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KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 3 , PAGES 3 3 7 – 3 5 5

ENTROPIES OF VAGUE INFORMATION SOURCES

Milan Mareš

The information-theoretical entropy is an effective measure of uncertainty connected
with an information source. Its transfer from the classical probabilistic information theory
models to the fuzzy set theoretical environment is desirable and significant attempts were
realized in the existing literature. Nevertheless, there are some open topics for analysis
in the suggested models of fuzzy entropy – the main of them regard the formal aspects
of the fundamental concepts. Namely their rather additive (i. e., probability-like) than
monotonous (typical for fuzzy set theoretical models) structure. The main goal of this
paper is to describe briefly the existing state of art, and to suggest and analyze alternative,
more fuzzy set theoretical, approaches to the fuzzy entropy developed as a significant
characteristic of the information sources, in the information-theoretical sense.

Keywords: information source, message, uncertainty, fuzzy set, fuzzy entropy, fuzzy in-
formation

Classification: 94A17, 94A15, 94D05, 03B52

1. INTRODUCTION

The serious attempts to measure the information (or, vice versa, uncertainty) pro-
cessed in the frame of data acquisition and analysis can be found in the literature.
The Fisher information measure (cf. [5]) belongs to the first concepts of the con-
sidered type. The main methodology of information analysis and processing was
developed by Shannon and Weaver in [22], and by many of their successors (cf.
[8, 9, 21], for example). All these works were based on the probabilistic models,
representing the randomness as the best developed type of uncertainty.

After the Zadeh’s introduction of the vagueness as an alternative uncertainty
concept [24], formally described by the fuzzy set theoretical tools, several attempts
to define a quantitative measure of the degree of vagueness were suggested (let us
mention [6, 11, 19, 20] for illustration). Some of those fuzzy uncertainty measures
explicitly refer the information theoretical concept of entropy (see [1, 4, 7, 13, 18, 23]
and recently also [2]). Let us note that in those works, the application of the entropy-
like concepts was mainly motivated by the endeavour to measure the indeterminism
of fuzzy sets, and the eventual regard to the data and knowledge acquisition and
transmission has more or less secondary effect. An elementary attempt to study the
fuzzy set theoretical aspects of vague data sources was done, e. g., in [17] and [16].
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The formal definitions of the fuzzy entropy presented in the referred literature,
often repeat the structure of the Shannon’s probabilistic model of the entropy or
some of its specific components, in spite of the fact that there are significant dif-
ferences between the essence of randomness and vagueness. Namely, the suggested
definitions often prefer the additivity of uncertainty to its monotonicity, characteris-
tic for the processing of fuzzy sets which preference implies the application of some
other tools (e. g., the logarithmic function) which could be possible but redundant
in the case of the models based on the monotonicity paradigm.

The aim of this paper is to discuss the methodological topics introduced above,
and to suggest an alternative approach to the fuzzy entropy, more consequently based
on the fuzzy set theoretical methods. Some basic properties of that alternative model
are presented, too.

It is obvious that relatively many concepts introduced here can be generalized,
e. g., by substitution of elementary fuzzy set theoretical tools by their more advanced
counterparts used in the theory of aggregated operators, copulas, and others (cf. also
Conclusive Remarks). The choice of most elementary formalism is motivated by the
endeavour to simplify the interpretation and orientation in new method. Eventual
generalization is investigated recently.

The following sections are organized, as follows. The next Section 2 introduces
the concept of fuzzy information source and its elementary properties. After a brief
recollection of the probabilistic model in Section 3, the analysis of the fuzzy infor-
mation source continues in Section 4 by the discussion of the main fuzzy entropy
models presented in the referred literature, and in Section 5 by the analysis of the
fuzzy information connected with particular symbols or finite sequences of symbols
emitted by a fuzzy information source. Finally, Section 6 is devoted to the pre-
sentation of some concepts of fuzzy entropy (known from the literature, as well as
suggested here) and their analysis from the point of view of general, heuristically
acceptable, conditions putted on the fuzzy uncertainty concept in the wider sense.
The paper is concluded by a brief remark.

2. FUZZY INFORMATION SOURCE

In accordance with both, probabilistic and fuzzy set theoretical, methods of the
information theory (see, e. g., [8, 16, 19, 21, 22]) we define the source of information
as a pair, composed from an alphabet and an uncertainty distribution over that
alphabet (cf. [16]). In our case, the fuzzy information source is defined as a fuzzy
subset of an alphabet, identified by a membership function.

More precisely, the alphabet is a non-empty and finite set A of symbols, and the
uncertainty is represented by the membership function µ : A → [0, 1]. The pair
(A,µ) is called an elementary fuzzy source.

Any bilaterally unlimited sequence of symbols

. . . a−2, a−1, a0, a1, a2, . . . , an−1, an, an+1, . . .

is called a message, and our main attention will be focused on finite segments of
messages.
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The vagueness is a frequently appearing type of uncertainty even in the context
of the information emission and transmission, whenever the situation does not admit
the application of the statisticaly estimated probabilities. The vague reading of de-
fected symbols, subjective interpretation of noisy measurements, or approximation
of continuous data by discrete values, can be mentioned as examples of fuzzy infor-
mation and knowledge. The essential difference between the probabilistic and fuzzy
interpretation of the data uncertainty appears to consists in the following heuristic
principle. Meanwhile the probability p(a), a ∈ A, in the Shannon’s classical model
usually represents the uncertainty with which the symbol a is expected in the future,
the membership value µ(a) rather evaluates the vagueness of the interpretation or
understanding the symbol a ∈ A, already received as a result of the information
acquisition.

The elementary fuzzy source, introduced above, can be extended to more complex
object, namely finite segments of messages (i. e., words). In the case of the proba-
bilistic model, such extension is formally treated by the well managed concepts of
conditional and associated probabilities. Analogous procedure can be used for fuzzy
information sources handled in the following way.

If (A,µ) is an elementary fuzzy source, then we denote by A∗ the set of all finite
segments, i. e.,

A∗ = A ∪A2 ∪A3 ∪ · · · ∪An ∪ . . .

and call it the extended alphabet. Similarly, any mapping µ∗ : A∗ → [0, 1] such that
for any, n, m = 1, 2, . . ., and any a = (a1, . . . , an) ∈ An, b = (b1, . . . , bm) ∈ Am

µ∗(a) = µ(a1) if n = 1, a = (a1), (1)
µ∗(a, b) ≤ min (µ∗(a), µ∗(b)) (2)

is called the extension of µ on A∗. The pair (A∗, µ∗) is called the fuzzy source. If the
inequality (2) turns into equality for all a, b ∈ A∗, then the fuzzy source (A∗, µ∗) is
called independent.

Remark 1. If (A∗, µ∗) is a fuzzy source, then obviously µ∗(a) ≤ min(µ(a1), . . .
. . . , µ(an)) for any a = (a1, . . . , an) ∈ A∗, as follows from (2) and (1).

The previous definition (1), (2), and Remark 1 immediately mean that any inde-
pendent fuzzy source (A∗, µ∗) is fully defined by an elementary fuzzy source (A,µ).

3. BRIEF RECOLLECTION OF PROBABILISTIC MODEL

The Shannon’s probabilistic pattern [22] of the basic structure of an information
source and the information/uncertainty measure is universal and applicable in var-
ious specific models (cf. [16], e. g.), and it is frequently referred in the following
sections, too. Hence, it deserves a brief summary of its main concepts.

The random information source is defined as a pair (A, p), where A is an alphabet
and p is a probability distribution over A. For any a ∈ A, p(a) is the probability with
which the emission of a by the source is expected. The probability distribution p can
be extended on the extended alphabet A∗ by means of well known probabilistic tools
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(see, e. g., [8, 9, 21, 22] and many others). The source is said to be independent if for
any pair of symbols (a1, a2) ∈ A2, the extended probability p(a1, a2) = p(a1) · p(a2).

The probabilistic information transmitted by a symbol a ∈ A is defined as a value
Ip(a), where

Ip(a) = − log2 p(a) = log2(1/p(a)). (3)

The uncertainty characterizing the entire source (A, p) is defined as the mean
value of individual probabilistic information measures. We denote it by Hp(A, p),
call it the probabilistic entropy, and define by

Hp(A, p) =
∑

a∈A
p(a) · Ip(a) = −

∑
a∈A

p(a) · log2 p(a). (4)

There exist several attempts to transfer the above concepts into the fuzzy set
theoretical environment, and many others can be suggested. Those which appear to
be most significant are shown and discussed in the following sections.

4. FUZZY ANALOGIES OF ENTROPY – DISCUSSION

Soon after the publication of the seminal work [22], interesting generalizations or
modifications of its main concepts were suggested (see, e. g., [8, 9, 19, 20, 21]).
Nevertheless, the main stream of such works has appeared after the introduction of
the concept of vagueness, and its representative, fuzzy set, by Zadeh’s paper [24]. Let
us mention [1, 4, 11], followed by [7, 13, 18, 23] and other papers, till the generalizing
work [2].

In this section, we focus our attention on the works dealing with the, in prin-
ciple information theoretical, measures of vagueness formally described by a fuzzy
set. Such endeavour usually resulted into the introduction of concepts analogous to
Shannon’s entropy (4). Quite often, the fuzzified entropy included the logarithmic
function in a position similar to the classical probabilistic entropy.

Namely, if we use the notations and terms of the previous section, then the
fuzzified entropy of a fuzzy source (A∗, µ∗) can be defined (due to De Luca and
Termini [4]) as the value

HLT(A∗, µ∗) = −K ·
∑

a∈A∗
µ∗(a) · log2 µ∗(a), (5)

where K is a positive constant normalizing the final value of the entropy. We call
that type of entropy DeLuca–Termini fuzzy entropy.

Rather more complex definition of logarithmic fuzzy entropy was suggested by
Kolesárová and Vivona in [13], where the following modification of the fuzzy entropy
concept is suggested. For a fuzzy source (A∗, µ∗), the value

HKV(A∗, µ∗) = −K
∑

a∈A∗
(µ∗(a) · log2 µ∗(a) + (1− µ∗(a)) · log(1− µ∗(a))) , (6)

where K is, analogously to the previous case, a normalizing positive constant. In the
rest of this paper, we call the value HKV(A∗, µ∗) Kolesárová–Vivona fuzzy entropy.
In both definitoric equations, (5) and (6), the convention “0 · log2 0”= 0 is respected.
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The above “logarithmic” approaches to fuzzy entropy are correct and they have
significant advantages, including their nearness to the probabilistic pattern. Never-
theless, there are some aspects of their structure which deserve to be discussed. Most
of them are related to the fact that each entropy, including the fuzzy ones, represents
an aggregation operator (see [3], for example) over the values of fuzzy information
transmitted by individual symbols. We turn our attention to the following features
of the above fuzzy entropies, especially.

4.1. The Additivity of Information

The Shannon’s concepts of entropy (4) and information (3) are defined for the ran-
dom uncertainty characterized by a probability distribution. Those probabilities are
naturally processed by algebraic tools, like the operations of sum and product, and
this algebraic approach is reflected also in the formal properties of Hp(A, p) and Ip.

On the other hand, the vagueness assumed and dealt by fuzzy information pro-
cessing, is usually characterized by its monotonicity, and usual operations with fuzzy
concepts are rather monotonous and essentially set theoretical (union, intersection,
complement) represented by monotonous operators like minimum and maximum. In
this sense, the “logarithmic” structures of information and entropy are not typical
for fuzzy set theoretical paradigm.

4.2. The Logarithmic Scale of Information

The probabilistic information measure (3) is demanded to be additive – the associ-
ated probabilistic information is to be a sum

Ip(a, b) = Ip(a) + Ip(b), a, b ∈ A,

if the symbols a, b are independent. On the other hand, the associated probability
p(a, b) of independent symbols is the product p(a) · p(b). Hence, the use of the
logarithm in (3) is not only natural but also unavoidable.

In the contrary, the fuzzy information and consecutive concepts are to be rather
monotonous than additive (cf. subsection 4.1), and also the processing of fuzzy sets
and related notions is based on the monotonicity of the used operations. It means
that the use of logarithmic function is possible and admissible but it is not necessary.
For some marginal values of the membership functions in the fuzzy sources (A,µ)
and (A∗, µ∗), namely for vanishing values µ(a) or µ∗(a), the logarithms would be
treated with certain care.

4.3. Limited Regard to the Information of Individual Symbols

The analysis of the uncertainty existing in a random information source starts from
the uncertainty of individual symbols – represented by the information measure Ip.
The uncertainty of the entire information source (A, p) is defined as an aggregation
operator (in that case the mean value) over the set of those individual uncertainties.

The models of fuzzy entropy suggested in the referred works, including [3] and [13],
are not aimed to the characterization of uncertainty of emitted or transmitted data,
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but to the measurement of vagueness characterized by a fuzzy set. This procedure is
correct and rational but it means some weakening of the link between the suggested
definitions of entropy and the reality of vague data source.

In the following sections, alternative approaches to the fuzzy entropy are analyzed
and discussed, with special regard to the three aspects mentioned in this section.

5. FUZZY INFORMATION MEASURE

The elementary treatment of fuzzy information defined for particular symbols from A
or finite “words” from A∗ was introduced in [16] and [17], already. Here, we analyze
its basic properties with regard to the aggregation of such individual information
values into a global characteristics of the entire information source.

The existing or potential definitions of the individual information measure on A
or A∗ would respect some general demands. Namely, if (A,µ) is an elementary fuzzy
information source then the fuzzy information measure Iµ is a mapping of A into
real numbers depending on the membership values µ(A), a ∈ A, and such that for
a, b ∈ A

Iµ(a) ≥ 0, Iµ(a) = 0 iff µ(a) = 1, (7)
if µ(a) ≥ µ(b) then Iµ(a) ≤ Iµ(b). (8)

The definition of fuzzy information can be easily extended on the “alphabet” A∗,
where the membership values µ∗(a) for a ∈ A∗ define the information values Iµ(a∗).
The following conditions are to be fulfilled for any a, b ∈ A∗,

Iµ(a) ≥ 0, (9)

Iµ(a, b) ≥ max (Iµ(a), Iµ(b)) ,
if µ∗(a, b) = min(µ∗(a), µ∗(b)) then Iµ(a, b) = max(Iµ(a), Iµ(b)). (10)

Remark 2. If the conditions (7), (8), (9), (10) are fulfilled then obviously

Iµ(a) ≥ max (Iµ(a1), . . . , Iµ(an))

for any a = (a1, . . . , an) ∈ A∗.

Remark 3. If the assumptions of the previous Remark 2 are fulfilled and if the
fuzzy source (A∗, µ∗) is independent then

Iµ(a) = max (Iµ(a1), . . . , Iµ(an)) .

Let us note, with regard to the Shannon’s probabilistic theory, that the mutual
relation between probabilistic independence and its eventual fuzzy set theoretical
counterparts is discussed on a heuristic level since the seventies. The very special
concept of independence used here is not in contradiction with the main ideas for-
mulated during this discussion, however the structures of fuzziness and randomness
are too different to search for direct analogies (see also [12]).
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Lemma 1. If the fuzzy source (A∗, µ∗) is independent then for any a = (a1, . . . , an)
∈ A∗, Iµ(a) = 0 if and only if µ(ai) = 1 for all i = 1, . . . , n.

P r o o f . If for independent source (A∗, µ∗), µ(ai) = 1 for all i = 1, . . . , n, then
Remark 3 and condition (7) imply that Iµ(a) = 0. Let, on the other hand, µ(aj) < 1
for some j ∈ {1, . . . , n}. Then, due to (7), Iµ(aj) 6= 0 and, by Remark 3, also
Iµ(a) 6= 0. �

Let us verify the validity of the previous conditions (7), (8), (9), (10) for some
significant specifications of the fuzzy information. In the following paragraphs, we
consider an elementary fuzzy source (A,µ) and its extension, fuzzy source (A∗, µ∗).

5.1. Logarithmic Fuzzy Information

The first type of information measure characterizing particular symbols and seg-
ments of messages is the concealed background of the fuzzy entropies: HLT(A∗, µ∗)
and HKV(A∗, µ∗), namely the mapping IL

µ : A → R+ defined by

IL
µ (a) = − log2 µa for a ∈ A, (11)

called the logarithmic fuzzy information. Let us note that the binary type of the
logarithmic function in (11) is an arbitrary choice respecting rather the information
theoretical habits. The essential properties of IL

µ (a) keep preserved for any other
base of logarithm.

Lemma 2. The fuzzy information Iµ fulfils (7) and (8).

P r o o f . The statement is an elementary consequence of the properties of loga-
rithms. �

It is easy to extend Iµ from the fuzzy source (A,µ) on its extension (A∗, µ∗) by
means of

Iµ(a) = − log2 µ∗(a) for a ∈ A∗. (12)

Lemma 3. The extension (12) of the logarithmic fuzzy information IL
µ over (A∗, µ∗)

fulfils for any a = (a1, . . . , an) ∈ A∗ the inequality

IL
µ (a) ≥ max

(
IL
µ (a1), . . . , IL

µ (an)
)
.

If the fuzzy source is independent then

IL
µ (a) = max

(
IL
µ (a1), . . . , IL

µ (an)
)
.

P r o o f . The statement follows from Remark 2, Remark 3 and (12). �
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Lemma 4. The extended logarithmic fuzzy information over (A∗, µ∗) defined by
(12) fulfils conditions (9) and (10).

P r o o f . Definition (12) immediately implies the positivity of IL
µ (a) for any a ∈ A∗.

Let us consider a, b ∈ A∗. Then, due to (2),

µ∗(a, b) ≤ min (µ∗(a), µ∗(b)) ,

and, by (12), condition (10) is fulfilled. �

5.2. Monotonous Fuzzy Information

The information measure suggested in this subsection more reflects the paradigm
of monotonicity of the operations based on fuzzy set theoretical concepts which we
intend to respect in the following parts of this paper.

If (A,µ) is an elementary fuzzy source, we define a mapping IM
µ : A → R such

that for any a ∈ A
IM
µ (a) = 1− µ(a), (13)

which is called monotonous fuzzy information. The following statement follows from
(13), immediately.

Lemma 5. The monotonous fuzzy information IM
µ fulfils conditions (7) and (8).

It is also easy to extend IM
µ on the information source (A∗, µ∗), and by means of

IM
µ (a) = 1− µ∗(a), for a∗ ∈ A∗. (14)

The following statement means that the extension is formally correct.

Lemma 6. The extension (14) of IM
µ on (A∗, µ∗) fulfils conditions (9) and (10).

P r o o f . The statement is an immediate consequence of (14), (2) and of the prop-
erties of membership functions. �

Lemma 7. The extension (14) of IM
µ fulfils the following inequality for any a =

(a1, . . . , an) ∈ A∗

IM
µ (a) ≥ max

(
IM
µ (a1), . . . , IM

µ (an)
)
.

If, moreover, the fuzzy source (A∗, µ∗) is independent then the above inequality
turns into equality.

P r o o f . Analogously to Lemma 3, also this statement follows from Remark 2 and
Remark 3 applied on (14). �

The previous statements show that the monotonous approach to the concept
of fuzzy information offers a formal structure which is comparable with the one
following from the traditional approach and that its formal processing can be easier.

In the next chapter, we analyze the influence of both conceptions on the notion
of fuzzy informational entropy.
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6. AGGREGATED FUZZY INFORMATION MEASURES

In this section, we compare both approaches, the logarithmic and the monotonous
ones, from the point of view of the construction of some aggregated measure of
information regarding the entire fuzzy information source. As the term “entropy”
is traditionally closely connected with the logarithmic approach to the uncertainty
of information source (probabilistic, as well as fuzzy), we prefer here the terms
“aggregated information” and “aggregated fuzzy information” generalizing various
models of the entropy.

The notion of aggregated fuzzy information is quite wide, which implies the need
to specify its general boundaries. We do it in the first subsection, meanwhile the
following two subsections of this section are devoted to the analysis and differences
between the known logarithmic model, newly suggested monotonous models, and
the general demands. Let us note, on the extremally heuristic level, that each
aggregated fuzzy information would be a function of the individual information
values for particular symbols, and that it would be the larger the less variable (or
structured) these individual information values are.

6.1. Postulates of Aggregated Fuzzy Information

The rough heuristic idea formulated in the previous paragraphs is to be specified
in several formal postulates. Some attempts to formulate them were undertaken in
a few papers dealing with that topic (let us mention, e. g., [2, 4, 6, 13, 16, 19, 20]
and others). However these attempts cover the desired properties of the aggregation
fuzzy information measures, they often differ from each other in significant details.
Let us summarize, here, the expected properties of the aggregated fuzzy information
(in other words, of the fuzzy entropy) in a system of five postulates. The author
takes for his honour to express here his thanks to prof. Radko Mesiar from Bratislava
for informal inspirational discussion regarding this topic. Very probably, some of the
models of fuzzy entropy (already suggested or potentially expectable) will not fulfil
all the postulates below. Nevertheless, even a limited set of properties characterizes
the actual entropy concepts.

Let us consider an elementary information source (A,µ) and its extension (A∗, µ∗)
(see Section 2). Let Iµ be the fuzzy information on (A,µ) fulfilling (7), (8), which
can be extended on (A∗, µ∗) where (1), (2), as well as (9), (10) are fulfilled.

Let us consider a mapping H connecting the elementary fuzzy source (A,µ) with
a real number H(A,µ), where the following postulates are fulfilled

(H1) H(A,µ) = 0 if for any a ∈ A µ(a) ∈ {0, 1}.

(H2) Let A, B be finite alphabets and (A,µ), (B, ν) be fuzzy sources such that B is a
permutation of A and the set {ν(b) : b ∈ B} is a permutation of {µ(a) : a ∈ A}.
Then H(A,µ) = H(B, ν).

(H3) If (A,µ), (A,µ′) are elementary fuzzy sources and for all a ∈ A

µ(a) ≤ µ′(a) if µ′(a) ≤ 1/2,

µ(a) ≥ µ′(a) if µ′(a) ≥ 1/2,
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then H(A,µ) ≤ H(A,µ′).

(H4) If (A,µ), (A,µ′) are such that for all a ∈ A, µ(a) = 1− µ′(a) then H(A,µ) =
H(A,µ′).

(H5) H(A,µ) ≥ H(A,µ′) for all (A,µ′) if µ(a) = 1/2 for all a ∈ A.

Moreover, in some of the following subsections we consider the following postulate,
too.

(H6) The mapping H can be extended on the fuzzy source (A∗, µ∗) in a way con-
sistent with (H1),. . . ,(H5), where the consistency means that all postulates
are fulfilled for the segments a ∈ A∗ and values µ∗(a) for which a = (a) is a
one-symbol segment.

The previous axioms deserve a few comments. As mentioned in Section 2, the in-
formation source (A,µ) is another term from a fuzzy subset of A and, consequently,
any measure of uncertainty connected with (A,µ), measures the degree of its vague-
ness, i. e., fuzziness. This interpretation of the entropy concept, is especially well
cognizable in axioms (H3) and (H5). Namely, the doubt if a symbol x ∈ A belongs
to the fuzzy set (A,µ) is the more intensive the nearer the membership value µ(x) is
to 1/2. Similarly, the more do the values of µ(x) being near to 1 or to 0 prevail, the
“sharper” the “contures” of (A,µ) are and the more degligible the rate of vagueness
in its shape is. The interpretation of the fuzzy entropy as a measure of vagueness is
easily cognizible in other axioms, as well.

The mapping H introduced above is called the aggregated fuzzy information of
fuzzy sources.

Theorem 1. If the property (H3) is fulfilled then also (H5) is true.

P r o o f . Let us consider two elementary fuzzy sources (A,µ) and (A,µ′), and let
us suppose that

µ(a) = 1/2 for all a ∈ A,

meanwhile µ′ : A → [0, 1] is a general membership function. Then, µ′(a) ≤ 1/2
implies µ(a) ≥ µ′(a), and µ′(a) ≥ 1/2 implies µ(a) ≤ µ′(a). Hence, the assumptions
of (H3) are fulfilled and H(A,µ) ≥ H(A,µ′). �

Remark 4. If the elementary fuzzy source (A,µ) is independent and such that
µ(a) ∈ {0, 1} for all a ∈ A then also its extension (A∗, µ∗) fulfils µ∗(a) ∈ {0, 1} for
all a ∈ A∗.

Remark 5. Let (A,µ) and (A, ν) be elementary independent fuzzy sources and
(A∗, µ∗), (A∗, ν∗) their extensions fulfilling (1), (2). Then

µ∗(a) ≤ ν∗(a) if ν∗(a) ≤ 1/2,

µ∗(a) ≥ ν∗(a) if ν∗(a) ≥ 1/2.
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6.2. Logarithmic Model

The definitions of aggregated fuzzy information treated in this subsection were al-
ready presented in the literature (namely in [4] and [13]), and they were briefly
recollected in Section 4, formulas (5) and (6). We call them in this paper De Luca–
Termini and Kolesárová–Vivona fuzzy entropies. Both of them are based on the
aggregation of logarithmic fuzzy information measure IL

µ defined by (11). Its gen-
eral properties are described in subsection 5.1. Among others, it is shown there that
IL
µ fulfils (7) and (8), and that it can be extended on the fuzzy source (A∗, µ∗).

The extension of the fuzzy information from the elementary fuzzy source (A,µ) on
(A∗, µ∗) starts at the extension of µ on µ∗ fulfilling (1), (2), as well as the extensions
of Iµ from (A,µ) on (A∗, µ∗) is limited by (9), (10), only. In this subsection, dealing
with specific logarithmic approach to the information measuring, we define µ∗ and
IL
µ in more specialized form. Namely, we put

µ∗(a) = µ(a1) · . . . · µ(an), a = (a1, . . . , an) ∈ A∗. (15)

Remark 6. Obviously, the membership function µ∗ : A∗ → [0, 1] defined by (15)
fulfils conditions (1) and (2).

Remark 7. If the fuzzy information source (A∗, µ∗) with µ∗ is defined by (15),
and if (A,µ) is crisp, i. e. µ : A → {0, 1}, then (A∗, µ∗) is independent.

The approach to the logarithmic processing of information represented by (15)
and by consequent concepts, appears acceptable if we take into account the fact
that the fuzzy entropy model suggested in [4] and, in a more developed form, in [13]
emulates the probabilistic processing of uncertainty and information formulated in
[22] quite consequently (cf. Section 4). Definition (15) respects this close analogy of
the mentioned approaches.

The logarithmic fuzzy information measure IL
µ is defined by (11) and (12), and it

is easy to prove that even if µ∗ is defined by (15), its basic properties (7), (8), (9), (10)
are fulfilled (cf., Lemmas 3, 4, 5).

Remark 8. If (A∗, µ∗) is defined by (15) and IL
µ by (12) then for any a =

(a1, . . . , an) ∈ A∗

IL
µ (a) = IL

µ (a1) + · · ·+ IL
µ (an).

6.2.a DeLuca–Termini Fuzzy Entropy

The model presented in [4] deals with fuzzy entropy (5), where we simplify the
formalism by putting K = 1,

HLT(A,µ) = −
∑

a∈A
µ(a) log2 µ(a) =

∑
a∈A

µ(a) · IL
µ (a),

eventually, with its extension,

HLT(A∗, µ∗) = −
∑

a∈A∗
µ∗(a) · log2 µ∗(a) =

∑
a∈A∗

µ∗(a) · IL
µ (a). (16)
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Lemma 8. Let us denote by Hn
LT(An, µ∗) the entropy over the alphabet An and

relevant uncertainty values of µ∗(a) for a ∈ An. Let β ∈ [0, 1] be such that for all
a ∈ A, µ(a) ≤ β. Finally, let h be the number of symbols in the alphabet A. Then

Hn
LT(An, µ∗) ≤ βn · h · n ·HLT(A,µ).

P r o o f . Due to (15), Remark 7 and (16), denoting a = (a1, . . . , an) for any a ∈ An,

Hn
LT(An, µ∗) =

∑
a∈An

µ∗(a) ·
(
IL
µ (a1) + · · ·+ IL

µ (an)
)

=
∑

a∈An
(µ(a1) · . . . · µ(an)) · IL

µ (a1) + · · ·+
∑

a∈An

(µ(a1) · . . . · µ(an)) · IL
µ (an)

≤
∑

a∈An

(
µ(a1) · βn−1 · IL

µ (a1) + · · ·+ µ(an) βn−1 · IL
µ (an)

)
= βn−1

(∑
a∈A

µ(a) ·HLT(A,µ)
)
· n ≤ βn · n · h ·HLT(A,µ). �

Corollary. If for all a ∈ A, µ(a) = α ∈ [0, 1] then Hn
LT(An, µ∗) ≤ αn · n · h ·

HLT(A,µ).

The properties of the De Luca–Termini fuzzy entropy were investigated in [4].
Nevertheless, let us verify its correspondence with conditions (H1), (H2), (H3), (H4)
and (H5).

Lemma 9. If for any a ∈ A, µ(a) ∈ {0, 1} then HLT(A,µ) and HLT(A∗, µ∗) vanish.

P r o o f . If for any a ∈ A, µ(a) = 0 or µ(a) = 1, then the product µ(a)·log2 µ(a) = 0,
and HLT(A,µ) = 0. Moreover, for any a = (a1, . . . , an) ∈ A∗, either µ∗(a) = 0, if
at least one µ(ai) = 0, i ∈ {1, . . . , n}, or µ∗(a) = 1 if µ(ai) = 1 for all i = 1, . . . , n.
Hence, µ∗(a) · log2 µ∗(a) = 0 for any a ∈ A∗ and HLT(A∗, µ∗) = 0, (see (15)). �

Remark 9. The algebraic structure of (5) and (16) immediately implies that the
value HLT(A∗, µ∗), as well as HLT(A,µ) is invariant regarding permutation of A.

Remark 10. Due to [4], the fuzzy entropy HLT(A,µ) fulfils conditions (H3) and
(H5). The proof of these statements can be used to prove the validity of (H3) and
(H5) for HLT(A∗, µ∗), as well.

Example 1. Let us consider a binary alphabet A = {a, b} and elementary fuzzy
sources (A,µ1), (A,µ2), (A,µ3) such that

µ1(a) = µ1(b) = 1/2, µ2(a) = µ2(b) = 1/4, µ3(a) = µ3(b) = 3/4.

It is easy to compute the logarithmic fuzzy entropies

HLT(A,µ1) = 1, HLT(A,µ2) = 1, HLT(A,µ3)
.= 0, 6226.
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Remark 11. The foregoing example shows that (H4) is not fulfilled for the el-
ementary fuzzy source. As one-element segments of messages are special case of
elements of A∗ and µ∗(a) = µ(a) for any a ∈ A, (H4) is not generally fulfilled for
HLT(A∗, µ∗).

Remark 12. Example 1 illustrates also the fact that condition (H5) if fulfilled as
an implication but not as logical equivalence.

Theorem 2. The De Luca–Termini fuzzy entropy fulfils conditions (H1), (H2), (H3),
(H5) but it does not generally fulfil (H4).

P r o o f . The statement is a summary of the above remarks. �

6.2.b Kolesárová–Vivona Fuzzy Entropy

The fuzzy entropy model suggested in [13] preserves the advantages of the previous
De Luca–Termini aggregated fuzzy information (fuzzy entropy) and overcomes its
discrepancy consisting in the invalidity of (H4).

It is defined by (6), and when putting K = 1 for the simplification of the formal-
ism, we get

HKV(A,µ) =
∑

a∈A
((µ(a) · log2 µ(a)) + (1− µ(a)) · log(1− µ(a))) .

For the extended fuzzy source, we put

HKV(A∗, µ∗) =
∑

a∈A∗

((µ∗(a) · log2 µ∗(a)) + (1− µ∗(a)) · log2(1− µ∗(a))) . (17)

The properties of this type of logarithmic fuzzy entropy are investigated in [13]. In
the context of this paper, we briefly recollect the validity of (H1),. . . ,(H5).

Theorem 3. The Kolesárová–Vivona fuzzy entropies HKV(Aµ) and HKV(A∗, µ∗)
defined by (6) and (17) fulfil all conditions (H1), (H2), (H3), (H4), (H5).

P r o o f . Formulas (6) and (17) imply that

HKV(A,µ) = HLT(A,µ) + HLT(A, 1− µ), (18)
HKV(A∗, µ∗) = HLT(A∗, µ∗) + HLT(A∗, 1− µ∗) (19)

where for any a ∈ A, a ∈ A∗, (1− µ) (a) = 1− µ(a) and

(1− µ∗)(a) = 1− µ∗(a).

The fuzzy entropies HLT referred in (18) and (19) fulfil the statement of Theorem 2.
Hence, (H1), (H2), (H3) are fulfilled obviously. The validity of (H4), which is not
fulfilled for HLT, follows from the symmetry of (17) regarding the positions of µ∗(a)
and 1 − µ∗(a). Finally, (H5) follows from Theorem 2, too as for µ∗(a) = 1/2 also
1− µ∗(a) = 1/2 and HKV(A∗, µ∗) is the sum of two maximal values. �
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6.3. Monotonous Model

Following the heuristic discussion presented in Section 4, we suggest, here, the con-
cept of aggregated fuzzy information measure respecting the methodological prin-
ciples more adequate to the environment of the fuzzy set theory. Namely, we
pay special attention to the application of monotonous, set theoretical operations
like complement, union and intersection, and we accept the presumption that such
monotonous operations do not demand the simplifying properties of logarithms.

We complete the rather general assumptions (1) and (2) putted on the extension
from elementary fuzzy source to (A∗, µ∗) by a more special one, namely we suppose
that (A∗, µ∗) is to be independent. It means

µ∗(a) = min (µ(a1), . . . , µ(an)) for any a = (a1, . . . , an) ∈ A∗. (20)

We use the monotonous fuzzy information IM
µ : A → R defined by (13)

IM
µ (a) = 1− µ(a)

and its extension on (A∗, µ∗)

IM
µ (a) = 1− µ∗(a), for a ∈ A∗. (21)

Remark 13. Using Lemma 7, Remark 4, (21) and (20) it is easy to verify that for
a = (a1, . . . , an) ∈ A∗, b, c ∈ A∗,

IM
µ (a) = max

(
IM
µ (a1), . . . , IM

µ (an)
)
,

IM
µ (a) ∈ [0, 1],

IM
µ (a) = 0 iff µ∗(a) = 1 iff µ(ai) = 1 for all i = 1, 2, . . . , n,

IM
µ (a) = 1 iff µ∗(a) = 0 iff µ(ai) = 0 for at least one i ∈ {1, . . . , n},

If c = (a, b) then IM
µ (c) = max

(
IM
µ (a), IM

µ (b)
)
.

In the rest of this subsection we suggest three definitions of monotonous aggre-
gated information measures and verify their compatibility with the general demands
of (H1),. . . ,(H5).

6.3.a Strictly Monotonous Fuzzy Entropy

If (A,µ) is an elementary fuzzy source and (A∗, µ∗) its extension, and if the above
assumptions on µ∗ and IM

µ are fulfilled, then we define the mapping HSM(A,µ) and
its extension on (A∗, µ∗) by

HSM(A,µ) = 2 ·max (min(µ(a), 1− µ(a)) : a ∈ A) , (22)
HSM(A∗, µ∗) = 2 ·max (min(µ∗(a), 1− µ∗(a)) : a ∈ A∗) , (23)

and call them strictly monotonous fuzzy entropy.
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Remark 14. Equalities (21), (22) and (23) immediately imply that

HSM(A∗, µ∗) = 2 ·max
(
min(IM

µ (a), IM
1−µ(a)) : a ∈ A∗)

where IM
1−µ(a) = 1− IM

µ (a) = µ∗(a).

The validity of the fundamental properties of aggregated fuzzy information mea-
sure HSM is formulated in the following statement.

Theorem 4. The strictly monotonous fuzzy entropy fulfils conditions (H1), (H2),
(H3), (H4) and (H5).

P r o o f . Due to Remark 13 and Remark 14, if µ(a) = 0 then IM
µ (a) = 1 and

IM
1−µ(a) = 0. If µ(a) = 1 then IM

µ (a) = 0. In any case, HSM(A,µ) = 0 and also
HSM(A∗, µ∗) = 0. Hence (H1) is fulfilled. The validity of (H2) follows from the
commutativity of the monotonous operations in (22) and (23).

If the assumptions of (H3) are fulfilled then formula (22) and Remark 14 immedi-
ately imply its validity. The symmetry of (22) and (23), implies (H4) and also (H5)
follows from (23), where the maximal value of HSM(A∗, µ∗) achieved for (A∗, µ∗)
such that µ(a) = 1/2 for any a ∈ A, is equal to 1. �

6.3.b Weakly Monotonous Fuzzy Entropy

The aggregated fuzzy information measure suggested in this part represents cer-
tain compromise between the logarithmic and monotonous approach. Namely, the
monotonous fuzzy information IM

µ is appointed into the basic scheme of the De Luca–
Termini fuzzy entropy. More precisely, if (A,µ) is an elementary fuzzy information
source and (A∗, µ∗) is its extension then the value

HWM(A,µ) =
∑

a∈A
µ(a) · IM

µ (a) =
∑

a∈A
µ(a) · (1− µ(a)) (24)

is called weakly monotonous fuzzy entropy and its extension on (A∗, µ∗) is obviously
defined by

HWM(A∗, µ∗) =
∑

a∈A∗
µ∗(a) · IM

µ (a) =
∑

a∈A∗
µ∗(a) · (1− µ∗(a)). (25)

The adequacy of this aggregated fuzzy information measure to the general scheme
of fuzzy entropy can be formulated as the following statement.

Theorem 5. If HWM(A,µ) and HWM(A∗, µ∗) represent the weakly monotonous
fuzzy entropy then the conditions (H1), (H2), (H3), (H4), (H5) are fulfilled.

P r o o f . If µ∗(a) ∈ {0, 1} then the product µ∗(a) · (1− µ∗(a)) in (25) vanishes. It
is true for all a ∈ A∗ (or all a ∈ A), condition (H1) is fulfilled. (H2) follows from
(25), immediately. The course of the function x(1 − x) for x ∈ [0, 1] immediately
implies (H3), as well as (H4) and (H5). �
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6.3.c Extremaly Monotonous Fuzzy Entropy

The last example of aggregated fuzzy information measure, presented here, deals
with the extreme values of individual information measure IM

µ . In the contrary
to the strongly monotonous fuzzy entropy, this one pays more attention to both
extremes of the information measure. In the more exact formulation, we consider
an elementary fuzzy information source (A,µ) and its extension (A∗, µ∗) and define
the number

HEM(A,µ) = 1−
(
max(IM

µ (a) : a ∈ A)−min(IM
µ (a) : a ∈ A)

)
, (26)

eventually

HEM(A∗, µ∗) = 1−
(
max(IM

µ (a) : a ∈ A∗)−min(IM
µ (a) : a ∈ A∗)

)
, (27)

which we call extremaly monotonous fuzzy entropy. Its conformity with the general
demands on fuzzy entropies formulated in Section 6.1 is analyzed in the following
statements.

Theorem 6. The extremaly monotonous fuzzy entropy HEM(A∗, µ∗) eventually
HEM(A,µ) fulfils the condition (H2), (H4), (H5).

P r o o f . The condition (H2) follows from the commutativity of operations in (27).
If we substitute µ∗(a) by 1 − µ∗(a) then we only replace the max(IM

µ (a) : a ∈
A∗) by 1 − min(IM

µ (a) : a ∈ A∗) and vice versa but the difference in (27) keeps
unchanged. That proves the validity of (H4). Evidently, the membership function
µ(a) = 1/2 minimizes (vanishes) the difference in brackets in (27) and, consequently,
it maximizes the value HEM(A∗, µ∗) = 1. Hence, (H5) is fulfilled. �

Remark 15. The proof of the previous theorem obviously implies that condition
(H5) is fulfilled not only as an implication but also as a logical equivalence. Moreover,
condition µ∗(a) = 1/2 for all a ∈ A∗ is fulfilled if and only if µ(a) = 1/2 for all
a ∈ A.

The remaining two conditions (H1) and (H3) are fulfilled in rather modified,
weakened, form.

Theorem 7. The extremaly monotonous fuzzy entropy HEM(A∗, µ∗) = 0 if there
exists at least one c ∈ A such that µ(c) = 0 and at least one b ∈ A such that
µ(b) = 1.

P r o o f . Under the above assumptions, there exist one-symbol segments b = (b) ∈
A∗, and c = (c) ∈ A∗ such that µ∗(b) = 1, µ∗(c) = 0 and, consequently, the
difference between both extremes is equal to 1. Hence HEM(A∗, µ∗) = 0. �

Regarding (H3), the following weakened form is true.
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Theorem 8. If (A∗, µ∗), (A∗, ν∗) are two fuzzy sources such that

max (µ∗(a) : a ∈ A∗) ≥ max (ν∗(a) : a ∈ A)
min (µ∗(a) : a ∈ A∗) ≤ min (ν∗(a) : a ∈ A)

then
HEM(A∗, µ∗) ≤ HEM(A∗, ν∗).

P r o o f . If we denote by IM
µ and IM

ν the respective monotonous fuzzy informa-
tion measures for particular symbols and segments, then the first of the assumed
inequalities means

max
(
IM
µ (a) : a ∈ A∗) = 1−min (µ∗(a) : a ∈ A∗)

≥ 1−min (ν∗(a) : a ∈ A∗) = max
(
IM
ν (a) : a ∈ A∗) ,

and similarly
min

(
IM
µ (a) : a ∈ A∗) ≤ min

(
IM
ν (a) : a ∈ A∗) .

Hence, due to (27), the desired inequality is true. �

7. CONCLUSIVE REMARKS

The main goal of this paper was to suggest some alternative approaches to the fuzzy
entropy concept, which could be more adequate to the fuzzy set theoretical character
of the vague information produced by the fuzzy information sources.

Three such alternative aggregated measures of uncertainty regarding the entire
information source were suggested. They were compared with former definitions
of similar information measures known in the literature and inspired by the prob-
abilistic pattern presented in [22]. The first simple comparison of the classical and
new concepts of fuzzy entropy (more generally of aggregated information measure)
appears to characterize the suggested fuzzy entropies as adequate to the structure of
fuzzy information and fuzzy knowledge. Moreover, their formal processing by means
of the fuzzy set theoretical tools appears to be easier than in the former logarithmic
model.

The fuzzification of the information theoretical concepts presented here is not
the single possible one. Nevertheless, the methods based on the application of fuzzy
quantities theory (see, e. g., [14, 15, 25]) or its generalizations (e. g., [3,10]), represent
deeper changes of the basic model, and they have to be postponed to further research.
That regards also the application of modern advanced measure theory (see [12]
as the top representative) and its analysis of the difference between additive and
monotonous measures.
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