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Abstract. In this paper, we consider a new non-interior continuation method for the solu-
tion of nonlinear complementarity problem with P0-function (P0-NCP). The proposed algo-
rithm is based on a smoothing symmetric perturbed minimum function (SSPM-function),
and one only needs to solve one system of linear equations and to perform only one Armijo-
type line search at each iteration. The method is proved to possess global and local conver-
gence under weaker conditions. Preliminary numerical results indicate that the algorithm
is effective.
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1. Introduction

Throughout this paper, we consider the following nonlinear complementarity prob-

lem with P0 function f (for short, denoted by P0-NCP(f)) which is to find a vector

x ∈ R
n such that

(1) x > 0, f(x) > 0, x⊤f(x) = 0,

where f : R
n → R

n is a continuously differentiable P0-function.

Nonlinear complementarity problems (NCPs) have attracted much attention due

to their wide range of applications in many fields, such as operations research, en-

gineering design, economics equilibrium and so on. We refer the interested readers

*The work was supported by Project of Shandong Province Higher Educational Science
and Technology Program (J10LA51).
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to the survey papers by Pang [12], Ferris and Pang [7], Ferris, Mangasarian, and

Pang [6], Harker and Pang [8], and the references therein. Different methods have

been proposed to treat NCPs. Recently, there has been strong interest in non-

interior continuation methods for NCPs [3], [2], [1], [5], [9], [14], [15]. The idea

of non-interior continuation method is to use a smooth function to reformulate the

problem concerned as a family of parameterized smooth equations and to solve the

smooth equations approximately at each iteration. By reducing the parameter to

zero, it is hoped that a solution of the original problem can be found. However, many

of these algorithms strongly depend on the assumptions of strict complementarity

and uniform nonsingularity [3], [15]. Without uniform nonsingularity assumptions,

Tseng [15] studied the local quadratic convergence of general predictor-corrector-type

path-following methods for monotone NCP via the error bound theory. However, the

algorithms given in [3], [15] usually need to solve two linear systems of equations and

to perform two or three line searches per iteration and depend strongly on strict

complementarity.

Motivated by this direction, in this paper, based on a SSPM-function, we refor-

mulate the P0-NCP(f) as a system of nonlinear equations and propose a non-interior

continuation method for its solution. It is shown that our algorithm has the following

nice properties:

(i) The algorithm is well-defined and a solution of P0-NCP(f) can be obtained from

any accumulation point of the iteration sequence generated by the method.

(ii) It can start from an arbitrary point.

(iii) It need to solve only one system of linear equations and to perform only one

Armijo-type line search at each iteration.

(iv) The boundedness of the level set can be obtained due to the coercivity of the

smoothing function.

(v) The global and superlinear convergence of the algorithm are obtained without

strict complementarity. Moreover, the algorithm has locally quadratic conver-

gence if f ′ is Lipschitz continuous.

The rest of this paper is organized as follows. In the next section, we introduce some

preliminaries to be used in the subsequent sections, and based on the minimum

function, a SSPM-function and its properties are presented. In Section 3, we present

a new non-interior continuation method for solving the P0-NCP(f) and show its

well-definedness. The global convergence and local convergence of the algorithm

are investigated in Section 4. Numerical experiments and conclusions are given in

Section 5 and 6, respectively.

The following notation will be used throughout this paper. All vectors are col-

umn vectors, A⊤ denotes the transpose of a matrix A, Rn denotes the space of
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n-dimensional real column vectors (for n = 1, R ≡ R
1 stands for the set of real

numbers). Symbols Rn
+ and R

n
++ denote the respective nonnegative and positive

orthants of Rn, while R+ and R++ are used for the nonnegative and positive real

numbers, respectively. We define N := {1, 2, . . . , n}. For any vector u ∈ R
n, we

denote by diag{ui : i ∈ N} the diagonal matrix whose ith diagonal element is ui

and vec{ui : i ∈ N} the vector u. The matrix I represents the identity matrix of

suitable dimension. The symbol ‖ · ‖ stands for the 2-norm. For any differentiable

function f : R
n → R

n, f ′(x) denotes the Jacobian of f at x. We denote the solution

set of P0-NCP(f) by Θ := {x ∈ R
n : x > 0, f(x) > 0, x⊤f(x) = 0}. For any

α, β ∈ R++, α = O(β) (respectively, α = o(β)) means α/β is uniformly bounded

(respectively, tends to zero) as β → 0. Rn × R
m is identified with R

n+m. For any

matrix A ∈ R
n×n, A < 0 (A ≻ 0) means A is positive semi-definite (positive definite,

respectively).

2. Preliminaries and a SSPM-function

2.1. Preliminaries

In this subsection, we recall some useful definitions that will be used in the sub-

sequent sections.

Definition 2.1. A matrix P ∈ R
n×n is said to be a P0-matrix if all its principal

minors are nonnegative.

Definition 2.2. A function f : R
n → R

n is said to be a P0-function if for all

x, y ∈ R
n with x 6= y, there exists an index i0 ∈ N such that

xi0 6= yi0, (xi0 − yi0)[fi0(x) − fi0(y)] > 0.

Definition 2.3. Let D be a closed, convex subset of Rn and f : D → R
n a

continuous mapping. If there exists a point u ∈ D such that

lim
‖x‖→+∞

(x − u)⊤f(x)

‖x‖
= ∞, x ∈ D,

then the mapping f is called satisfying the coercivity condition in D.

The following concept of semi-smoothness plays an important role in the design

of higher-order Newton-type methods.

Definition 2.4. Suppose that f : R
n → R

n is locally Lipschitz continuous

around x ∈ R
n. We call f to be semi-smooth at x if f is directionally differen-
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tiable at x and

lim
V ∈∂f(x+th′), h′→h, t→0+

V h′ exists for all h ∈ R
n,

where ∂f(·) denotes the generalized Jacobian as defined in Clarke [4].

The concept of semi-smoothness was originally introduced by Mifflin for func-

tions [10]. Qi and Sun extended the definition of semi-smooth functions to vector-

valued functions [16]. Convex functions, smooth functions, and piecewise linear

functions are examples of semi-smooth functions. A function is semi-smooth at x

if and only if all its component functions are semi-smooth. The composition of

semi-smooth functions is still a semi-smooth function.

2.2. A SSPM-function and its properties

In this subsection, we give a SSPM-function and state its properties.

For any (a, b) ∈ R
2 consider the minimum function

(2) g(a, b) := min{a, b}.

By introducing a parameter µ ∈ R, we perturb symmetrically (2) as

g(µ, a, b) := min{µa + (1 + µ)b, (1 + µ)a + µb}.

By smoothing g(µ, a, b), we obtain the following smoothing function, i.e., SSPM-

function

(3) ϕ(µ, a, b) := (1 + 2µ)(a + b) −
√

(a − b)2 + 4µ2.

The following lemma gives two simple properties of the smoothing function ϕ

defined by (3). Its proof is obvious.

Lemma 2.5. Let (µ, a, b) ∈ R
3 and ϕ(µ, a, b) be defined by (3). Then the following

results hold:

(i) We have

(4) ϕ(0, a, b) = 0 ⇐⇒ a > 0, b > 0, ab = 0.

(ii) ϕ(µ, a, b) is globally Lipschitz continuous for any µ > 0.

(iii) ϕ(µ, a, b) is continuously differentiable at all points in R3 different from (0, c, c)

for arbitrary c ∈ R. In particular, if µ > 0, then ϕ(µ, a, b) is continuously

differentiable at arbitrary (a, b) ∈ R
2.
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From (3), for any µ 6= 0, a straightforward calculation yields

ϕ′
µ(µ, a, b) = 2(a + b) −

4µ
√

(a − b)2 + 4µ2
,(5)

ϕ′
a(µ, a, b) = 1 + 2µ −

a − b
√

(a − b)2 + 4µ2
,(6)

ϕ′
b(µ, a, b) = 1 + 2µ +

a − b
√

(a − b)2 + 4µ2
.(7)

It is not difficult to see that for any µ > 0, ϕ′
µ, ϕ′

a, and ϕ′
b are continuous, and

0 < ϕ′
a < 2(1 + µ), 0 < ϕ′

b < 2(1 + µ).

For any z := (µ, x) ∈ R+ × R
n we denote

(8) G(z) :=

(

eµ − 1

Φ(z)

)

where Φ: R+ × R
n → R

n is defined by

(9) Φ(z) :=











ϕ(µ, x1, f1(x))

ϕ(µ, x2, f2(x))
...

ϕ(µ, xn, fn(x))











.

Obviously, Φ is continuously differentiable at any z = (µ, x) ∈ R++ × R
n.

Define the merit function Ψ: R+ × R
n → R+ by

(10) Ψ(z) := ‖G(z)‖2 = (eµ − 1)2 + ‖Φ(z)‖2.

From (4), we know that the P0-NCP(f) is equivalent to the equation G(z) = 0 in

the sense that their solutions coincide.

Theorem 2.6. Let z := (µ, x) ∈ R+ × R
n and G(z) be defined by (8) and (9).

Then the following results hold.

(i) G(z) is continuously differentiable at any z = (µ, x) ∈ R++ ×R
n with Jacobian

(11) G′(z) =

(

eµ 0

B(z) C(z)

)

,

393



where

B(z) := vec
{

2(xi + fi(x)) −
4µ

√

(xi − fi(x))2 + 4µ2
: i ∈ N

}

,

C(z) := C1(z) + C2(z)f ′(z),

C1(z) := (1 + 2µ)I − diag
{ xi − fi(x)

√

(xi − fi(x))2 + 4µ2
: i ∈ N

}

,

C2(z) := (1 + 2µ)I + diag
{ xi − fi(x)

√

(xi − fi(x))2 + 4µ2
: i ∈ N

}

.

(ii) If f is a P0 function, then G′(z) is nonsingular on R++ × R
n.

P r o o f. (i) Note that Φ(µ, x) is continuously differentiable at any (µ, x) ∈

R++ × R
n. It is not hard to show that G(z) defined by (8) is also continuously

differentiable at any z = (µ, x) ∈ R++ × R
n. For any µ > 0, a direct calculation

from (8) yields (11).

Next, we prove (ii). By (6) and (7), we obtain C1(z) ≻ 0 and C2(z) ≻ 0. In

order to prove that G′(z) is non-singular, we need only to show that the matrix C(z)

is non-singular. In fact, since f is a P0-function, then f ′(x) is a P0-matrix for

all x ∈ R
n by Theorem 2.8 in [11]. Taking into account the fact that C2(z) is a

positive diagonal matrix, by a straightforward calculation we have that all principal

minors of the matrix C2(z)f ′(z) are non-negative. By Definition 2.1, we know that

the matrix C2(z)f ′(z) is a P0-matrix. Hence, by Theorem 3.3 in [2], the matrix

C1(z)+C2(z)f ′(z) is invertible, which implies that the matrix G′(z) is non-singular.

�

3. The algorithm and its well-definedness

We are now in the position to describe our algorithm formally.

A l g o r i t hm 3.1 (A new non-interior continuation method for P0-NCP(f)).

Step 0. Choose constants δ ∈ (0, 1), σ ∈ (0, 1), and an arbitrary initial point

z0 := (µ0, x
0) ∈ R++×R

n. Let η =
√

Ψ(z0)+1 and µ̄ = µ0, z := (µ̄, 0) ∈ R++×R
n.

Choose γ ∈ (0, 1) such that

(12) γµ̄η <
1

2
.

Set k := 0.

Step 1. If Ψ(zk) = 0, then stop. Else, let

(13) βk := β(zk) = eµkγ min{1, Ψ(zk)}.
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Step 2. Compute ∆zk := (∆µk, ∆xk) ∈ R× R
n by

(14) G(zk) + G′(zk)∆zk = βkz.

Step 3. Let νk be the smallest nonnegative integer ν such that

(15) Ψ(zk + δν∆zk) 6 [1 − σ(1 − 2γηµ̄)δν ]Ψ(zk).

Let λk := δνk .

Step 4. Set zk+1 := zk + λk∆zk and k := k + 1. Go to Step 1.

R em a r k 3.2. Notice that the algorithm has to solve only one system of linear

equations and performs only one Armijo-type line search. If Ψ(zk) = 0, then (xk, yk)

is the solution of the P0-NCP(f). So, the stopping criterion in Step 1 is reasonable.

Next, we show the well-definedness of Algorithm 3.1. To this end, we need the

following lemma.

Lemma 3.3 ([9], Lemma 4.2). For any µ > 0,

(16) −µ 6
1 − eµ

eµ
6 −µe−µ.

Define the set

Ω := {z = (µ, x) ∈ R+ × R
n : µ > γ min{1, Ψ(z)}µ̄}.

The following theorem shows that Algorithm 3.1 is well-defined.

Theorem 3.4. Algorithm 3.1 is well-defined and generates an infinite sequence

{zk := (µk, xk)} with µk > 0 and zk ∈ Ω for all k > 0.

P r o o f. If µk > 0, since f is a continuously differentiable P0-function, it follows

from Theorem 2.6 that the matrix G′(zk) is non-singular. Hence, Step 2 is well-

defined at the kth iteration.

For any α ∈ (0, 1], from (14) we have

(17) ∆µk =
1 − eµk

eµk

+
βkµ̄

eµk

.

From Lemma 3.3 and (17), for any α ∈ (0, 1], we have

µk+1 = µk + α∆µk = µk + α
(1 − eµk

eµk

+
βkµ̄

eµk

)

> (1 − α)µk + αγµ̄ min{1, Ψ(zk)} > 0.
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By the Taylor expansion and (17), we have

eµk+α∆µk − 1 = eµk [1 + α∆µk + O(α2)] − 1(18)

= (eµk − 1) + αeµk∆µk + O(α2)

= (1 − α)(eµk − 1) + αβkµ̄ + O(α2).

It follows from β2
k = e2µkγ2(min{1, Ψ(zk)})2 6 e2µkγ2Ψ(zk) that

(19) βk 6 eµkγ
√

Ψ(zk).

From (11) and (13), we obtain

(20) eµk − 1 6

√

Ψ(zk) and eµk 6 η.

Thus, we have

(eµk+α∆µk − 1)2 = (1 − α)2(eµk − 1)2(21)

+ 2α(1 − α)βk(eµk − 1)µ̄ + α2β2
kµ̄2 + O(α2)

6 (1 − 2α)(eµk − 1)2 + 2αγ
√

Ψ(zk)eµk(eµk − 1)µ̄ + O(α2)

6 (1 − α)(eµk − 1)2 + 2αγηΨ(zk)µ̄ + O(α2).

On the other hand, from (14) we find that

Φ(zk) + Φ′(zk)∆zk = 0.

Therefore, we get

‖Φ(zk + α∆zk)‖2 = ‖Φ(zk) + αΦ′(zk)∆zk + o(α)‖2(22)

= ‖(1 − α)Φ(zk) + o(α)‖2

= (1 − α)2‖Φ(zk)‖2 + o(α)

= (1 − 2α)‖Φ(zk)‖2 + o(α).

It follows from (8), (21), and (22) that

Ψ(zk + α∆zk) = (eµk+α∆µk − 1)2 + ‖Φ(zk + α∆zk)‖2

= (eµk+α∆µk − 1)2 + (1 − 2α)‖Φ(zk)‖2 + o(α)

6 (1 − α)(eµk − 1)2 + 2αγηΨ(zk)µ̄ + (1 − α)‖Φ(zk)‖2 + o(α)

6 (1 − α)Ψ(zk) + 2αγηΨ(zk)µ̄ + o(α)

= [1 − (1 − 2γηµ̄)α]Ψ(zk) + o(α).
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Since γηµ̄ < 1/2, there exists a positive constant α ∈ (0, 1] such that α ∈ (0, α], and

Ψ(zk + ∆zk) 6 [1 − σ(1 − 2γηµ̄)α]Ψ(zk). Then the non-negative integer ν is found.

Thus, Step 3 is well-defined. Therefore, Algorithm 3.1 is well-defined and generates

an infinite sequence {zk := (µk, xk)} with µk > 0 for all k > 0.

Next, we prove zk ∈ Ω for all k > 0 by induction on k. Obviously, µ0 >

γ min{1, Ψ(zk)}µ̄. Suppose that zk ∈ Ω, i.e., µk > γ min{1, Ψ(zk)}µ̄. Then it

follows from (15)–(17) that

µk+1 = µk + α∆µk

= µk + α
(1 − eµk

eµk

+
βkµ̄

eµk

)

> µk + α
(

−µk +
γeµk min{1, Ψ(zk)}µ̄

eµk

)

> (1 − α)µk + αγµ̄ min{1, Ψ(zk)}

> (1 − α)γµ̄ min{1, Ψ(zk)} + αγµ̄ min{1, Ψ(zk)}

= γµ̄ min{1, Ψ(zk)} > γµ̄min{1, Ψ(zk+1)}.

�

4. Convergence analysis

In this section, we analyze the global and local convergence properties of Al-

gorithm 3.1. It is shown that any accumulation point of the iteration sequence

{zk := (µk, xk)} is a solution of the system G(z) = 0. If the accumulation point z∗

satisfies a nonsingularity assumption, then the iteration sequence {zk} superlinearly

converges to z∗ without strict complementarity. Moreover, if f ′ is Lipschitz contin-

uous on R
n, then {zk} quadratically converges to z∗.

In order to analyze the global convergence properties of Algorithm 3.1, we need

the following results.

Lemma 4.1. Let Φ(µ, x) be defined by (9). For any µ > 0 and c > 0, define level

set

(23) Lµ(c) := {x ∈ R
n : ‖Φ(µ, x)‖ 6 c}.

Then, for any µ2 > µ1 > 0 and c > 0, the set L(c) =
⋃

µ16µ6µ2

Lµ(c) is bounded.

397



From Lemma 4.1, we know that the set Lµ(c) is bounded for any µ > 0. We can

immediately get the following result.

Lemma 4.2. Suppose that f is a P0-function and µ > 0. Then the function

‖Φ(µ, x)‖2 is coercive, i.e., lim
‖x‖→∞

‖Φ(µ, x)‖2 = ∞.

Lemma 4.3. Let Ψ(·) be defined by (8) and {zk := (µk, xk)} be the iteration

sequence generated by Algorithm 3.1. Then the sequence {Ψ(zk)} is convergent. If

it does not converge to zero, then {zk := (µk, xk)} is bounded.

P r o o f. From Step 3 and Theorem 3.4 we know that {Ψ(zk)} is monotonically

decreasing and {zk} ∈ Ω. So, {Ψ(zk)} is convergent. Then there exists Ψ∗ such that

Ψ(zk) → Ψ∗ as k → ∞. If {Ψ(zk)} does not converge to zero, we have Ψ∗ > 0.

From {zk} ⊂ Ω and µk 6 eµk − 1 6 f(zk) 6 f(z0), we know that {µk} is bounded.

Obviously, there exist µ1, µ2 > 0 such that 0 < µ1 6 µk 6 µ2 for all k > 0. Let

c0 := ‖Ψ(z0)‖ and L(c0) :=
⋃

µ16µk6µ2

Lµk
(c0), where Lµk

(c0) is defined by (23). It is

not difficult to see that xk ∈ L(c0), since xk ∈ Lµk
(c0). It follows from Lemma 4.1

that the set L(c0) is bounded and hence {x
k} is bounded. Therefore, {zk} is bounded.

�

Now we are in the position to give the main results. First, we give the global

convergence.

Theorem 4.4 (Global convergence). Suppose that f is a continuously differen-

tiable P0-function, the sequence {z
k = (µk, xk)} is generated by Algorithm 3.1, and

the solution set Θ is non-empty and bounded. Then {zk} has at least one accumu-

lation point {z∗ = (µ∗, x
∗)} with x∗ ∈ Θ, and any accumulation point of {zk} is a

solution of G(z) = 0.

P r o o f. From Lemma 4.2, the SSPM-function defined by (3), and G(z) de-

fined by (8) we get coerciveness. So, the level set L(c) is bounded and the infinite

sequence {zk} generated by Algorithm 3.1 has at least one accumulation point. With-

out loss of generality, we assume that z∗ = (µ∗, x
∗) is the limit point of the sequence

zk = (µk, xk) as k → ∞. It follows from the continuity of G(·) that ‖G(zk)‖ con-

verges to a non-negative number ‖G(z∗)‖. From the definition of β(·), we obtain

that βk is monotonically decreasing, and converges to β∗ = eµ∗γ min{1, Ψ(z∗)}.

Now, we proveG(z∗) = 0 by contradiction. In fact, ifG(z∗) 6= 0, then ‖G(z∗)‖ > 0.

For µk ∈ Ω, we have 0 < β∗µ0 6 µ∗. By Theorem 2.6, there exists a closed

neighborhood N (z∗) of z such that for any z ∈ N (z∗), we have µ ∈ R++ and

398



G′(z) is invertible. Then, for any z ∈ N (z∗), let ∆z := (∆µ, ∆x) ∈ R × R
n be the

unique solution of the system of equations:

G(z) + G′(z)∆z = β(z)z,

then we can find a positive number α ∈ (0, 1] such that

Ψ(z + α∆z) 6 [1 − σ(1 − 2γηµ̄)α]Ψ(z)

for any α ∈ (0, α] and z ∈ N (z). Therefore, for a nonnegative integer ν such that

δν ∈ (0, α], we have νk 6 ν for all sufficiently large k. Since δνk

> δν , it follows

from (15) that

Ψ(zk+1) 6 [1 − σ(1 − 2γηµ̄)δνk

]Ψ(zk) 6 [1 − σ(1 − 2γηµ̄)δν ]Ψ(zk).

This contradicts the fact that the sequence {Ψ(zk)} converges to Ψ(z∗) = ‖G(z∗)‖2 >

0. The proof is completed. �

To establish the locally Q-quadratic convergence of Algorithm 3.1, we need the

following assumption:

Assumption 4.5. Assume that z∗ satisfies the nonsingularity condition, i.e., all

V ∈ ∂G(z∗) are nonsingular.

Next we give the rate of convergence for Algorithm 3.1.

Theorem 4.6 (Local convergence). Suppose that f is a continuously differentiable

P0-function and z∗ is an accumulation point of the iteration sequence {zk} generated

by Algorithm 3.1. If Assumption 4.5 holds, then

(i) λk ≡ 1 for all zk sufficiently close to z∗.

(ii) The whole sequence {zk} superlinearly converges to z∗, i.e.,

(24) ‖zk+1 − z∗‖ = o(‖zk − z∗‖),

and

(25) µk+1 = o(µk).

Furthermore, if f ′ is Lipschitz continuous on R
n, then

(26) ‖zk+1 − z∗‖ = O(‖zk − z∗‖2),

and

(27) µk+1 = O(µ2
k).
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P r o o f. (i) By Theorems 2.5 and 4.4, G is semi-smooth at z∗. From Theorem 4.4

we see that z∗ is a solution of G(z) = 0. Then, from Proposition 4.1 of [16], for all zk

sufficiently close to z∗,

‖G′(zk)−1‖ = O(1).

Hence, under the assumption that G is semi-smooth at z∗, for zk sufficiently close

to z∗, we have

‖zk + ∆zk − z∗‖ = ‖zk + G′(zk)−1[−G(zk) + βkz] − z∗‖(28)

= O(‖G(zk) − G(z∗) − G′(zk)(zk − z∗)‖ + βk‖µ̄‖)

= o(‖zk − z∗‖) + O(Ψ(zk)).

Then, because G is semi-smooth at z∗, G is locally Lipschitz continuous near z∗ (if

f ′ is Lipschitz continuous on R
n, then G is strongly semi-smooth), for all zk close

to z∗,

(29) Ψ(zk) = ‖G(zk)‖2 = O(‖zk − z∗‖2).

Therefore, from (28) and (29), if G is semi-smooth (strongly semi-smooth, respec-

tively) at z∗, for all zk sufficiently close to z∗,

(30) ‖zk + ∆zk − z∗‖ = o(‖zk − z∗‖) = O(‖zk − z∗‖2).

By following the proof of Theorem 3.1 of [13], for all zk sufficiently close to z∗, we

have

(31) ‖zk − z∗‖ = O(‖G(zk) − G(z∗)‖).

Hence, if G is semi-smooth (strongly semi-smooth, respectively) at z∗, for all zk

sufficiently close to z∗, we have

Ψ(zk + ∆zk) = ‖G(zk + ∆zk)‖2(32)

= O(‖zk + ∆zk − z∗‖2)

= o(‖zk − z∗‖2)

= o(‖G(zk) − G(z∗)‖2)

= o(Ψ(zk)) (= O(Ψ(zk)2)).

Therefore, for all zk sufficiently close to z∗, we have zk+1 = zk + ∆zk, i.e., λk ≡ 1.
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Next, we prove (ii). By (i) and (30), we get (24), and if G is strongly semi-smooth

at z∗, (26) is proved. From the definition of βk and the fact that zk → z∗ as k → ∞,

for all k sufficiently large,

βk = γΨ(zk) = γ‖G(zk)‖2.

Also, because for all k sufficiently large, zk+1 = zk+∆zk, we have for all k sufficiently

large that

µk+1 = µk + ∆µk = βkµ0.

Hence, for all k sufficiently large, µk+1 = γ‖G(zk)‖2µ0, which together with (26),

(29), and (31), gives

lim
k→∞

µk+1
i

µk
i

= lim
k→∞

‖G(zk)‖2

‖G(zk−1)‖2
= lim

k→∞

‖G(zk) − G(z∗)‖2

‖G(zk−1) − G(z∗)‖2
= 0, i ∈ N.

This proves (25). If G is strongly semi-smooth at z∗, then from the above argument

we can easily get (27). �

5. Numerical results

In this section, we present the results of some numerical experiments with Algo-

rithm 3.1. All these experiments were performed on the personal computer with

Intel(R) Pentium(R) 4 CPU 2.00 GHz and 512 MB memory. The operating system

was Windows XP (SP2) and the implementations were done in MATLAB 7.0.1.

n Iter Res CPU time (s)
80 32 1.8775e−21 0.7910

30 2.1075e−16 0.7010
26 9.9435e−22 0.5200
31 2.7201e−19 0.7510

120 38 1.7741e−19 1.7120
32 1.4904e−19 1.5120
30 2.8043e−23 1.1920
31 4.4845e−20 1.2720

160 47 5.5494e−23 3.8350
38 1.2552e−20 2.6640
49 2.2640e−24 3.8550
44 3.3695e−24 3.6550

200 53 9.4888e−23 6.9800
47 2.8573e−21 5.8790
58 3.4899e−23 7.3300
56 1.0675e−23 7.0700

Table 5.1. Numerical results of Algorithm 3.1.
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We tested some NCPs with f(x) = P (x) + Mx + q, where P (x) and Mx + q

are the non-linear and linear parts of f(x), respectively. We consider the problem

P0-NCP(f) and we form the matrix P and the vector q as follows. The matrix

M = A⊤A + B, where A is an n × n matrix whose entries are randomly generated

in the interval (−2, 2) and a skew symmetric matrix B is generated in the same way.

The vector q is generated from a uniform distribution in the interval (−10, 10). The

components of P (x), the non-linear part of f(x), are Pj(x) = pj · arctan(xj), where

pj is a random variable in (0, 2).

The initial point x0 is generated from a uniform distribution in the interval (0, 2)

and µ0 is a random number in (0, 2). Throughout the computational experiments,

the parameters used in the algorithm were σ = 0.6, γ = 0.0005, δ = 0.95. We use

‖Ψ(x)‖2 6 10−10 to be the termination criterion. We choose n = 80, 120, 160, 200

as the dimension of the problem, respectively. The results are listed in Tab. 5.1. Iter

stands for the numbers of iterations. CPU time (s) denotes the CPU time in second

needed for obtaining optimum. Res represents the value of ‖Ψ(xk)‖2 when our stop

rule is satisfied.

The results in Tab. 5.1 show the feasibility and efficiency of our Algorithm 3.1.

We also obtained similar results for other random examples.

6. Conclusions

In this paper, the P0-NCP(f) was discussed in detail by combining the virtues of

the SSPM-function and the non-interior continuation method. The boundedness of

the level sets was obtained under the assumption of the P0 property of f . With-

out strict complementarity, we provided a weaker condition to guarantee the global

convergence and local convergence of the Algorithm. The proposed algorithm does

not have restrictions on its starting point. Compared to many previous works, our

method has stronger convergence properties under milder assumptions. We also re-

port some preliminary computational results. The numerical experiments show that

our algorithm has good convergence properties.
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