii) U is a constant multiple of u on [0, 1] and c ≡ C on [0, 1].

In both cases (i) and (ii), U has at least k zeros in (0, 1].

P r o o f. In the case where c ≡ C on [0, 1], it is clear that (ii) holds. Hence it

suffices to show that (i) must hold in the case c 6≡ C on [0, 1]. Let {xi}k
i=0 be zeros of

u satisfying 0 = x0 < x1 < . . . < xk−1 < xk = 1. Assume that c 6≡ C on [xi0−1, xi0 ]

for some i0 ∈ {1, 2, . . . , k}. Then Lemma 2.1 implies that U has at least one zero in

(xi0−1, xi0). By Lemma 2.1, U has at least one zero in each interval [xi−1, xi) for

i = i0 + 1, i0 + 2, . . . , k and (xi−1, xi] for i = 1, 2, . . . , i0 − 1. Thus U has at least k

zeros in (0, 1). �
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Lemma 2.3. Assume that a solution U of (2.2) satisfies U(0) = U(1) = 0 and

has exactly k − 1 zeros in (0, 1). Let u be a solution of (2.1) satisfying u(0) = 0 and

u′(0) 6= 0. Then u possesses one of the following properties:

(i) u has at most k − 1 zeros in (0, 1];

(ii) u is a constant multiple of U on [0, 1] and c ≡ C on [0, 1].

In both cases (i) and (ii), u has at most k − 1 zeros in (0, 1).

P r o o f. We will show that u has at most k−1 zeros in (0, 1] when c 6≡ C on [0, 1].

Let {xi}k
i=0 be zeros of U satisfying 0 = x0 < x1 < . . . < xk−1 < xk = 1. Assume

to the contrary that u has k zeros in (0, 1]. Let {yi}
k
i=0 be zeros of u satisfying

0 = y0 < y1 < . . . < yk−1 < yk 6 1. By applying Lemma 2.2 on the interval (0, yk),

we conclude that the solution U has at least k zeros in (0, yk) ⊂ (0, 1). This is a

contradiction. Thus u has at most k − 1 zeros in (0, 1], and (i) holds. �

We will need the following lemma [12, Lemma 3.3] in the proof of Theorem 1.1.

Lemma 2.4. Let λk be the k-th eigenvalue of (1.3), and let {xi}k
i=0 be the zeros

of the corresponding eigenfunction ϕk such that

(2.3) 0 = x0 < x1 < x2 < . . . < xk−1 < xk = 1.

Assume that λ̃ > λk. Then for each i ∈ {1, 2, . . . , k} there is a solution wi of the

equation

(2.4) (|w′|p−2w′)′ + λ̃a(x)|w|p−2w = 0

which has at least two zeros in (xi−1, xi).

3. Proof of theorem 1.1

Let λ > 0. We denote by u(x; µ, λ) the solution of the problem (1.1) and

(3.1) u(0) = 0 and u′(0) = µ,

where µ ∈ R is a parameter. By [12, Proposition 2.1] we obtain the following:
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Lemma 3.1. For each µ ∈ R and λ > 0, the solution u(x; µ, λ) exists on [0, 1]

and is unique. Furthermore, u(x; µ, λ) and u′(x; µ, λ) are continuous on (x, µ, λ) ∈

[0, 1] × R × (0,∞), and the number of zeros of u(x; µ, λ) in [0, 1] is finite for each

µ ∈ R \ {0} and λ > 0.

The generalized sine function sinp is defined by the solution to the problem

(|S′|p−2S′)′ + (p − 1)|S|p−2S = 0, S(0) = 0 and S′(0) = 1.

The function sinp is defined on R and is periodic with period 2πp, where πp =

(2π)/(p sin(π/p)). The generalized cosine function cosp is defined by cosp x =

(sinp x)′. For simplicity, we denote by u(x; µ) the solution of the problem (1.1) and

(3.1) with fixed λ > 0. We define functions r(x; µ) and θ(x; µ) by

{

u(x; µ) = r(x; µ) sinp θ(x; µ),

u′(x; µ) = r(x; µ) cosp θ(x; µ),

where ′ = d/dx. It can be shown that

θ′(x; µ) = | cosp θ(x; µ)|p +
λa(x)f

(

r(x; µ) sinp θ(x; µ)
)

sinp θ(x; µ)

(p − 1)[r(x; µ)]p−1
> 0

for x ∈ [0, 1], which implies that θ(x; µ) is strictly increasing in x ∈ [0, 1] for each

fixed µ > 0. (See, for example, [3] or [4].) The initial condition (3.1) yields that

θ(0; µ) ≡ 0 (mod 2πp). For simplicity we take θ(0; µ) = 0. Lemma 3.1 implies that

θ(x; µ) is continuous in (x; µ) ∈ [0, 1]× (0,∞). We easily see that u(x; µ) has exactly

k − 1 zeros in (0, 1) if and only if (k − 1)πp < θ(1; µ) 6 kπp.

Lemma 3.2. (i) Assume that λf(s)/(|s|p−2s) > λk for s ∈ R \ {0} with some

k ∈ N. Then for each µ 6= 0 the solution u(x; µ) has at least k zeros in (0, 1).

(ii) Assume that λf(s)/(|s|p−2s) < λk for s ∈ R \ {0} with some k ∈ N. Then for

each µ 6= 0 the solution u(x; µ) has at most k − 1 zeros in (0, 1].

P r o o f. (i) We observe that u = u(x; µ) satisfies the equation

(3.2) (|u′|p−2u′)′ + b(x; λ)|u|p−2u = 0,

where

(3.3) b(x; λ) = λa(x)
f(u(x; µ))

|u(x; µ)|p−2u(x; µ)
.

180



Note that f(s)/(|s|p−2s) is continuous at s = 0 if f0 < ∞. Then the function b(x; λ)

is continuous for x ∈ [0, 1] if f0 < ∞.

First, assume that f0 < ∞. Then b(x; λ) given by (3.3) is continuous for x ∈ [0, 1],

and satisfies

b(x; λ) > λka(x), b(x; λ) 6≡ λka(x) for 0 6 x 6 1.

By Lemma 2.2, the solution u(x; µ) has at least k zeros in (0, 1).

Next, assume that f0 = ∞. Let ϕk be an eigenfunction corresponding to λk, and

let {xj}k
j=0 be zeros of ϕk satisfying (2.3). We will show that u(x; µ) has at least

one zero in each interval (xi−1, xi) for i = 1, 2, . . . , k, which implies that u(x; µ)

has at least k zeros in (0, 1). Assume to the contrary that u(x; µ) has no zero in

(xi0−1, xi0) for some i0 ∈ {0, 1, 2, . . . , k}. Then b(x; λ) given by (3.3) is continuous

for x ∈ (xi0−1, xi0) and satisfies b(x; λ) > λka(x) for xi0−1 < x < xi0 . We observe

that, due to f0 = ∞, there exists λ̃ > λk such that

b(x; λ) > λ̃a(x) for xi0−1 < x < xi0 ,

even if u(xi0−1; µ) = 0 or u(xi0 ; µ) = 0. By Lemma 2.4, Eq. (2.4) has a nontrivial

solution w such that w(t1) = w(t2) = 0 with t1, t2 ∈ (xi0−1, xi0 ). Lemma 2.1 implies

that u(x; µ) has at least one zero in (t1, t2) ⊂ (xi0−1, xi0 ). This is a contradiction.

Thus u(x; µ) has at least one zero in each interval (xi−1, xi) for i = 1, 2, . . . , k, and

hence u(x; µ) has at least k zeros in (0, 1).

(ii) By the assumption, f0 < ∞. Then the function b(x; λ) given by (3.3) is

continuous for x ∈ [0, 1] and satisfies

b(x; λ) 6 λka(x), b(x; λ) 6≡ λka(x) for 0 6 x 6 1.

By Lemma 2.3, the solution u(x; µ) has at most k − 1 zeros in (0, 1]. �

Proof of Theorem 1.1. Assume that λ ∈ (0, λk/f∗). In this case, we have

λf(s)/(|s|p−2s) < λk for s ∈ R \ {0}.

Then, by Lemma 3.2 (ii), the solution u(x; µ) has at most k − 1 zeros in (0, 1] for

every µ 6= 0. This implies that S+
k = S−

k = ∅. In the case λ ∈ (λk/f∗,∞) we obtain

S+
k = S−

k = ∅ by a similar argument with a slight modification.

Proof of Corollary 1.1. Note that λk < λk+1 for k = 1, 2, . . .. Then The-

orem 1.1 implies that, if λ ∈ (λk−1/f∗,∞), then S+
j = S−

j = ∅ for each j =
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1, 2, . . . , k−1, and that, if λ ∈ (0, λk/f∗), then S+
j = S−

j = ∅ for each j = k, k+1, . . ..

By Lemma 3.1, the number of zeros of nontrivial solutions of (1.1)–(1.2) is finite.

Hence (1.1)–(1.2) has no nontrivial solution.

4. Proof of theorems 1.2 and 1.3

We denote by u(x; µ, λ) the solution of the problem (1.1) and (3.1). As in Section 3,

we define functions r(x; µ, λ) and θ(x; µ, λ) by

{

u(x; µ, λ) = r(x; µ, λ) sinp θ(x; µ, λ),

u′(x; µ, λ) = r(x; µ, λ) cosp θ(x; µ, λ)

with θ(0; µ, λ) = 0, where ′ = d/dx. We see that θ(x; µ, λ) is continuous in (x, µ, λ) ∈

[0, 1]×R× (0,∞) by Lemma 3.1, and that θ(x; µ, λ) is strictly increasing in x ∈ [0, 1]

for each fixed µ > 0 and λ > 0. From θ(0; µ, λ) = 0 it follows that u(x; µ, λ) has

exactly k − 1 zeros in (0, 1) if and only if (k − 1)πp < θ(1; µ, λ) 6 kπp.

By Lemmas 4.1–4.4 in [12] we obtain the following.

Lemma 4.1. Let k ∈ N.

(i) Assume that λf0 < λk. Then there exists µ∗ > 0 such that, for each µ ∈ (0, µ∗],

the solution u(x; µ, λ) has at most k − 1 zeros in (0, 1).

(ii) Assume that λf0 > λk. Then there exists µ∗ > 0 such that, for each µ ∈ (0, µ∗],

the solution u(x; µ, λ) has at least k zeros in (0, 1).

(iii) Assume that λf∞ > λk. Then there exists µ∗ > 0 such that, for each µ > µ∗,

the solution u(x; µ, λ) has at least k zeros in (0, 1).

(iv) Assume that λf∞ < λk. Then there exists µ∗ > 0 such that, for each µ > µ∗,

the solution u(x; µ, λ) has at most k − 1 zeros in (0, 1).

We will prove Theorem 1.2 only, since Theorem 1.3 can be shown by an argument

similar to the proof of Theorem 1.2 with a slight modification.

Proof of Theorem 1.2. (i) We observe that u = u(x; µ, λ) satisfies (3.2) with

(4.1) b(x; λ) = λa(x)
f(u(x; µ, λ))

|u(x; µ, λ)|p−2u(x; µ, λ)
for 0 6 x 6 1.

If f0 < ∞, then the function b(x; λ) is continuous for x ∈ [0, 1].

Let µ > 0. Due to f0 = f∞ = f∗ ∈ (0,∞), the function b(x; λ) given by (4.1)

satisfies

b(x; λk/f∗) 6 λka(x) for x ∈ [0, 1].
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By Lemma 2.3, the solution u(x; µ, λ) has at most k − 1 zeros on (0, 1), that is,

θ(1; µ, λk/f∗) 6 kπp. Assume that θ(1; µ, λk/f∗) = kπp with some µ > 0. Then, by

Lemma 2.3, we obtain

b(x; λk/f∗) ≡ λka(x) for x ∈ [0, 1],

which implies that

f(s)

|s|p−2s
≡ f∗ for 0 < s 6 max

x∈[0,1]
u(x; µ, λ).

This contradicts (1.6). Thus we obtain θ(1; µ, λk/f∗) < kπp for any µ > 0. This

implies that S+
k = ∅ if λ = λk/f∗. By a similar argument, we obtain θ(1; µ, λk/f∗) <

kπp for any µ < 0, and hence S−
k = ∅ if λ = λk/f∗.

(ii) Put µ0 > 0. By (i) we have θ(1; µ0, λk/f∗) < kπp. By the continuity of

θ(1; µ0, λ) with respect to λ > 0 there exists δ+
k > λk/f∗ such that θ(1; µ0, λ) < kπp

for λ ∈ (λk/f∗, δ+
k ). Let λ ∈ (λk/f∗, δ+

k ). Then we have λf0 = λf∞ > λk. By

Lemmas 4.1 (ii), (iii) there are µ∗, µ∗ > 0 such that, if either µ ∈ (0, µ∗] or µ ∈

[µ∗,∞), the solution u(x; µ, λ) has at least k zeros in (0, 1). This implies that

θ(1; µ, λ) > kπp for µ ∈ (0, µ∗] ∪ [µ∗,∞),

and that µ0 ∈ (µ∗, µ
∗). Since θ(1; µ, λ) is continuous in µ ∈ (0,∞), there exist µ1

and µ2 such that

0 < µ1 < µ0 < µ2 and θ(1; µ1, λ) = θ(1; µ2, λ) = kπp,

which means u(x; µ1, λ), u(x; µ2, λ) ∈ S+
k .

By an argument similar to the above, there exists a sequence δ−k > λk/f∗ such

that, if λ ∈ (λk/f∗, δ−k ), then (1.1)–(1.2) has two solutions v1 and v2 which have

exactly k − 1 zeros in (0, 1) and satisfy v′1(0) < 0 and v′2(0) < 0. This implies that

v1, v2 ∈ S−
k .

Finally, put δk = min{δ+
k , δ−k }. If λ ∈ (λk/f∗, δk), then (1.1)–(1.2) has at least

four solutions u+
k , v

+
k , u

−
k , v

−
k which satisfy u+

k , v
+
k ∈ S+

k and u−
k , v

−
k ∈ S−

k .
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Author’s address: Yūki Naito, Department of Mathematics, Ehime University,Matsuya-
ma, 790-8577 Japan, e-mail: ynaito@ehime-u.ac.jp.

184


		webmaster@dml.cz
	2020-07-01T17:45:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




