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Abstract. Let SE(3) be the Lie group of all Euclidean motions in the Euclidean space E3,
let se(3) be its Lie algebra and se

∗(3) the space dual to se(3). This paper deals with
structures of the subspaces of se∗(3) which are formed by all the forces whose power exerted
on the robot effector is zero.
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1. Introduction

We will confine ourselves to the 3-parametric serial robot-manipulators (shortly

“robots”) with parallel axes of their revolute joints, i.e. robot-manipulators of the

spherical rank 1, see for example [1]. We use the mathematical description of robots

by the exponential map exp: se(3) → SE(3) of the Lie algebra se(3) into its Lie

group SE(3) of all Euclidean motions in the Euclidean space E3, see [4]. We prefer

the notions “twist” for the elements of se(3) and “wrench” or “force” for the elements

of the space se∗(3) dual to se(3). Following Selig [5], we say that a force F ∈ se∗(3)

exerts on a twist Y ∈ se(3) the power F (Y ), where F (Y ) is the value of F at Y .

Every robot determines at instant t a subspace An(t) ⊂ se(3), see the relation (1).

Our main purpose is to give the geometrical description of the subspaces of such

forces F ∈ se∗(3) (called “neutral forces of robot”), for which F (An(t)) = 0.

The structure of this paper is as follows. The first two chapters are devoted to

recalling basic notions and properties of twists and wrenches. In the third chapter the

wrenches neutral to a robot-manipulator and their characterizations are introduced.

In the fourth chapter we describe the structure of the spaces of R-neutral wrenches at
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the instant t in the case of 3-parametric robot-manipulators of the spherical rank 1.

First of all we concentrate on the structures of the lines of these wrenches.

2. Basic notions of twists

We will recall some known notions and propositions from robotics.

The significant instrument for solutions of kinematic and dynamic problems in

robotics is the Lie group SE(3) of Euclidean transformations in the Euclidean

space E3 and its Lie algebra se(3). The coordinate system in E3 determines the

isomorphism of the group SE(3) and the group of matrices H =

(

A p̄⊤

0 1

)

, where

A = (aij), i, j = 1, 2, 3, is an orthogonal matrix, det A = 1 and p̄⊤ is the transposed

positional vector p̄ = (p1, p2, p3) of the point P into which the coordinate system

origin O is moved by the Euclidean transformation. In homogeneous coordinates

this transformation is expressed by the relation









x′

1

x′
2

x′

3

1









=

(

A p̄⊤

0 1

)









x1

x2

x3

1









,

where AA⊤ = E, detA = 1, A⊤ denotes the transposed matrix of the matrix A and

E is the unit matrix. Let H(t) be a curve in SE(3). Then H(0) =

(

E 0̄T

0 1

)

is the

unit matrix and Ḣ(0) =

(

Ȧ(0) ˙̄p⊤(0)

0 0

)

∈ se(3). Since ȦA⊤ + AȦ⊤ = 0 we have

Ȧ+Ȧ⊤ = 0 for t = 0 and therefore Ȧ(0) is a skew-symmetric matrix. We can identify

this matrix Ȧ =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 with the vector ω = (ω1, ω2, ω3). Denoting

˙̄p(0) = b̄, the Lie algebra se(3) can be identified with the vector space of vector cou-

ples (ω, b̄)⊤ in which the Lie bracket is defined by the formula [(ω1, b̄1)
⊤, (ω2, b̄2)

⊤] =

((ω1 × ω2)
⊤, (ω1 × b̄2 − ω2 × b̄1)

⊤), where the sign “×” stands for the cross product

of vectors in E3. The elements of the Lie algebra se(3) can be called the operators

of the velocity. By the robotic literature we use the notion “twist”, see Fig. 1. The

twist (ω, b̄)⊤ is rotational if ω 6= 0̄ and b̄ ·ω = 0, where the sign “·” denotes the scalar

product of vectors in E3. The twist is helical if ω 6= 0̄ ∧ b̄ · ω 6= 0, and the twist is

translational if ω = 0̄.

A line of a twist (ω, b̄)⊤, ω 6= 0̄, is the line with the direction vector ω, which is

incident with the point C, OC = (ω × b̄)/ω2. Conversely, the line p incident with C

with the directional vector v determines the rotational twist (v, OC×v), which some
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Figure 1. A twist (taken from [1]).

authors call the Plücker coordinates of the line p. Every twist (ω, b̄)⊤, the line of

which is p, is of the form (tv, tOC × v + kv), t, k ∈ R.

There is an exponential map exp: g → G between the Lie algebra g and its

group G which is a local diffeomorphism. In case of the group SE(3) and its Lie

algebra se(3) we use its matrix form exp Ḣ = E + 1
2!Ḣ

2 + 1
3!Ḣ

3 + . . .. We obtain: If

X = (ω, b̄)⊤ is rotational, then exp tX is a rotational motion around the line of the

twist X with the angular velocity ω. If X is helical, then exp tX is a helical motion

around its line with the angular velocity ω and with the translation velocity hω,

where h = (b̄ · ω)/ω2. If X = (0̄, b̄)⊤ is translational, then exp tX is a translation

motion with the velocity b̄. For these motions b̄ is the instantaneous velocity of the

origin O of the coordinate system.

link 1
link 2

link 3—effectorbase

joint 1

joint 2

joint 3

o1

o2

o3

S0

S3

Figure 2. 3-parametric robot-manipulator (taken from [1]).

An n-parametric robot-manipulator is a sequence of n joints and links, see

Fig. 2. Each joint has an axis and makes a rotational, or helical, or trans-

lational motion of the next link possible. This link is ended with the other

joint. Each axis of the joint determines the twist of this joint Xi = (ωi, b̄i)
⊤,

i = 1, . . . , n, such that expui(t)Xi is a Euclidean motion which is made poss-

ible by this joint. The link which starts from the last joint is an effector. The
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point L0 of the effector by an action of the robot performs the motion determined

by the equation L(t) = exp u1(t)X1 exp u2(t)X2 . . . expun(t)XnL0. Therefore, we

can theoretically identify the robot with the map R : U → SE(3), U ⊂ Rn,

(u1, u2, . . . , un) 7→ expu1X1 . . . expunXn, where U is an open neighborhood of

admissible parameters. A control curve u(t) = (u1(t), u2(t), . . . , un(t)) ⊂ U

determines the curve γ(t) = R(u(t)) = expu1(t)X1 expu2(t)X2 . . . exp un(t)Xn

in SE(3). Its tangential vector γ̇(t) is transferred to Y (t) = γ̇(t)γ−1(t) ∈ se(3)

by the right translation of the element γ−1(t). It is easy to see that γ̇(t) =
n
∑

i=1

exp u1(t)X1 . . . u̇i(t)Xi exp ui(t)Xi . . . exp un(t)Xn. Then

(1) Y (t) = u̇1(t)Y1(t) + u̇2(t)Y2(t) + . . . + u̇n(t)Yn(t), Yi = Hi−1XiH
−1
i−1,

where Hi−1 = exp u1(t)X1 . . . exp ui−1(t)Xi−1. The tangential vectors u̇(t0), which

we can call the vectors of joint velocities of all the curves u(t) incident with the

same point u0 = u(t0) at the instant t0, generate the vector space Rn(u0). Denote

An(t0) = span(Y1(t0), Y2(t0), . . . Yn(t0)). The relation (1) determines the Jacobian

map J of the robot-manipulator J : Rn(u0) 7→ se(3), J(u̇1(t0), . . . , u̇n(t0)) = Y (t0).

Evidently J(Rn(u0)) = An(t0).

2.1. Kl-orthogonal twists. The Klein form Kl is the bilinear form defined

on se(3) by formula Kl((ω1, b̄1)
⊤, (ω2, b̄2)

⊤) = ω1 · b̄2 + ω2 · b̄1. Two twists X1, X2

are called Kl-orthogonal if Kl(X1, X2) = 0. This easily implies

Proposition 2.1. A translational twist X1 is Kl-orthogonal to a nontranslational

twist X2 iff its direction is orthogonal to the axis of the twist X2.

The following property is well known (see for example [2]).

Proposition 2.2. Two rotational twists are Kl-orthogonal iff their axes are com-

planar.

Definition 2.1. Denote by AKl
n ⊂ se(3) the subspace which is Kl-orthogonal

toAn, i.e. A
Kl
n = {X ∈ se(3), Kl(X, Y ) = 0 ∀Y ∈ An}. The subspaceA

Kl
n ∩An = Kn

is said to be the Klein subspace of the robot.

According to Proposition 2.1, the translational twist X is an element of Kn iff its

direction is orthogonal to the line of each twist which is not translational from An.
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3. Wrenches. External forces. Canonical isomorphism

3.1. Wrenches. Let se∗(3) denote the dual space to the vector space se(3),

i.e. se∗(3) is the space of linear forms (linear maps) α : se(3) → R on se(3). Each

vector couple α = (m, f) determines the linear form on se(3) by the formula: if

X = (ω, b̄)⊤ ∈ se(3) then α(X) = (m, f)(ω, b̄)⊤ = m · ω + f · b̄. Seeing that

dim se∗(3) = dim se(3) = 6 and the vector space of vector couples is 6-dimensional,

each element from se∗(3) can be identified with a vector couple. Elements of se∗(3)

are called wrenches (or general forces).

We can interpret α(X) = m · ω + f · b̄ (the internal product) as the power of the

wrench α applied on the twist X .

3.2. Forces and torques. The line of the wrench (m, f) with the direction

vector f is the line incident with the point C, OC = (f ×m)/f2. The wrench (m, f)

is called a pure force if m ·f = 0, f 6= 0̄ or a pure torque if f = 0̄ or a general wrench

(a general force) if f 6= 0̄, m · f 6= 0. Each line p with a direction vector f incident

with the point C determines the pure force (OC × f, f) and each wrench with the

line p has the form (c1OC × f + c2f, c1f), c1, c2 ∈ R, i.e. it is a sum of a pure force

and a pure torque. In the case of a torque (m, 0̄) the vector m will be called the

moment of (m, 0̄) and in the case of a pure force F = (OC ×f, f), OC ×f is referred

to as the moment of F at O.

3.3. Canonical isomorphism. With the Klein bilinear form the canonical iso-

morphism iKl : se(3) → se∗(3), iKl(X) = αX ≡ Kl(X, ◦), i.e. αX(Y ) = Kl(X, Y ) is

connected. From the above it follows that if X = (ω, b̄)⊤ then iKl(X) = αX = (b̄, ω)

and then the map iKl is determined by the block matrix

(

0 E

E 0

)

, iKl

(

ω

b̄

)

=
(

0 E

E 0

) (

ω

b̄

)

=

(

b̄

ω

)

≈ (b̄, ω).

4. External forces which do not act on a robot

Let R be an n-parametric robot. The subspace An(t) ⊂ se(3) at the instant t is

the space of velocity operators of the robot at the time instant t.

Definition 4.1. We say that a wrench α does not act on R at the instant t or

shortly that α is R-neutral if α(Y ) = 0 for each twist Y ∈ An(t).

The space of all the R-neutral wrenches at the instant t is denoted by Ωt. The

dual map to Jacobian map J is the map J∗ : se∗(3) 7→ R
∗

n(u0) defined by the formula

(2) J∗(α) = ε, ε(u̇(t0)) = α(J(u̇(t0))).
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Proposition 4.1. A wrench α is R-neutral iff α ∈ KerJ∗. Therefore, Ωt =

KerJ∗.

P r o o f. According to Definition 4.1, a wrench α is R-neutral iff α|An(t0) = 0.

If α|An(t0) = 0 then J∗(α)(u̇(t0)) = α(J(u̇(t0))) = 0, because J(u̇(t0)) ∈ An(t0).

Therefore, α ∈ KerJ∗. Conversely, if α ∈ KerJ∗ then J∗(α) = ε = 0 and conse-

quently, it results from the relation (2): If X ∈ An(t) then X = J(u̇(t0)). Hence,

α(X) = ε(u̇(t0)) = 0. �

Proposition 4.2. A wrench α is R-neutral iff α ∈ iKl(AKl
n ), and then Ωt =

iKl(AKl
n ).

P r o o f. Since Kl is a symmetric regular bilinear form, iKl is an isomorphism. If

X ∈ AKl
n , i.e. Kl(X, Y ) = 0 for all Y ∈ An(t0) then iKl(X)(Y ) = Kl(X, Y ) = 0 and

then αX = iKl(X) ∈ Ωt0 . Conversely, if α ∈ Ωt then 0 = α(Y ) = Kl((iKl)−1(α), Y )

for all Y ∈ An(t0). Therefore, (i
Kl)−1(α) ∈ AKl

n . �

In the next part we will deal with the 3-parametric robots. We will describe what

properties wrenches which do not act on the robot have.

5. Neutral wrenches of 3-parametric robots of the spherical rank 1

We will consider only robots with prismatic and revolute joints. The revolute

(prismatic) joint of the robot will be designated by the capital letter R(T). Conse-

quently, for example a symbol RTR denotes the 3-parametric robot whose first joint

is revolute, the second is prismatic and the third is a revolute one. There is a base

Yi = (ωi, b̄i)
⊤, i = 1, 2, 3, in A3 in each regular position of the robot. We will deal

only with regular positions when dimA3 = 3. According to Definition 2.1, the twist

Y = (ω, b̄)⊤ = t1Y1 + t2Y2 + t3Y3 ∈ A3, t1, t2, t3 ∈ R, is the Klein twist iff

(3) Kl(Y, Yi) = t1Kl(Y1, Yi) + t2Kl(Y2, Yi) + t3Kl(Y3, Yi) = 0, i = 1, 2, 3.

We will describe the set of neutral wrenches for individual types of the robots.

5.1. TTT—the robots without revolute joints. Now Yi = (0̄, b̄i)
⊤ and

Kl(Yi, Yj) = 0, i, j = 1, 2, 3. Relation (3) results in K3 = A3 = AKl
3

∼= R3. According

to Proposition 4.2, we obtain
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Proposition 5.1. A wrench α is TTT-neutral iff it is a torque.

5.2. RTT, TRT, TTR—the robots R(1,2) with one revolute joint. We can

distinguish several situations that can occur in these robots. We will analyze them

on a cases-by-case basis.

R em a r k. The core of our considerations are neutral wrenches of robots. We

study mainly their geometric properties such as mutual positions of wrench axes and

their positions with respect to joint axes. These properties are independent of the

choice of a coordinate system. We use the coordinate system S whose origin O lies

on the axis of the revolute joint in the centre of the joint construction. Under this

condition we have the following base: Y1 = (ω1, 0̄)⊤, Y2 = (0̄, b̄2)
⊤, Y3 = (0̄, b̄3)

⊤

in A3.

Let τ = span(b̄2, b̄3) denote the space of all translation directions. Now

Kl(Y1, Y1) = 0, Kl(Y1, Y2) = ω1 · b̄2, Kl(Y1, Y3) = ω1 · b̄3, Kl(Yi, Yj) = 0

for i, j = 2, 3. There are two cases:

Case a) ω1 · b̄2 = 0 = ω1 · b̄3, i.e. the axis of the revolute joint is orthogonal to

the space τ in each position R(u1(t), u2(t), u3(t)). The explored robot is planar (the

points of the effector do planar motions) and we denote it by the symbolR(1,2)p. From

the relation (3) we have K3 = A3 = AKl
3 . Therefore, according to Proposition 4.2

and Subsection 3.3 it follows that Ω = span((0̄, f = ω1), (m2 = b̄2, 0̄), (m3 = b̄3, 0̄)).

Each wrench α ∈ Ω is of the form α = (t2b̄2 + t3b̄3, t1ω1) and therefore, α is either a

torque (t1 = 0), whose moment is orthogonal to the axis of the revolute joint, or the

pure force (t1 6= 0) whose line is parallel to the axis of the revolute joint.

Proposition 5.2. In the case of the 3-parametric robot R(1,2)p whose axis of

the revolute joint is orthogonal to the axes of the prismatic joints, the wrench α is

R-neutral iff it is either a torque whose moment is orthogonal to the revolute joint

axis or a pure force whose line is parallel to the axis of the revolute joint.

P r o o f. From the above mentioned consideration it follows that if the wrench α

is neutral on the planar 3-parametric robot then it has the property described in

Proposition 5.2. Conversely, if α is the torque whose moment is orthogonal to the axis

of the revolute joint then it is of the form α = (t2b̄2 + t3b̄3, 0̄) and then α ∈ Ω. If α is

the pure force, whose line p is parallel to the axis of the revolute joint then according

to Subsection 3.2 it is of the form t1(OC × ω1, ω1) = α, where C is the foot of the

perpendicular to the line p from origin of the coordinate system, i.e. OC = c2b̄2+c3b̄3,

where c2, c3 ∈ R. Then OC × ω1 = c2b̄2 × ω1 + c3b̄3 × ω1 = k2b̄2 + k3b̄3. Therefore,

α = (t2b̄2 + t3b̄3, t1ω1) and then α ∈ Ω. �
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Corollary 5.1. The wrench whose line is parallel to the axis of the revolute joint

but which is not a pure force is not neutral on the planar 3-parametric robot.

Now we turn to the second case.

Case b) The axis of the revolute joint is not orthogonal to the subspace τ =

span(b̄2, b̄3). Then ω1 · b̄2 6= 0 or ω1 · b̄3 6= 0. Now the system (3) has the form

t2(ω1 · b̄2) + t3(ω1 · b̄3) = 0, t1(ω1 · b̄2) = 0, t1(ω1 · b̄3) = 0 and it has the solution

t1 = 0, t2 = k(ω1 · b̄3), t3 = −k(ω1 · b̄2), k ∈ R. Therefore, the Klein subspace is

(4) K3 = span(0̄, (ω1 · b̄3)b̄2 − (ω1 · b̄2)b̄3).

The wrench F = (m, f) is R(1,2)-neutral at the position R(u1(t), u2(t), u3(t)) iff

F (Yi) = 0, i = 1, 2, 3, i.e. iff ω1 · m = 0, b̄2 · f = 0, b̄3 · f = 0. Therefore, in the

space Ω ⊂ se∗(3) of R-neutral wrenches we have the base F1 = (0̄, f1 = b̄2 × b̄3),

F2 = (m2, 0̄), F3 = (m3, 0̄), where span(m2, m3) is the subspace orthogonal to ω1,

and then m2, m3 can be chosen so that ω1 = m2 × m3.

The pure force F1 = t(0̄, f1), t ∈ R, which is R(1,2)-neutral is called the base force.

Its line crosses the centre O of the revolute joint and is orthogonal to span(b̄2, b̄3). As

according to Proposition 4.2, Ω = iKl(AKl
3 ), and therefore {(f1, 0̄), (0̄, m2), (0̄, m3)}

is a base β in the space AKl
3 . Since the Klein twist is Kl-orthogonal to the elements

of the base β, by the procedure by which we deduced the relation (4), we get

(5) K3 = span(0̄, (f1 · m3)m2 − (f1 · m2)m3) ≡ span(0̄, mk).

The direction mk = (f1 · m3)m2 − (f1 · m2)m3 is called the Klein direction. We see

that mk · f1 = 0̄. The torque iKl(Yk) = (mk, 0̄) = Fk is called the Klein torque of

the the robot R(1,2). A wrench is R(1,2)-neutral iff it is of the form

(6) F = (t2m2 + t3m3, t1f1), t1, t2, t3 ∈ R.

Let us denote τ ′ :≡ span(m2, m3). Then a wrench (m, f1) is R(1,2)-neutral iffm ∈ τ ′.

Evidently f1 ∈ τ ′ iff f1 · ω1 = 0, i.e. iff ω1 ∈ τ .

Now let us characterize the individual types of the R(1,2)-neutral wrenches.

Case b 1) The following propositions result directly from the relation (6).

Proposition 5.3. A torque is R(1,2)-neutral iff its moment is orthogonal to the

axis of the revolute joint. Generally, the wrench W is R(1,2)-neutral if it is the sum

of the base force F and the R(1,2)-neutral torque.

Case b 2) The case of pure forces. Let ζ be the plane incident with the point O

and orthogonal to f1. Let λ be a plane incident with the axis of the revolute joint

and orthogonal to span(b̄2, b̄3), i.e. parallel to f1. Evidently, the Klein direction mk

is its normal vector. Let us denote s = λ ∩ ζ.
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Proposition 5.4. If F is an R(1,2)-neutral pure force, then its line is orthogonal

to τ and lies in the plane λ. Conversely, if the robot R(1,2) has the property ω1 /∈ τ

(ω1 ∈ τ) and a line p lies in the plane λ and is orthogonal to τ , then only pure forces

(all forces) whose line is the line p are R(1,2)-neutral.

P r o o f. According to Subsection 3.2 from the relation (6) it follows that a

neutral wrench is a pure force (t1 6= 0) iff t2(m2 · f1) + t3(m3 · f1) = 0, i.e. iff it is

of the form F = (tmk, t1f1), where mk is the Klein direction. The line p of such a

wrench is parallel to f1 and is incident with the foot C of the perpendicular from O

to p:

OC = −
t1t

f2
1

mk × f1 = −
t1t

f2
1

mk × (b̄2 × b̄3)(7)

= −
t1t

f2
1

[(mk · b̄3)b̄2 − (mk · b̄2)b̄3] = kb̄C , k ∈ R,

where b̄C = (mk · b̄3)b̄2 − (mk · b̄2)b̄3. Obviously b̄C ·mk = 0, b̄C · f1 = 0. Therefore,

b̄C is a direction vector of the line s = λ ∩ ζ. Therefore, the point C lies on s and

then the line p lies in λ. From the relation (7) it follows that each point of the

line s is the foot C of the perpendicular from O to the line of an R(1,2)-neutral pure

force. Conversely, let a line p lie in the plane λ and let it be orthogonal to τ . Let

C be the foot of the perpendicular from O to p. Evidently, C ∈ s and therefore,

there is such k that OC = kb̄C . All wrenches with the line p are of the form

W = (OC × t1f1 + t2f1, t1f1). The relation (7) yields OC × f1 = −f1 × (kb̄C) =

−kf1 × (mk × (b̄2 × b̄3)) = −kf2
1mk and then W = (−kt1f

2
1 mk + t2f1, t1f1). As

−kt1f
2
1mk ∈ τ ′, we have −kt1f

2
1 mk + t2f1 ∈ τ ′ iff either t2 = 0 when f1 /∈ τ ′, or

f1 ∈ τ ′, i.e. ω1 ∈ τ . In the former caseW is a pure force, in the latter everyW ∈ Ωt.

The proof is complete. �

R em a r k. The case f1 · ω1 = 0, i.e. ω1 ∈ τ = span(b̄2, b̄3) will be dealt with in

detail in Proposition 5.6.

Case b 3)We will investigate when a general wrenchWg = (m, f), f 6= 0̄,m·f 6= 0

is R(1,2)-neutral. We will describe the set of all foots C of the perpendiculars from

the origin O to the lines of neutral wrenches Wg. By the relation (6), Wg has the

vectors of the form m = t2m2 + t3m3, f = t1f1, t1 6= 0 and therefore, according to

Subsection 3.2,

(8) OC =
f × m

f2
=

t1f1 × (t2m2 + t3m3)

t21f
2
1

=
1

t1f2
1

(t2f1 × m2 + t3f1 × m3).

There are two cases:
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Case b 3.1) f1 × m2, f1 × m3 are linearly independent. This case occurs iff

f1 ∈ span(m2, m3), i.e. iff ω1 ∈ span(b̄2, b̄3), because f1 is orthogonal to span(b̄2, b̄3)

and the vector ω1 is orthogonal to span(m2, m3). Now OC = kv, v = f1 × m2 and

v · f1 = 0, v · m2 = 0, v · m3 = 0. As also ω1 · f1 = 0, ω1 · m2 = 0, ω1 · m3 = 0,

therefore the vectors v, ω1 are linearly independent. Hence, the set of points C is

identified with the axis o of the revolute joint and thus o = s = λ ∩ ζ. The lines of

wrenches Wg are lying in λ. Denote the robot with the property ω1 ∈ span(b̄2, b̄3)

by the symbol R(1,2)κ
. We get

Proposition 5.5. A general wrenchWg is R(1,2)κ
-neutral iff its line is orthogonal

to span(b̄2, b̄3) and lies in λ.

P r o o f. In the text above Proposition 5.5 it is shown that ifWg is R(1,2)κ
-neutral

then its line lies in the plane λ. We will show that each wrench with the line p is

R(1,2)κ
-neutral. The line p crosses the axis of the revolute joint at the point C which

is the foot of the perpendicular from O to p. Therefore, OC = kω1. Each wrench W

which has the line p is of the form (t1OC×f1 + t2f1, t1f1) = (t1ω1×f1 + t2f1, t1f1).

But t2f1 ∈ span(m2, m3) and ω1 × f1 ∈ span(m2, m3) because ω1 ·m2 = 0 = ω1 ·m3

and f1 ∈ span(m2, m3). Consequently, Wg ∈ Ω. The proof is completed. �

Corollary 5.2 (of Propositions 5.4, 5.5). The wrench W which is not a torque is

R(1,2)κ
-neutral iff its line is orthogonal to span(b̄2, b̄3) and lies in the plane λ. Let us

recall that in this case the lines of the neutral wrenches cross the axis of the revolute

joint orthogonally (because ω1 ∈ span(b̄2, b̄3) = τ).

Case b 3.2) Let f1 ×m2, f1 ×m3 be linearly independent, i.e. ω1 /∈ span(b̄2, b̄3).

Then OC = k1f1×m2+k2f1×m3 and then the foots C of the perpendiculars from O

to the axes of the wrenches Wg which are R(1,2)-neutral fill the whole plane π. For

each line p which is perpendicular to span(b̄2, b̄3) there are R(1,2)-neutral wrenches

whose lines are identical with p. If the line p lies in the plane λ then just pure forces

with the line p are neutral. If the line p does not lie in the plane λ then wrenchesWg

which are R(1,2-neutral cannot be pure forces. We will try to characterize them.

Let the line p be orthogonal to span(b̄2, b̄3) and let it cross π at the point C,

which is the foot of the perpendicular from O to p. Then F = (OC × f1, f1) is the

pure force which has the line p. This is R(1,2)-neutral iff C ∈ λ ∩ π. Each wrench

which has the line p is of the form W = (tOC × f1 + hf1, tf1), t, h ∈ R. This is

R(1,2)-neutral iff tOC × f1 + kf1 ∈ span(m2, m3), i.e. iff (tOC × f1 + hf1) · ω1 = 0,

i.e. h(f1 · ω1) = t(f1 × OC) · ω1, i.e. h = t((f 1 × OC) · ω1)/f1 · ω1. We have proved
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Proposition 5.6. Let the robot R(1,2) have the rotational axis neither parallel

to the subspace span(b̄2, b̄3) nor orthogonal to this space. Let W be a wrench which

is neither a torque nor a pure force. Then W is R(1,2)-neutral just when it is the

sum of a pure force F whose line is not incident with the plane λ and is orthogonal

to τ = span(b̄2, b̄3), and of such a torque whose moment m is orthogonal to τ that

the sum of the moment of the force F at the centre O of the revolute joint and the

moment of the torque is orthogonal to the axis of the revolute joint.

5.3. 3-parametric robots R(2,1)r whose axes of two revolute joints are

parallel. According to the remark in Subsection 5.2, the joints in R(2,1)r determine

the twists Y1 = (ω1, 0̄)
⊤, Y2 = (ω1, b̄2)

⊤, ω1 · b̄2 = 0, Y3 = (0̄, b̄3)
⊤ which generate

the base in A3. Let us denote by ξ the plane determined by the parallel axes o1,

o2 of the revolute joints. The twist Y1 is determined by the revolute joint whose

centre is chosen as the origin O of the coordinate system. Now b̄2 is the velocity of

the point O (and hence of all points of the rotational axis o1) of the rotation around

the axis o2 of the second revolute joint. Therefore, b̄2 is the normal vector of the

plane ξ. We put B2 = Y2 − Y1 = (0̄, b̄2)
⊤. In A3 we have the base Y1, B2, Y3 which

is the same as in the case of robots R(1,2). Consequently, the structure of the set Ω

of the R(2,1)r-neutral wrenches is the same as in the case of robots R(1,2). Now the

subspace τ = span(b̄2, b̄3) is orthogonal to the plane ξ. Hence, b̄2× b̄3 = f1 is parallel

to ξ and therefore ξ = λ. Therefore, for the Klein direction we have b̄k = mk = b̄2.

Propositions 5.2, 5.3, 5.4, 5.5, 5.6 which describe the properties of wrenches from

the set Ω are valid also for the set Ω of the robot R(2,1)r if instead of symbols R(1,2),

R(1,2)p, R(1,2)κ we use the corresponding symbols R(2,1), R(2,1)r, R(2,1)κ.

5.4. 3-parametric robots R(3,0)r of the spherical rank 1 with three rev-

olute joints. All three axes of the revolute joints are parallel. The twists deter-

mined by the joints have the coordinates Y1 = (ω, 0̄)⊤, Y2 = (ω, b̄2)
⊤, ω · b̄2 = 0,

Y3 = (ω, b̄3)
⊤, ω · b̄3 = 0. Let o1, o2, o3 be the axes of these twists. They are parallel

and the origin O of the coordinate system lies on o1 in the centre of the joint which

has the axis o1. Let us denote the plane determined by the parallel lines o1, o2 as ξ1.

And let us denote the plane determined by the parallel lines o1, o3 as ξ2. Since b̄2 or

b̄3 is the velocity of the point O of the rotation around the axis o1 or o2, therefore b̄2

or b̄3 is orthogonal to ξ1 or ξ2, respectively. Let us denote B2 :≡ Y2 − Y1 = (0̄, b̄2)
⊤,

B3 :≡ Y3 − Y1 = (0̄, b̄3)
⊤. We assume that ξ1 6= ξ2. Then Y1, B2, B3 generate a

base in A3. Now the subspace τ = span(b̄2, b̄3) is orthogonal to ω1 = ω and then the

structure of the space Ω of the R(3,0)r-neutral wrenches is the same as in the case of

the robot R(1,2)p, i.e. Proposition 5.2 is valid if instead of the symbol R(1,2) we use

R(3,0)r.
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