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KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 3 , PAGES 3 1 7 – 3 3 6

RANK OF TENSORS OF `-OUT-OF-k FUNCTIONS:
AN APPLICATION IN PROBABILISTIC INFERENCE

Jiř́ı Vomlel

Bayesian networks are a popular model for reasoning under uncertainty. We study the
problem of efficient probabilistic inference with these models when some of the conditional
probability tables represent deterministic or noisy `-out-of-k functions. These tables appear
naturally in real-world applications when we observe a state of a variable that depends on
its parents via an addition or noisy addition relation. We provide a lower bound of the
rank and an upper bound for the symmetric border rank of tensors representing `-out-of-k
functions. We propose an approximation of tensors representing noisy `-out-of-k functions
by a sum of r tensors of rank one, where r is an upper bound of the symmetric border
rank of the approximated tensor. We applied the suggested approximation to probabilistic
inference in probabilistic graphical models. Numerical experiments reveal that we can get
a gain in the order of two magnitudes but at the expense of a certain loss of precision.

Keywords: Bayesian networks, probabilistic inference, uncertainty in artificial intelligence,
tensor rank, symmetric rank, border rank

Classification: 68T37, 62E15, 15A69

1. INTRODUCTION

Often, in real world applications of Bayesian networks many of the conditional prob-
ability tables have a certain local structure. The local structure can be exploited to
speed-up computations performed with these networks. In this paper we study con-
ditional probability tables representing deterministic `-out-of-k functions and their
noisy counterparts. An `-out-of-k function is a function of k binary arguments that
takes the value one if exactly ` out of its k arguments take value one and otherwise
the function value is zero. The noisy version of an `-out-of-k function allows noise at
the inputs of the function. The conditional probability tables of these functions ap-
pear naturally when we observe a state of a variable that depends on its parents via
an addition or noisy addition relation. These relations are quite common in practice
since in many domains we want to represent the model where several causes have an
additive impact on a dependent variable. A good example are medical applications
where, for example, several causes can have an additive effect on a symptom , e. g.,
on the body temperature [18, page 557].

Each conditional probability table can be viewed as a multidimensional array,
i. e., as a tensor. We prove that the border rank of the tensors corresponding to
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`-out-of-k functions is at most min{` + 1, k− ` + 1}. The same holds for their noisy
counterparts – tensors of `-out-of-k functions with a noise on their inputs.

In this paper we empirically evaluate the computational gain achieved by rank-
one decomposition in a generalization of the game of Minesweeper. Specifically, we
compare the computations of the probability of a mine at all uncovered fields using
the lazy propagation in the junction tree method [9] performed by the standard
technique and by use of the rank-one decomposition of the conditional probability
tables representing the noisy `-out-of-k function. We observed a gain in the order
of two magnitudes. However, this gain is achieved at the expense of a certain loss
of precision. We observed that in most cases the precision is quite high but we
also observed several cases where the conditional probabilities given evidence were
substantially different for the exact and approximate computations. Thus, it remains
to be a task for a future research to find rank-one decompositions of these tables
that would avoid the loss of precision possibly with a lower computational gain.

This paper is organized as follows. In Section 2 we introduce basic tensor notion.
In Section 3 we introduce tensors of `-out-of-k functions and their basic properties.
In Section 4 we prove the main theoretical result of this paper about the upper bound
of the border rank of tensors representing the `-out-of-k functions. In Section 7
we introduce our generalization of the game of Minesweeper and the task we will
solve using a probabilistic inference method. In Section 8 we compare the results of
numerical computations performed by the standard lazy propagation in the junction
tree and by the same method after the rank-one decomposition. In Section 9 we
present the conclusions.

2. PRELIMINARIES

Tensor is a mapping A : I → R, where I = I1 × . . . × Id, d is a natural number
called the order of tensor A, and Ij , j = 1, . . . , d are index sets. Typically, Ij are
sets of integers {vj , . . . , vj + nj}. Then we can say that tensor A has dimensions
n1 + 1, n2 + 1, . . . , nk + 1.

Definition 2.1. Tensor A has rank one if it can be written as a tensor product1 of
vectors, i. e.,

A = a1 ⊗ . . .⊗ ad ,

where aj , j = 1, . . . , d are real valued vectors of length |Ij |.
The rank rank(B) of a tensor B is the minimum number of rank-one tensors

that sum up to B.

The decomposition of a tensor A to tensors of rank one that sum up to A is called
rank-one decomposition. In literature it is also known as canonical decomposition
(CANDECOMP) [2] or parallel factor analysis (PARAFAC) [5].

A special class of tensors that appear in the problems that motivated our research
in this area [13, 16] are tensors representing functions.

1We use the symbol ⊗ to denote the tensor (outer) product of two tensors. Similarly to standard
multiplication of scalars the tensor product is associative.
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Definition 2.2. Tensor A(f) : I1 × . . . × Id ← {0, 1} represents a function f :
I1 × . . .× Id−1 → Id if it holds for (i1, . . . , id) ∈ I that

Ai1,...,id
(f) =

{
1 if id = f(i1, . . . , id−1)
0 otherwise.

3. TENSORS REPRESENTING THE `-OUT-OF-k FUNCTIONS

In this paper we will pay special attention to tensors representing the sum func-
tion f(i1, . . . , id−1) = i1 + . . . + id−1 with Ij = {0, 1} for j = 1, . . . , d − 1 and
Id = {0, 1, . . . , d}. Particularly, we will deal with subtensors A(`, k), k = d − 1
of these tensors obtained by restricting their dth dimension to one particular value
` ∈ {0, 1, . . . , k}:

Definition 3.1. Tensor A(`, k) : {0, 1}k → {0, 1} represents an `-out-of-k function
if it holds for (i1, . . . , ik) ∈ {0, 1}k that

Ai1,...,ik
(`, k) = δ(i1 + . . . + ik, `) ,

where δ(x, y) is the Dirac function, i. e., δ(x, y) = 1 if x = y, otherwise δ(x, y) = 0.

Example 3.2. Tensor A(`, k) representing an `-out-of-k function for k = 3 and
l = 1:

A(1, 3) =


(

0
1

) (
1
0

)
(

1
0

) (
0
0

)
 .

Tensors representing `-out-of-k functions have certain nice properties, e. g., they
are symmetric.

Definition 3.3. Tensor A : {0, 1}k → R is symmetric if for (i1, . . . , ik) ∈ {0, 1}k it
holds that

Ai1,...,ik
= ai1+...+ik

,

where a = (a0, . . . , ak) is a vector of real numbers.

It can be easily shown that each symmetric tensor A : {0, 1}k → R of rank one
can be written as

A =



λ · (0, 1)⊗ . . .⊗ (0, 1)︸ ︷︷ ︸
k copies

if A0,...,0 = 0

λ · (1, α)⊗ . . .⊗ (1, α)︸ ︷︷ ︸
k copies

otherwise,
(1)
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where α and λ are real numbers. Note that

lim
α→∞

λ

αk
· (1, α)⊗ . . .⊗ (1, α)︸ ︷︷ ︸

k copies

= λ · (0, 1)⊗ . . .⊗ (0, 1)︸ ︷︷ ︸
k copies

.

Therefore the first outer product in formula (1) can be approximated with arbitrarily
small nonzero error by the second one.

Lemma 3.4. For ` ∈ {0, k} the rank of tensors A(`, k) representing the respective
`-out-of-k function is one.

P r o o f . Note that

A(0, k) = (1, 0)⊗ . . .⊗ (1, 0)︸ ︷︷ ︸
k copies

A(k, k) = (0, 1)⊗ . . .⊗ (0, 1)︸ ︷︷ ︸
k copies

.

�
If to the definition of rank(B) we add the restriction that the tensors that sum

up to B are symmetric we get the definition of symmetric rank.

Definition 3.5. The symmetric rank srank(B) of a tensor B is the minimum
number of symmetric rank-one tensors that sum up to B.

Remark 3.6. It is not known whether it holds for symmetric tensors B that
rank(B) = srank(B).

It follows from formula 1 that in order to find symmetric rank of tensors A(`, k)
we need to find the minimum number of sequences of length k + 1 of types (a) or
(b) (note that the upper index of αj is an exponent):

(a) (α0
j , . . . , α

k
j ), αj ∈ R

(b) (0, . . . , 0︸ ︷︷ ︸
k

, 1)

such that their linear combination is equal to the sequence

y(`, k) = (0, . . . , 0︸ ︷︷ ︸
`

, 1, 0, . . . , 0︸ ︷︷ ︸
k−`

) .

The following lemma gives a lower bound on the minimum number of such se-
quences.

Lemma 3.7. The minimum number of sequences of length k +1 of types (a) or (b)
such that their linear combination is equal to the sequence y(`, k), ` < k is at least
` + 1.
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P r o o f . Assume y(`, k) is a linear combination of n sequences of type (a) and
(b). Take the subsequence of y(`, k) consisting of its first ` elements, which are all
zero. Then this subsequence is also a linear combination of subsequences of those n
sequences consisting of their first ` elements. Furthermore, we can exclude from the
linear combination the subsequence of the type (b) sequence (if there is any) since
for ` < k all its elements are zero. Writing this in a matrix form we get (m ≤ n): α0

1 . . . α0
m

...
...

α`−1
1 . . . α`−1

m

 ·
 λ1

...
λm

 =

 0
...
0

 .

If m ≤ ` then it would imply that a Vandermonde matrix m×m is singular, which
is not possible. Therefore, n ≥ m ≥ ` + 1. �

Lemma 3.8. The minimum number of sequences of length k +1 of types (a) or (b)
such that their linear combination is equal to the sequence y(`, k), ` > 0 is at least
k − `.

P r o o f . The idea of the proof is similar to the proof of Lemma 3.7. Assume y(`, k)
is a linear combination of n sequences of type (a) and (b). Take the subsequence of
y(`, k) consisting of its last but one k − `− 1 elemements, which are all zero. Then
this subsequence is also a linear combination of subsequences of those n sequences
consisting of their last but one k − `− 1 elemements. Furthermore, we can exclude
from the linear combination the subsequence of the type (b) sequence (if there is
any) since for ` < k all its elements are zero. Writing this in a matrix form we get
(m ≤ n):  α0

1 . . . α0
m

...
...

αk−`−2
1 . . . αk−`−2

m

 ·
 α`+1

1 · λ1

...
α`+1

m · λm

 =

 0
...
0

 .

If m ≤ k− `− 1 then it would imply that a Vandermonde matrix m×m is singular,
which is not possible. Therefore, n ≥ m ≥ k − `. �

A consequence of Lemma 3.7 and Lemma 3.8 is a somewhat negative result giving
a quite high lower bound of the symmetric rank of tensors representing an `-out-of-k
function for ` 6∈ {0, k}.

Theorem 3.9 (Lower bound of symmetric rank). The symmetric rank of a tensor
A(`, k), for 0 < ` < k representing an `-out-of-k function is at least max{`+1, k−`}.

P r o o f . The theorem follows from Lemma 3.7, Lemma 3.8, and formula 1. In order
to find symmetric rank of a tensor A(`, k) we need to find the minimum number of
sequences of length k + 1 of types (a) or (b) such that their linear combination is
equal to the sequence y(`, k). �
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4. BORDER RANK OF TENSORS REPRESENTING THE `-OUT-OF-k FUNC-
TIONS

In this section we describe a construction of a tensor B(q) that in limit q → 0
converges to the tensor A(`, k) representing an `-out-of-k function and has rank at
most min{` + 1, k − ` + 1}. This, contrary to Theorem 3.9, allows construction of
tensors that have relatively low rank and approximate tensor A(`, k) with arbitrarily
small error. We start with the definition of border rank introduced in [1].

Definition 4.1 (Border rank). The border rank of A : {0, 1}k → R is

brank(A) = min{r : ∀ε > 0 ∃E : {0, 1}k → R, ||E|| < ε, rank(A + E) = r} ,

where || · || is any norm.

Example 4.2. Let k > 0 be an even number. Then for q > 0

B(q, `) =
1

2q`
· (1, q)⊗ . . .⊗ (1, q)︸ ︷︷ ︸

k copies

− 1
2q`
· (1,−q)⊗ . . .⊗ (1,−q)︸ ︷︷ ︸

k copies

has rank at most two. Since

lim
q→0

B(q, 1) = A(1, k)

tensor A(1, k) has border rank at most two. Also, since

lim
q→∞

B(q, k − 1) = A(k − 1, k)

tensor A(k − 1, k) has border rank at most two.

Next, we will present the main theoretical result of this paper giving an upper
bound on brank(A(`, k)).

Theorem 4.3 (Upper bound of the border rank). The border rank of a tensor
A(`, k) representing an `-out-of-k function is at most min{` + 1, k − ` + 1}.

P r o o f . For a given `-out-of-k function we solve a system of linear equations

V β = v (2)

where vector v = (0, . . . , 0, 1)T has length ` + 1 and V is a Vandermonde (` + 1)×
(` + 1) matrix (note that the upper index of αi is an exponent)

V =


α0

1 α0
2 . . . α0

`+1

α1
1 α1

2 . . . α1
`+1

...
...

...
α`

1 α`
2 . . . α`

`+1
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where for i, j ∈ {1, 2, . . . , `+1} such that j 6= i it holds that αi 6= αj . This definition
of αi, i = 1, 2, . . . , ` + 1 guarantees that the solution β of system (2) exists. From V
and 0 < q < 1 we construct a (k + 1)× (` + 1) matrix W (q) defined as

W (q) =
1
q`


q0 · α0

1 q0 · α0
2 . . . q0 · α0

`+1

q1 · α1
1 q1 · α1

2 . . . q1 · α1
`+1

...
...

...
qk · αk

1 qk · αk
2 . . . qk · αk

`+1

 .

We use matrix W (q) and vector β to define a vector w(q) of length k as

w(q) = W (q) β . (3)

Note that components wi(q), i = 1, 2, . . . , k of w(q) are

wi(q) =

 0 for i ≤ `
1 for i = ` + 1
h(α1, α2, . . . , α`) · qi−` for i ≥ ` + 2

where h is a function of α1, α2, . . . , α` that is constant with respect to q. Now, we
can see that

lim
q→0

wi(q) =
{

1 if i = ` + 1
0 otherwise.

Therefore for

B(q) =
`+1∑
i=1

βi

q`
· (1, q · αi)⊗ . . .⊗ (1, q · αi)︸ ︷︷ ︸

k copies

it holds that

lim
q→0

B(q) = A(`, k) .

If ` > k
2 then we find the solution β′i of system (2) for `′ = k − `. From this

solution we define

B′(q) =
`′+1∑
i=1

β′i
q`′ · (q · αi, 1)⊗ . . .⊗ (q · αi, 1)︸ ︷︷ ︸

k copies

.

Now we get again that

lim
q→0

B′(q) = A(`, k) .

�

Remark 4.4. Assume α1 = 0. Then for ` = 0 it holds that B(q) = A(0, k) and,
similarly, for ` = k it holds that B′(q) = A(k, k), which is in accordance with
Lemma 3.4.
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5. TENSORS FOR NOISY INPUTS

In the real world there is usually a noise that modifies functional relations between
variables. Therefore, in this section we generalize tensors of `-out-of-k functions to
tensors of noisy `-out-of-k functions.

Definition 5.1. Tensor N(`, k, p, q) represents an `-out-of-k function with noisy
inputs if it holds for (i1, . . . , ik) ∈ {0, 1}k that

N(`, k, p, q)i1,i2,...,ik
=

∑
(j1,j2,...,jk)∈{0,1}k

Aj1,j2,...,jk
(`, k) ·

k∏
n=1

M in,jn(p, q) , (4)

where Aj1,j2,...,jk
(`, k) are elements of tensor A(`, k) representing the (exact) `-out-

of-k function and Min,jn(p, q) are elements of matrix M(p, q) defined by

Min,jn(p, q) =


q if jn = 0 and in = 0
1− q if jn = 1 and in = 0
1− p if jn = 0 and in = 1
p if jn = 1 and in = 1

(5)

with 0 < p ≤ 1 and 0 < q ≤ 1 being the parameters of the input noise.

Remark 5.2. Note that N(`, k, 1, 1) = A(`, k).

Example 5.3. Tensor N(`, k, p, q) representing an `-out-of-k function with noisy
inputs for k = 3, l = 1, and p = q = 0.9:

N(1, 3, 0.9, 0.9) =


(

0.243
0.747

) (
0.747
0.163

)
(

0.747
0.163

) (
0.163
0.027

)
 .

Lemma 5.4. For tensor N(`, k, p, q) that represents an `-out-of-k function with
noisy inputs it holds for (i1, . . . , ik) ∈ {0, 1}k that

N(`, k, p, q)i1,...,ik

=
∑̀
i=0

(
j

`− i

)
· p`−i · (1− p)j−`+i ·

(
k − j

i

)
· qk−j−i · (1− q)i ,

where j =
∑k

n=1 in.

P r o o f . Starting with Definition 5.1, for each combination i1, i2, . . . , ik, we have to
sum over all compatible combinations of j1, j2, . . . , jk. �

Remark 5.5. From Lemma 5.4 we can easily see that N(`, k, p, q) is a symmetric
tensor.

Corollary 5.6. The border rank of a tensor N(`, k, p, q) representing an `-out-of-k
function with noisy inputs is at most min{` + 1, k − ` + 1}.

P r o o f . This is a direct consequence of Theorem 4.3 presented in this paper and
Theorem 6 from [13]. �
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6. APPROXIMATIONS OF TENSORS

Given a symmetric tensor N(`, k, p, q) representing an `-out-of-k function with noisy
inputs our goal is to find another symmetric tensor A of the same order and the
same dimensions having symmetric rank at most r = min{` + 1, k− ` + 1} that is a
good approximation of the original tensor. We will assume all r tensors that sum up
to A to be also symmetric and to have a non-zero value at the (0, . . . , 0) coordinate.
Then, using (1) we can write

A =
r∑

j=1

λj · (1, αj)⊗ . . .⊗ (1, αj)︸ ︷︷ ︸
k copies

, (6)

where αj and λj , j = 1, . . . , r are real numbers. We reparametrize tensor A by
taking

αj = exp(βj)
λj = exp(−` · βj) · µj

for j = 1, . . . , r. Using this we rewrite (6) as

A =
r∑

j=1

µj

exp(` · βj)
· (1, exp(βj))⊗ . . .⊗ (1, exp(βj))︸ ︷︷ ︸

k copies

. (7)

Let µ = (µ1, . . . , µr) and β = (β1, . . . , βr). Further define

a(µ,β) = (a0(µ,β), . . . , ak(µ,β)) ,

where for i = 0, . . . , k

ai(µ,β) =
r∑

j=1

µj(βj)i .

Then for (i1, . . . , ik) ∈ {0, 1}k it holds that

Ai1,...,ik
(µ,β) = ai1+...+ik

(µ,β) .

The criteria f we want to minimize will be defined in terms of µ and β as

f(µ,β) = ||y(`, k)− a(µ,β|| , (8)

where || · || is the Euclidean norm and y(`, k) was defined in Section 3 as

y(`, k) = (0, . . . , 0︸ ︷︷ ︸
`

, 1, 0, . . . , 0︸ ︷︷ ︸
k−`

) .

To find a good approximation with a small value of the above criteria we use a
kind of stochastic hill climbing2. The algorithm iterates over two steps. In the first

2We tried also different gradient search methods but they either had strong tendency towards
a local minima or lead to numerically unstable solutions with very large and very small numbers.
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Table 1. Values of parameters.

stage s σs ts
1 7.00 20 000
2 1.00 10 000
3 0.10 5 000
4 0.01 3 000

step we set randomly the value of β. In the second step we find µ that minimize (8)
for β selected in the first step. If the value of criteria is the minimum from all values
computed up to that moment we keep the values of β and µ. The minimization
of criteria f for a given β is the standard linear least squares problem that has a
closed-form solution

µ =
(
AT A

)−1

AT y(`, k) .

In our implementation the algorithm consisted of four stages s = 1, 2, 3, 4. In each
stage s we sampled a vector g of r random numbers from Gaussian distribution with
zero mean and standard deviation σs. In the first stage we selected the value β = g
in remaining stages g was added to currently best β. Each stage terminated after
there was no improvement of criteria f for certain number of iterations ts. In the
experiments reported in Section 7 we used the values of parameters given in Table 1.

In Figure 1 we present the decadic logarithm of the maximum distance

|| |y(`, k)− a(µ,β)| ||∞

of the tensors N(`, k, p, q) representing `-out-of-k functions with noisy inputs found
by the algorithm described above for k = 4, 5, . . . , 8 and ` = 1, . . . , k − 1 from their
approximations. Note that for ` ∈ {0, k} we have exact solutions of rank one — see
the proof of Lemma 3.4.

7. THE GAME OF MINESWEEPER

Our main motivation for the rank-one decomposition of tensors representing `-out-
of-k functions with noisy inputs is the application of their rank-one decomposition
in probabilistic inference – see [13] for details. To evaluate the approach presented
in previous section we selected the task of computing the probability of a mine
at all uncovered grid positions in the noisy modification of the computer game of
Minesweeper.

Minesweeper is a one-player grid game. It is bundled with several computer
operating systems, e. g., with Windows or with the KDE desktop environment. The
game starts with a grid of n × m blank fields. During the game the player clicks
on different fields. If the player clicks on a field containing a mine then the game is
over. Otherwise the player gets information on how many fields in the neighborhood
of the selected field contain a mine. The goal of the game is to discover all mines
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Fig. 1. Decadic logarithm of the maximum errors of the

approximations for k = 4, 5, . . . , 8 and ` = 1, . . . , k − 1.

without clicking on any of them. In Figure 2 we present two screenshots from the
game. For more information on Minesweeper see, e. g., Wikipedia [19].

7.1. A Bayesian network model for Minesweeper

Assume a game of Minesweeper on a n ×m grid. The Bayesian network (BN) [6]
model of Minesweeper contains two variables for each field (i, j) ∈ {1, . . . , n} ×
{1, . . . ,m} on the game grid. The variables in the first set X = {X1,1, . . . , Xn,m}
are binary and correspond to the (originally unknown) state of each field of the
game grid. They have state 1 if there is a mine on this field and state 0 otherwise.
The variables in the second set Y = {Y1,1, . . . , Yn,m} are observations made during
the game. Each variables Yi,j has as its parents3 variables from X that are on the
neighboring positions in the grid, i. e.

pa(Yi,j) =
{

Xu,v ∈ X : u ∈ {i− 1, i, i + 1}, v ∈ {j − 1, j, j + 1},
(u, v) 6= (i, j), 1 ≤ u ≤ n, 1 ≤ v ≤ m

}
.

In the standard Minesweeper game each observed variable Yi,j from Y conveys the
number of its neighbors with a mine. Therefore the number of states of Yi,j is the
number of its parents plus one. The conditional probability table (CPT) is defined
by the addition function for all combinations of states x = (x1, . . . , xk) of its parents
pa(Yi,j) and for all states ` of Yi,j as

P (Yi,j = ` | pa(Yi,j) = x) =
{

1 if ` =
∑k

u=1 xu

0 otherwise.
(9)

3Since there is a one-to-one mapping between nodes of the DAG of a BN and the variables of
BN we will use the graph notion also when speaking about random variables.



328 J. VOMLEL

Fig. 2. Two screenshots from the game of Minesweeper. The

screenshot on the right hand side is taken after the player stepped on

a mine. It shows the actual position of mines.

In the noisy modification of the game we assume that there can be a noise at each
argument of the sum — in the same way as it is defined by equations (4) and (5)
taking p = q = 0.9, i. e.,

P (Yi,j = ` | pa(Yi,j) = x) = N(`, k, p, q)x1,...,xk
. (10)

Whenever an observation of Yi,j is made the variable Xi,j can be removed from
the BN since its state is known. If its state is 1 the game is over, otherwise it is 0 and
the player cannot click on the same field again. When evidence from an observation
is distributed to its neighbors also the node corresponding to the observation can be
removed from the DAG.

In addition, we need not include into the BN model observations Yi,j that were
not observed yet. To see this note that in order to compute a marginal probability
of a variable Xi,j we sum the probability values of the joint probability distribution
over all combinations of states of remaining variables. It holds for all combinations
of states x of pa(Yi,j) that∑

y

P (Yk,l = y | pa(Yi,j) = x) = 1

therefore the CPT of Yi,j can be omitted from the joint probability distribution
represented by the BN. This is a standard trick used in computations with BNs
known as removing barren variables — see [6, Section 5.5.1].
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The above considerations implies that in every moment of the game we will have
at most one node for each field (i, j) of the grid. Each node of a graph corresponding
to a grid position (i, j) will be indexed by a unique number g = j + (i− 1) ·m.

7.2. A standard approach for inference in BNs

In a standard inference technique such as [7, 8], and [9] the DAG of the BN is
transformed to an undirected graph so that each subgraph of the DAG of a BN
induced by set variable Y and its parents, say {X1, . . . , Xm}, is replaced by the
complete undirected graph on {Y, X1, . . . , Xm}. This step is called moralization.
See Figure 3. If Y = `, ` ∈ {0, k} we can propagate this evidence to each parent
independently therefore we need not perform the moralization step.

Y

X1 X2 Xm X2 Xm

Y

X1

Fig. 3. The original subgraph of the DAG induced by

{Y, X1, . . . , Xm} and its counterpart after moralization.

The second graph transformation is triangulation of the moral graph. An undi-
rected graph is triangulated if it does not contain an induced subgraph that is a cycle
without a chord of a length of at least four. The triangulation was performed using
minweight heuristics [10]. In case of all variables being binary minweight heuristics
is equivalent to the minwidth heuristics [12].

See Figure 4 and Figure 5 for an example of the moral graph and triangulated
graph, respectively, after 44 observations in the game of Minesweeper on a 10 × 10
grid. The filled (green — if you can see it in color) circles correspond to the fields
with evidence, the empty circles to the fields with an unknown status. There is a
(red) cross at a circle if it corresponds to a field with mine — but note that the
player and, consequently, the inference algorithm does not know where the mines
are.

7.3. Tensor rank-one decomposition

In the BN model of Minesweeper the CPTs of all observations have a special local
structure. For a given value ` of an observation its CPT correspond to a tensor rep-
resenting an `-out-of-k function with noisy inputs as it was defined by formula (10).
Therefore, we can approximate each CPT by use of tensor rank-one decomposition
proposed in Section 6. In graphical terms it means that each subgraph of the DAG of
a BN induced by set {Y, X1, . . . , Xm} is replaced by an undirected graph containing
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Fig. 4. An example of the moral graph of the BN after 44

observations in the game of Minesweeper on a 10× 10 grid for the

standard method.
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Fig. 5. The triangulated graph of the moral graph from Figure 4.
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a variable B connected by undirected edges to all variables from {X1, . . . , Xm}, see
Figure 6. The resulting graph is in [14] called the BROD graph. The number of
states of B is the number of summands in (6), i. e., it is r.

Y

X1 X2 Xm

B

X1 X2 Xm

Fig. 6. The original subgraph of the DAG induced by

{Y, X1, . . . , Xm} and its counterpart after tensor rank-one

decomposition.

Similarly, as in the standard approach, if Y = `, ` ∈ {0, k} we can propagate this
evidence to each parent independently therefore we can remove node Y without any
need for an approximation. It means that we neither include node B nor add any
edges. This implies there is at most one node in the graph for the corresponding
field of the grid. The second graph transformation is again triangulation, but this
time applied to the undirected graph after the tensor rank-one decomposition.

See Figure 7 for an example of the graph for the model after tensor rank-one
decomposition and after 44 observations in the game of Minesweeper on a 10×10 grid.
Note, that while for variables corresponding to unobserved fields of the game grid
the number of states remains two, for the variables corresponding to the observed
fields of the game grid the number of states is r, which can be higher than two (but it
is at most five). For the triangulated graph of the graph from Figure 7 see Figure 8.

8. NUMERICAL EXPERIMENTS

We performed experiments with the game of Minesweeper for the 20× 20 grid size.
All computations were implemented in the R language [11]. For simplicity we used
a random selection of fields to be played and we assumed we never hit any of fifty
mines during the game. At each of 350 steps of the game we created a Bayesian
network as described in Section 7.1. We performed network transformations by:

1. the standard method consisting of moralization and triangulation steps (Sec-
tion 7.2) and

2. the tensor rank-one decomposition applied to CPTs with number of parents
higher than three (for CPTs with less than four parents we used the moraliza-
tion) (Section 7.3) followed by the triangulation step.

In both networks we then used the lazy propagation method [9] with the computa-
tions performed with lists of tables over the junction trees. At each step of the game
we recorded:
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Fig. 7. The BROD graph of the BN after the same 44 observations

as in Figure 4 in the game of Minesweeper on a 10× 10 grid.
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Fig. 8. Triangulated graph of the BROD graph from Figure 7.
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(a) decadic logarithm of the total table size of all cliques4 of the triangulated
graphs5,

(b) decadic logarithm of the total size of all tables before the lazy propagation was
performed,

(c) decadic logarithm of the size of the largest table created during the lazy prop-
agation,

(d) the total time (in seconds) spent during the lazy propagation,

(e) the median of the approximation error err(i, j) of the probability of a mine
given evidence at all unobserved fields (i, j) of the grid

err(i, j) =
∣∣∣P (Xi,j = 0|e)− P̃ (Xi,j = 0|e)

∣∣∣ ,

where P is the exact probability computed by the standard method and P̃
the approximate probability computed after the approximations by rank-one
decomposition, and

(f) the maximum of the approximation error err(i, j) over all unobserved fields
(i, j) of the grid.

For the results of experiments see Figure 9. In plots (a)—(c), (e) all values represent
the average over ten different games, in plot (d) the values are total sums over ten
different games, and in plot (f) the values are maxima over ten different games.

From the results of experiments we can see that by using the rank-one decompo-
sition we decrease the total table size and the size of the largest table by the order
of two magnitudes. Also, we avoid high peaks in computational time. However, this
gain is achieved at the expense of a certain loss of precision. From the plot (e) of
Figure 9 we can see that the median of the error is not very high, but, certainly,
there exist variables whose conditional probabilities given evidence were substan-
tially different for the exact and approximate computations — see plot (f) of the
same figure.

9. CONCLUSIONS

In this paper we provided a lower bound of the rank and an upper bound for the
symmetric border rank of tensors representing `-out-of-k functions. It is an inter-
esting observation that they are in a way antagonistic — for ` with low symmetric
border rank the rank is high and vice versa.

Based on our result for symmetric border rank we proposed an approximation of
tensors representing `-out-of-k functions with noisy inputs by r tensors of rank one,
where r is an upper bound of the symmetric border rank of the approximated tensor.
We applied the suggested approximation to probabilistic inference in probabilistic

4A set of nodes C ⊆ V of a graph G = (V, E) is a clique if it induces a complete subgraph of G
and it is not a subset of the set of nodes in any larger complete subgraph of G.

5Table size of a clique is the product of numbers of states of all variables of that clique.
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Fig. 9. Results of the experiments.
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graphical models. To evaluate the proposed method we used Bayesian network
models constructed for a modification of the game of Minesweeper. We believe that
this model is a good example from a class of models used in real-world applications of
Bayesian networks. Numerical experiments reveal that we can get a gain in the order
of two magnitudes but at the expense of a certain loss of precision. A possible task
for a future research is to find another type of rank-one decompositions of tensors
representing `-out-of-k functions that would avoid the loss of precision possibly at
the expense of a lower computational gain.
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