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MULTICHANNEL DEBLURRING OF DIGITAL IMAGES

Michal Šorel, Filip Šroubek and Jan Flusser

Blur is a common problem that limits the effective resolution of many imaging systems.
In this article, we give a general overview of methods that can be used to reduce the blur.
This includes the classical multi-channel deconvolution problems as well as challenging
extensions to spatially varying blur. The proposed methods are formulated as energy
minimization problems with specific regularization terms on images and blurs. Experiments
on real data illustrate very good and stable performance of the methods.
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1. INTRODUCTION

In this article, we give a general overview of methods that can be used to reduce
image blur, with special emphasis on those developed by the authors. This includes
the classical deconvolution problems as well as challenging extensions to spatially
varying blur. Our treatment of the topic is based on our book chapter [24].

We consider mainly algorithms fusing information from multiple blurred images
to get an image of better quality. We do not treat deblurring methods working with
one image that need stronger prior knowledge and other than MAP approaches.
Nor we consider approaches requiring hardware adjustments such as special shutters
(coded-aperture camera [11]), camera actuators (motion-invariant photography [12])
or sensors (Penrose pixels [5]). We focus on our results [21, 22, 23], described in
Section 3, and other relevant references are commented in more detail inside the
text.

We first introduce a general model of image acquisition needed for the modeling
of image blur. This model is later used for deriving a Bayesian solution of the
deblurring problem. Next, we briefly discuss possible sources of blur. In each case
we also include possible approaches for blur estimation for both space-invariant and
space-variant scenarios.

All the common types of generally spatially varying blur, such as defocus, camera
motion or object motion blur, can be described by a linear operator H acting on an
image u in the form

[Hu] (x, y) =
∫

u(x − s, y − t)h(s, t, x − s, y − t) dsdt , (1)
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where h is a point spread function (PSF) or kernel. We can look at this formula as a
convolution with a PSF that changes with its position in the image. The traditional
convolution is a special case thereof, with the PSF independent of coordinates x
and y. In practice, we work with a discrete representation of images and the same
notation can be used with the following differences. Operator H in (1) corresponds
to a matrix and u to a vector obtained by stacking columns of the image into one
long vector. Each column of H describes the spread of energy for one pixel of the
original image. In the case of the traditional convolution, H is a block-Toeplitz
matrix with Toeplitz blocks and each column of H contains the same kernel shifted
to the appropriate position.

In the space-variant case, each column may contain a different kernel. An obvious
problem of spatially varying blur is that the PSF is now a function of four variables.
Except trivial cases, it is hard to express it by an explicit formula. Even if the
PSF is known, we must solve the problem of efficient representation. If the PSF
changes smoothly without discontinuities, we can store the PSF on a discrete set
of positions and use interpolation to approximate the whole function h. If the
PSF is not known, the local PSF’s must be estimated as in the method described in
Section 3. Another type of representation is necessary if we consider moving objects,
where the blur changes sharply at object boundaries. Then we usually assume that
the blur is approximately space-invariant inside individual objects, and the PSF can
be represented by a set of convolution kernels for each object and a corresponding
set of object contours. Final case occurs when the PSF depends on the depth. If the
relation cannot be expressed by an explicit formula, as in the case of ideal pillbox
function for defocus, we must store a table of PSF’s for every possible depth.

1.1. General model of image degradation

In this section, we show a general model of image acquisition, which comprises
commonly encountered degradations. Depending on the application, some of these
degradations are known and some can be neglected.

The image u is degraded by several external and internal phenomena. The exter-
nal effects are, e. g., atmospheric turbulence and relative camera-scene motion, the
internal effects include out-of-focus blur, diffraction and all kinds of aberrations. As
the light passes through the camera lens, also warping due to lens distortions occurs.
Finally, a camera digital sensor discretizes the image and produces a digitized noisy
image g(x, y). An acquisition model, which embraces all the above radiometric and
geometric deformations, can be written as a composition of operators

g = DLHu + n . (2)

Operator L denotes lens distortions, blurring operator H describes the external
and internal radiometric degradations, D is an operator modeling the camera sensor
and n stands for additive noise. The operator D is a filter originating as a result of
diffraction, shape of light sensitive elements and void spaces between them. We will
assume that the form of D is known. Our goal is to solve an inverse problem, i. e.,
to estimate u from the observation g.
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Many restoration methods assume that the blurring operator H is known, which is
rarely true in practice and it is indispensable to assume at least that H is a traditional
convolution with an unknown PSF. This model holds for some types of blurs (see
e. g.[25]). In our work, we went one step further and allowed spatially varying blur,
which is the most general case that encompasses all the above mentioned radiometric
degradations if occlusion is not considered. On the other hand, without additional
constraints, the space-variant model is too complex. Various scenarios that are
space-variant but still solvable are discussed in Section 3.

If lens parameters are known, one can remove lens distortions L from the ob-
served image g without affecting blurring H, since H precedes L in (2). There is
a considerable amount of literature on estimation of distortion [1, 27]. If the lens
distortion is known or estimated beforehand, we can include L inside the operator
D or it can be consider as a part of the unknown blurring operator H and estimated
during the deconvolution process. In any case, we will not consider L explicitly in
the model (2) from now on.

In many cases, only one input image is not sufficient to get a satisfactory result
and we assume that multiple images of the same scene are available. Having several
input images, we will denote the quantities belonging to the kth image by index k.
To describe this situation, we use the term multichannel or K-channel in the rest
of this text. To be able to describe the common real situation of several images
taken by the same camera from slightly different viewpoints, we need to introduce
an unknown geometric deformation Wk for each image, which gives us

gk = DHkWku + nk , (3)

with D remaining the same in all the images. Deformations Wk can be estimated
by a proper image registration method [29]. To be able to work with these pre-
registered input images, we need to interchange the order of operators Hk and Wk,
which gives

gk = DWkH̃ku + nk = DkH̃ku + nk . (4)

On the right hand side of this formula, we denote the combined operator of Wk and
D as Dk = DWk and assume it is known.

We need to show that the operators Hk and Wk can be really interchanged.
Indeed, if the geometric transform Wk is invertible and we consider the blurring
operator H̃k = W−1

k HkWk, we get WkH̃k = WkW−1
k HkWk = HkWk. Moreover,

if Hk is a standard convolution with a PSF hk and Wk denotes a linear geometric
transform, then by placing Wk in front of Hk, the new blurring operator H̃k remains a
standard convolution but with hk warped according to Wk. If Wk denotes a nonlinear
geometric transform, then after interchanging the order, H̃k becomes a sparse linear
operator that can no longer be described by convolution. It is important to realize
that the blurring operator is unknown and instead of Hk we are estimating H̃k, which
is an equivalent problem as long as the nature of both blurring operators remains
the same. To avoid extra symbols, we keep the symbol Hk instead of more exact H̃k

from now on and we will also denote the full degradation operator as Gk = DkH̃k.
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1.2. Bayesian view of solution

In this paper, we approach the deblurring problem from the Bayesian viewpoint.
Other approaches can be considered as approximations of the Bayesian solution.

If we know the degradation operators Gk, the MAP (maximum a posteriori)
solution under the assumption of Gaussian noise corresponds to the minimum of a
functional

E(u) =
∑

k

1
2σ2

k

‖Gku − gk‖2 + Q(u), (5)

where the first term describes an error of our model and the second term Q(u) is a
so-called regularization term that corresponds to the negative logarithm of the prior
probability of the image u. Noise variance in the kth input image is denoted as σk.

The prior probability is difficult to obtain and it is often approximated by a
statistics of the image gradient distribution. A good approximation of the prior
log-probability for common images is for example total variation regularization [16]

Q(u) = λ

∫
|∇u| , (6)

which corresponds to an exponential decay of gradient magnitude. The total varia-
tion term can be replaced by an arbitrary suitable regularizer (Tikhonov, Mumford-
Shah, etc.) [2, 20].

To minimize functional (5) we can use many existing algorithms, depending on
a particular form of the regularization term. If it is quadratic (such as the classical
Tikhonov regularization), we can use an arbitrary numerical method for solving the
system of linear equations. In the case of total variation, the problem is usually
solved by transforming the problem to a sequence of linear subproblems. In our im-
plementations, we use the half-quadratic iterative approach as described for example
in [22].

The derivative of functional (5) with the total variation regularizer (6) can be
written as

∂E(u)
∂u

=
∑

k

G∗
k(Gku − gk)

σ2
k

− λdiv
(

∇u

|∇u|

)
. (7)

G∗
k = H∗

kD∗
k is an operator adjoint to Gk. The operator adjoint to Hk defined in (1)

can be written as

[H∗u] (x, y) =
∫

u(x − s, y − t)h(−s,−t, x, y) dsdt. (8)

We can imagine this correlation-like operator as putting the PSF to all image posi-
tions and computing dot product. The same relation holds for D∗

k, which corresponds
to the convolution with the original PSF rotated by 180 degrees.

If we know the operators Gk, the solution is in principle known, though the
implementation of the above formulas can be quite complicated. In practice however,
the operators Gk are not known and must be estimated.

Especially in the case of spatially varying blur, it turns out to be indispensable to
have at least two observations of the same scene, which gives us additional informa-
tion that makes the problem more tractable. Moreover, to solve such a complicated
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ill-posed problem, we must exploit the internal structure of the operator, according
to the particular problem we solve. Some parts of the composition of sub-operators
in (2) are known, some can be neglected or removed separately – for example geo-
metrical distortion. All the above cases are elaborated in Section 3.

Without known PSF’s it is in principle impossible to register precisely images
blurred by motion. Consequently, it is important that image restoration does not
necessarily require pixel precision of the registration. The registration error can be
compensated in the algorithm by shifting the corresponding part of the space-variant
PSF. Thus the PSF estimation provides robustness to misalignment. As a side effect,
misalignment due to lens distortion does not harm the algorithm as well.

In general, if each operator Gk = G(θk) depends on a set of parameters θk =
{θ1

k, . . . , θP
k }, we can again solve the problem in the MAP framework and maximize

the joint probability over u and {θk} = {θ1, . . . ,θK}. As the image and degrada-
tion parameters can be usually considered independent, the negative logarithm of
probability gives a similar functional

E(u, {θk}) =
K∑

k=1

1
2σ2

k

‖G(θk)u − gk‖2 + Q(u) + R({θk}) , (9)

where the additional term R({θk}) corresponds to a (negative logarithm of) prior
probability of degradation parameters. The derivative of the error term in (9) with
respect to the ith parameter θi

k of θk, equals

∂E(u, {θk})
∂θi

k

=
1
σ2

k

〈
∂G(θk)

∂θi
k

u, G(θk)u − gk

〉
+

∂R({θk})
∂θi

k

, (10)

where 〈·〉 is the standard inner product in L2. In discrete implementation, ∂G(θk)
∂θi

k

is
a matrix that is multiplied by the vector u before computing the inner product with
the residual error.

Each parameter vector θk can contain registration parameters for images, PSF’s,
depth maps, etc. according to the type of degradation we consider.

Unfortunately in practice, it may be difficult to minimize the functional (9),
especially in the case of spatially varying blur. Details are discussed in [24].

An alternative to MAP approach is to estimate the PSF in advance and then pro-
ceed with (non-blind) restoration by minimization over the possible images u. This
can be regarded as an approximation to MAP. One such approach is demonstrated
in Section 3.2.

We should also note that MAP approach may not give optimal results, especially
if we do not have enough information and the prior probability becomes more im-
portant. This is a typical situation for blind deconvolution of one image. It was
documented (blind deconvolution method [8] and analysis [11]) that in these cases
marginalization approaches can give better results. On the other hand, in the case
of multiple input images, which is discussed in this article, the MAP approach is
usually appropriate.
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2. POINT-SPREAD FUNCTIONS

This section discusses the shape of the PSF for the most frequent types of blur and
indicates the relation of the involved PSF to camera parameters, camera motion and
three-dimensional structure of an observed scene; for details, see [24].

To model defocus, image processing applications widely use a simple model based
on geometrical optics, where the shape of the PSF corresponds to a circular spot,
often called informally pillbox, with a radius inversely proportionally to the distance
from the plane of focus.

In practice, due to lens aberrations and diffraction effects, PSF will be a circular
blob, with brightness falling off gradually rather than sharply. Therefore, most
algorithms use two-dimensional Gaussian function with a limited support instead
of a sharply cut pillbox-like shape. Gaussian shapes are adequate for good quality
lenses or in the proximity of the image center, where the optical aberrations are
usually well corrected. A more precise approach is to consider optical aberrations.
However, an issue arises in this case that aberrations must be described for the
whole range of possible focal lengths, apertures and planes of focus. In practice, it
is also useful to take diffraction effects into account as many cameras are close to
their diffraction limits.

Another important type of blur is the blur caused by camera shake or, in general,
the blur caused by camera motion during exposure. To model this situation, we need
to express the PSF as a function of the camera motion and distance from camera.
In the case of a general camera motion, it can be computed from the formula for
velocity field [9, 22] that gives apparent velocity of the scene for the point (x, y) of
the image at time instant τ as

v(x, y, τ) =
1

d(x, y, τ)

[
−1 0 x
0 −1 y

]
T (τ) +

[
xy −1 − x2 y

1 + y2 −xy −x

]
Ω(τ), (11)

where d(x, y, τ) is the depth corresponding to point (x, y) and Ω(τ) and T (τ) are
three-dimensional vectors of rotational and translational velocities of the camera at
time τ . Both vectors are expressed with respect to the coordinate system originating
in the optical center of the camera with axes parallel to x and y axes of the sensor
and to the optical axis. All the quantities, except Ω(τ), are in focal length units.
The depth d(x, y, τ) is measured along the optical axis. The function d, for a fixed
τ , is called depth map.

The apparent curve [x̄(x, y, τ), ȳ(x, y, τ)] drawn by the given point (x, y) can be
computed by the integration of the velocity field over the time when the shutter
is open. Having the curves for all the points in the image, the two-dimensional
space-variant PSF can be expressed as

h(s, t, x, y) =
∫

δ(s − x̄(x, y, τ), t − ȳ(x, y, τ)) dτ, (12)

where δ is the two-dimensional Dirac delta function.
Analytical form of (12) is usually not used directly, because the analytical forms

of velocity vectors Ω(τ) and T (τ) are not available. Instead, our algorithms [22, 23]
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use a discrete representation extending standard convolution masks (see Section
3.2). The analytical form is in a sense used in the recent single-image deconvolution
paper [26].

In addition, in real algorithms, it is necessary to use certain assumptions on these
vectors, which simplifies the computations. The key assumption we use for the blur
caused by camera shake is that camera translations can be neglected T (τ) = 0, which
means that the velocity field is independent of depth and changes slowly and without
discontinuities. Consequently, the blur can be considered locally constant and can
be locally approximated by convolution. This property can be used to efficiently
estimate the space-variant PSF, as described in Section 3.2.

A more complicated special case it to disallow camera rotation and assume that
the change of depth is negligible with an implication that also the velocity in the
direction of view can be considered zero. It can be easily seen [22] that in this special
case, the PSF can be expressed explicitly using the knowledge of the PSF for one
fixed depth of scene.

In many real scenarios, the observed scene is not static but contains moving ob-
jects. Local movements cause occlusion of the boundary and an additional varying
blur. To include these two phenomena in the acquisition model is complicated as
it requires segmentation based on motion detection. Most restoration methods as-
sume a rigid transform (e. g. homography) as the warping operator W in (4). If the
registration parameters can be calculated, we can spatially align input images. If
local motion occurs, the warping operator must implement a non-global transform,
which is difficult to estimate. In addition, warping by itself cannot cope with occlu-
sion. A reasonable approach is to segment the scene according to results obtained
by local-motion estimation and deal with individual segments separately. Several at-
tempts in this direction were explored in literature recently. Since PSF’s may change
abruptly, it is essential to precisely detect boundaries, where the PSF’s change, and
consider boundary effects. An attempt in this direction was for example proposed in
[3], where level-sets were utilized. Another interesting approach is to identify blurs
and segment the image accordingly by using local image statistics as proposed, e. g.,
in [10].

3. ALGORITHMS

This section describes several types of deblurring algorithms based on the MAP
framework explained in the introduction, with accent on our results [18, 22, 23].

We will progress from simple to more complex scenarios, where we need to es-
timate a higher number of unknown parameters. The simplest case is the space-
invariant blur. An algorithm of this type, originally published in [18], is described
in Section 3.1. If the blur is caused by a complex camera movement, it generally
varies across the image but not randomly. The PSF is constrained by six degrees
of freedom of a rigid body motion. Moreover, if we limit ourselves to only camera
rotation, we not only get along with three degrees of freedom, but we also avoid the
dependence on a depth map. This case in multi-image scenario is treated in Section
3.2, which describes mainly our algorithm [23]. A recent single-image camera shake
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deblurring algorithm can be found in [26]. If the PSF depends on the depth map,
the problem becomes more complicated. Section 3.3 indicates possible solutions for
two such cases: defocus with a known optical system and blur caused by camera
motion. In the latter case, the camera motion must be known or we must be able
to estimate it from the input images [22].

3.1. Space-invariant blind deconvolution

We assume the K-channel acquisition model in (4) with Hk being traditional con-
volution with an unknown PSF hk. The corresponding functional to minimize is
(9) where {θk} = {θ1, . . . ,θK} comprises registration parameters and PSF’s hk. If
the acquired images gk are not ideally registered, operators Dk must compensate
for geometric misalignments. Since we restrict ourselves to the space-invariant case,
admissible geometric transformations are only linear (at most affine) otherwise the
nature of Hk would change from space-invariant to space-variant after registration.
The space-invariant case allows us to construct an intrinsically multichannel regu-
larization term R({θk}), which is a function of hk’s and utilizes relations between all
the input images. An exact derivation is given in [18]. Here, we leave the discussion
by stating that it is of the form

R({hk}) ∝
∑

1≤i,j≤K
i 6=j

‖hi ∗ gj − hj ∗ gi‖2 , (13)

with the asterisk denoting the operation of convolution. This term is positive and
convex and if no noise is present it is equal to zero for any set of kernels {f ∗ hk},
where hk is the true kth PSF and f is an arbitrary function. It means, that R
is zero in the correct solution but there are infinitely many other kernels with the
same property. This drawback can be eliminated by forcing positivity on PSFs and
limiting their maximum allowed size.

One image from the input sequence is selected as a reference image gr (r ∈
1, . . . ,K) and registration is performed with respect to this image. If the camera
position changes slightly between acquisitions, we assume affine model. The algo-
rithm runs in two steps:

1. Initialize parameters {θk}: Estimate affine transformations between the refer-
ence frame gr and each gk for k ∈ 1, . . . ,K. Construct accordingly decimation
operators Dk. Initialize {hk} with delta functions.

2. Minimization of E(u, {θk}) in (9): alternate between minimization with re-
spect to u and with respect to {hk}. Run this step for a predefined number of
iterations or until a convergence criterion is met.

For images blurred by PSF’s larger than about 20 pixels, the convergence of
the minimization slows down and a hierarchical (also called multiscale) approach is
necessary. The input images are first downsampled to several predefined scales . We
start with the coarsest scale (smallest images) and run the deconvolution (Step 2)
on it. The estimated PSF’s correspond to the given scale and their support is thus
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much smaller. Then, we upsample the estimated PSF’s to the next scale and use
them as initial values for the deconvolution on this scale. This procedure repeats
until we reach the scale of the original input images.

Fig. 1. Multichannel blind deconvolution of a scene degraded by

space-invariant blurs: The two photos (1800×1080 pixels) on the top

acquired by a common digital camera are blurred due to camera

shake. The bottom left image shows the estimated sharp image from

the two blurry ones using the blind deconvolution algorithm. The

bottom right image shows the estimated PSF’s (50× 30 pixels). Best

viewed electronically.

Performance of the aforementioned algorithm was tested on common digital cam-
eras. We conducted several experiments with handheld digital cameras shooting
under low light conditions, which produce images blurred by camera shake. We
took two or more images in a row in order to have multiple acquisitions of the
given scene and then we applied the deconvolution algorithm. One such example of
blind deconvolution from two blurred images is given in Figure 1. The input images
(1800 × 1080 pixels) shown in the top row are heavily blurred by camera motion.
The PSF extends over 40 pixels, which is too wide to apply the deconvolution algo-
rithm directly on the input images in their original scale. However, the multiscale
approach provides a stable solution. Notice that the estimated PSF’s (bottom right)
match the shape of the trajectories of several pinheads in the input images (see also
the lower-left close-up in Figure 2). Likewise, the estimated image (bottom left) is
sharp and without any artifacts. Three close-ups of the first input image and the
corresponding parts in the estimated image are illustrated in Figure 2.
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Fig. 2. Close-ups of images in Figure 1: The left column shows three

different details of the first input image and the right column shows

the corresponding sections in the estimated output image. Best

viewed electronically.

3.2. Smoothly changing blur

In many situations, the blur is spatially variant. This section treats the space-variant
restoration in situations where the PSF changes without sharp discontinuities, which
means that the blur can be locally approximated by convolution. A typical case is
the blur caused by camera shake, when the rotational component of camera motion
is usually dominant and consequently, according to (11), the blur does not depend
on the depth map. On the other hand, the PSF can be significantly spatially variant,
especially for short focal length lenses.
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Fig. 3. A night photo (1550× 980 pixels) taken from hand with

shutter speed 2.5s (left). The same photo was taken once more at ISO

1600 with 2 stops under-exposure to achieve a hand-holdable shutter

time 1/30s (middle). The right image shows the result of algorithm

[23] that fuses the information from both. Best viewed

electronically.

In principle, in this case, known blind deconvolution methods such as [17] could
be applied locally and the results could be fused. Unfortunately, it is not easy to put
the patches together without artifacts on the seams, not mentioning time complexity.
An alternative way is to use first the estimated PSF’s to approximate the spatially
varying PSF by interpolation of adjacent kernels and then compute the image of
a better quality by the minimization of the functional (5). The main problem of
these procedures is that they are relatively slow, especially if applied on too many
positions. We investigated the latter idea for the purpose of image stabilization in
[23] using a special setup that simplifies the involved computations and makes them
more stable.

We assume that the user can set the exposure time of the camera, which is an
acceptable assumption as we can always balance noise with motion blur by setting a
suitable shutter speed. In particular, we set the exposure time of one of the images
to be so short, that the image is sharp, of course at the expense of underexposure,
which is equivalent to noise amplification. The whole idea was investigated relatively
recently [13, 19, 28].

On the left side of Figure 3, we can see a night photo of a historical building
taken at ISO 100 with shutter speed 2.5s. The same photo was taken once more
at ISO 1600 with 2 stops under-exposure to achieve a hand-holdable shutter time
1/30s. The algorithm detailed in [23] fuses the information they contain to get one
sharp noiseless picture.
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Fig. 4. If the blur changes gradually, we can estimate convolution

kernels on a grid of positions (9× 9) and approximate the PSF in the

rest of the image by interpolation from four adjacent kernels. The

right side shows two of the computed PSFs from upper-left and

bottom-right corners of the image. The size of the PSFs is 51× 51

elements.

At the input, we have two images g1 and g2, the first one blurred and the second
underexposed and noisy because of the high ISO setting. The model (4) has a simple
form – the operator D is identity for both images and blurring operator H2 is identity
for the noisy image. The geometric deformation is removed in the registration step.

The algorithm works in the following three phases. The first is a rough image
registration. Note that precise registration is not possible for principle reasons be-
cause of ambiguity as discussed in Section 1.2. On the other hand this fact does
not harm the algorithm because the registration error is compensated by the shift of
the corresponding part of the PSF. The second step is the estimation of convolution
kernels on a grid of windows (Figure 4 left) followed by an adjustment at places
where the estimation failed. It means that instead of estimating the whole function
h in (12), we represent it by a set of standard convolution masks. Finally, we get
the sharp and almost noiseless image by minimizing the functional (5). The PSF
described by the operator H for the blurred image is approximated by interpolation
from the kernels estimated in the previous step.

The second step is a critical part of the algorithm. In the example in Figure 3, we
took 9× 9 = 81 square sub-windows, in which we estimated corresponding convolu-
tion kernels. The blur kernel corresponding to each square is calculated as a least
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squares fit between a patch in the noisy image and the corresponding patch in the
blurred image, all this subject to non-negativity constrain. The estimated kernels
are assigned to centers of the windows where they were computed. In the rest of
the image, the PSF is approximated by bilinear interpolation from blur kernels in
the four adjacent sub-windows [14]. Note that such interpolation is not physically
correct and we could get better results by a kind of warping. The time consumption
of the algorithm would nevertheless significantly grow up. The kernel estimation
procedure can naturally fail, either because of a lack of texture or because of pixel
saturation. In [23], we identify such kernels and replace them by the average of the
nearest neighbors. For the identification, we use two simple measures – sum of the
kernel values and kernel entropy.

For minimization of the functional (5), we used a variant of the half-quadratic
iterative approach, solving iteratively a sequence of linear subproblems, as described
for example in [22]. Note that the blurring operator can be speeded up by Fourier
transform computed separately on each square corresponding to the neighborhood
of four adjacent PSF’s [14]. Instead of the half-quadratic approach, we could use
one of faster versions of the iterative shrinkage algorithm, such as [4].

Finally, we should mention that we actually do not solve the problem in the strict
MAP sense but results show that the chosen approach is sufficient. Details of the
algorithm can be found in [23].

3.3. Depth-dependent blur

Certain types of blur, such as defocus and the blur caused by camera motion depend
on the distance from camera (depth). Then, if the scene contains significant depth
variations, the methods requiring PSF without discontinuities are not suitable. Arti-
facts would appear especially at the edges of objects. In this case, it is indispensable
to estimate both the unknown image and depth map. In the MAP framework, it can
be done again by minimization of a functional in the form (9), with the parameter
vector {θk} containing the whole depth map.

First such approach appeared for out-of-focus images in [15] proposing to use
simulated annealing to minimize the corresponding cost functional. This guarantees
global convergence, but in practice, it is prohibitively slow. Later, this approach was
adopted by Favaro et al. [6] who modeled the camera motion blur by a Gaussian
PSF, locally deformed according to the direction and extent of blur. To make the
minimization feasible, they took advantage of special properties of Gaussian PSF’s
as to view the corresponding blur as an anisotropical diffusion. This model can be
appropriate for small blurs corresponding to short locally linear translations. An
extension of [6] proposed in [7] segments moving objects but it keeps the limitations
of the original paper concerning the shape of the PSF.

The main assumption of existing algorithms is that the relation between the
PSF and the depth is known. An exception is our paper [22], where this relation
is estimated for a camera motion constrained to movement in one plane without
rotation.
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4. CONCLUSION

To summarize, the general problem of the restoration of images blurred by spatially
varying blur still has not been fully resolved. In this paper, we went through the
special cases where at least a partial solution is known and explained the basic
principles our published algorithms are based on.

Many open questions and unresolved problems remain. Especially challenging is
the situation when the PSF is not continuous, e. g. the case of several independently
moving objects (motion blur) or if the PSF depends on the depth of scene (defocus,
camera motion).
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