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On Boman’s theorem on partial regularity of mappings

Tejinder S. Neelon

Abstract. Let Λ ⊂ Rn × Rm and k be a positive integer. Let f : Rn → Rm be

a locally bounded map such that for each (ξ, η) ∈ Λ, the derivatives D
j
ξ
f(x) :=

dj

dtj f(x + tξ)
∣∣∣
t=0

, j = 1, 2, . . . k, exist and are continuous. In order to conclude

that any such map f is necessarily of class Ck it is necessary and sufficient
that Λ be not contained in the zero-set of a nonzero homogenous polynomial
Φ(ξ, η) which is linear in η = (η1, η2, . . . , ηm) and homogeneous of degree k in
ξ = (ξ1, ξ2, . . . , ξn).

This generalizes a result of J. Boman for the case k = 1. The statement and
the proof of a theorem of Boman for the case k = ∞ is also extended to include
the Carleman classes C{Mk} and the Beurling classes C(Mk) (Boman J., Partial

regularity of mappings between Euclidean spaces, Acta Math. 119 (1967), 1–25).
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Classification: 26B12, 26B35

A continuous function f : Rn → R that is differentiable when restricted to
arbitrary differentiable curves is not necessarily differentiable as a function of
several variables (see [12]). Indeed, there are discontinuous functions f : Rn → R

whose restrictions to arbitrary analytic arcs are analytic [2]. But a C∞ function
f : Rn → R whose restriction to every line segment is real analytic is necessarily
real analytic ([13]). In [8], [9], [10] and [11] this result was extended by considering
restrictions to algebraic curves and surfaces of functions belonging to more general
classes of infinitely differentiable functions. It is also well known that a function
f : Rn → R that is infinitely differentiable in each variable separately may be no
better than measurable ([7]). In [4], the obverse problem is considered; for vector
valued functions hypothesis is made on the source as well as the target space. In
this note, Theorem 4 of [4] is generalized to Ck, k ≥ 1, the class of functions that
have continuous derivatives up to order k.

Let f : Rn → Rm be a locally bounded map. For (ξ, η) ∈ Rn × Rm, set

Dξ 〈f, η〉 (x) :=
d

dt
〈f(x + tξ), η〉

∣∣∣∣
t=0

in the sense of distributions,

where 〈·, ·〉 denotes the inner product on Rm. By the Leibniz Integral rule, we
have

d

dt

∫
〈f(x + tξ), η〉 dx =

∫
d

dt
〈f(x + tξ), η〉 dx.
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Let k, 1 ≤ k < ∞, be fixed. For ξ ∈ Rn, denote by Ck
ξ (Rn) the space

of all continuous functions f : Rn → R such that the derivatives Dj
ξf(x) :=

dj

dtj f(x + tξ)
∣∣
t=0

, j = 1, 2, . . . k, exist and are continuous. Similarly, C∞
ξ (Rn) :=⋂∞

k=0 Ck
ξ (Rn).

We are interested in finding the necessary and sufficient conditions on a subset
Λ ⊂ Rn × Rm to have the following property:

if f : Rn → Rm is locally bounded

such that 〈f, η〉 ∈ Ck
ξ (Rn) , ∀ (ξ, η) ∈ Λ, then f ∈ Ck (Rn) .

The case k = 1 and k = ∞ was dealt in [4].
Let Zn

+ denote all n-tuples of nonnegative integers. For α = (α1, α2, . . . , αn) ∈
Zn

+, set |α| = α1 + α2 + · · · + αn. The set Zn
+ of multi-indices is assumed to be

ordered lexicographically i.e. for α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Zn
+,

define α ≺ β if there is i, 1 ≤ i ≤ n, such that α1 = β1, α2 = β2, . . . , αi−1 =
βi−1, αi < βi.

Let kn =
(
k+n−1

k

)
denote the number of monomials of degree k in n variables.

Then for any ϕ ∈ C∞
c (Rn), we have

∫
Dξ 〈f, η〉 (x)ϕ(x) dx =

d

dt

∫
〈f(x + tξ), η〉ϕ(x) dx

∣∣∣∣
t=0

=
d

dt

〈∫
f(x)ϕ(x − tξ) dx, η

〉∣∣∣∣
t=0

=

〈∫
f(x)

d

dt
ϕ(x − tξ) dx, η

〉∣∣∣∣
t=0

= −
∑

i

ξi

〈∫
f(x)∂iϕ(x − tξ) dx, η

〉∣∣∣∣
t=0

=
∑

i,j

ξiηj

∫
∂ifj(x)ϕ(x) dx.

By iteration, we obtain the formula for higher-order distributional derivatives:

(1) Dp
ξ 〈f, η〉 (x) =

∑

|α|=p

m∑

j=1

ξαηj∂
αfj(x).

Let

Bk :=



Φ(ξ, η) =

m∑

j=1

∑

|α|=k

ϕαjξ
αηj : ϕαj ∈ R, α ∈ Zn

+, j ∈ Z+



 .

For any function Φ(ξ, η), set ‖Φ‖ := max‖ξ‖≤1,‖η‖≤1 |Φ(ξ, η)|. For a subset
K ⊂⊂ Λ, (⊂⊂ denotes the compact inclusion) put ‖Φ‖K := max(ξ,η)∈K |Φ(ξ, η)|.

Theorem 1. Let Λ ⊂ Rn × Rm be a subset and k be a positive integer. The

following conditions are equivalent:

(i) Λ is not contained in an algebraic hypersurface defined by an element of

Bk i.e.

Φ ∈ Bk, Φ|Λ ≡ 0 ⇒ Φ ≡ 0;
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(ii) there exists a set consisting of m · kn points

(ξ∗, η∗) =
{(

ξ(p), η(p)
)
∈ Λ, p = 1, 2, . . . , mkn

}
such that det∆ (ξ∗, η∗) 6= 0,

where

∆(ξ∗, η∗) :=
[(

ξ(p)
)α

η
(p)
j

]
|α|=k,1≤j≤m,1≤p≤mkn

;

(iii) if f : Rn → Rm is locally bounded and 〈f, η〉 ∈ Ck
ξ (Rn), ∀ (ξ, η) ∈ Λ, then

f ∈ Ck(Rn, Rm).

If any one of the above equivalent conditions is satisfied, then there exists a

constant B depending only on Λ such that the following inequality holds for all

locally bounded maps f : Rn → Rm:

(2) max
1≤j≤m

max
|α|=k

|∂αfj(x)| ≤ B · sup
(ξ,η)∈Λ

∣∣Dk
ξ 〈f, η〉 (x)

∣∣ , ∀x ∈ Rn.

Proof: We will prove (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii). Suppose det∆(ξ∗, η∗) = 0 for every set of mkn elements (ξ∗, η∗) =
{(ξ(p), η(p))}1≤p≤mkn

in Λ. Fix one such set (ξ∗, η∗) so that the rank l :=

rank∆(ξ∗, η∗) is positive. Let ∆(l) denote some l × l submatrix of ∆(ξ∗, η∗)
such that the minor det∆(l) is nonzero. Let ∆(l+1) be a (l+1)× (l+1) submatrix
of ∆(ξ∗, η∗) that contains ∆(l) as a submatrix. Replace the point (ξ(p0), η(p0)) in
∆(l+1) which does not appear in ∆(l) by variables (ξ, η) ∈ Rn×Rm. By expanding
∆(l+1) along the row where the replacement took place we obtain an element

Φ(ξ, η) =
∑

α,j

ϕαjξ
αηj ,

of Bk which is nonzero since one of its coefficients coincides with det∆(l) up to
a sign.

Since ∆(ξ∗, η∗) has rank l, we find that Φ(ξ, η) = 0 for all (ξ, η) ∈ (ξ∗, η∗). If

Φ(ξ, η) = 0 for all (ξ, η) ∈ Λ, we are done. Otherwise, choose a point (ξ̃, η̃) ∈

Λ r (ξ∗, η∗) with Φ(ξ̃, η̃) 6= 0.

Let (ξ̃∗, η̃∗) be the set which is obtained from (ξ∗, η∗) by replacing the point

(ξ(p0), η(p0)) by (ξ̃, η̃). Then, the rank∆(ξ̃∗, η̃∗) ≥ l + 1. By repeating above
procedure, we find a sequence of subsets (ξ∗, η∗)(i) ⊂ Λ, i = 1, 2, 3, . . . , each with
mkn elements such that the rank∆(ξ∗, η∗)(j) is a strictly increasing sequence of
nonnegative integers. After finitely many steps we obtain a nonzero element of
Bk which vanishes on the entire Λ.
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(ii)⇒(iii). Let (ξ∗, η∗) = {(ξ(p), η(p)) ∈ Λ}1≤p≤mkn
be a set of points such that

det∆(ξ∗, η∗) 6= 0. By applying Cramer’s rule to (1), we get

∂αfj(x) =

mkn∑

p=1

det ∆
(p)
αj

det ∆
Dk

ξ(p)

〈
f, η(p)

〉
(x) in the distributional sense,

where ∆
(p)
αj denotes the cofactor obtained by deleting the (α, j)-th row and the

p-th column. Since Dk
ξ 〈f, η〉 ∈ C0 for all (ξ, η) ∈ Λ, we have

∂αfj(x) =

mkn∑

p=1

det∆
(p)
αj

det ∆
Dk

ξ(p)

〈
f, η(p)

〉
(x) ∈ C0.

Furthermore, there exists a constant B = B(k, f, Λ) such that

|∂αfj(x)| ≤

mkn∑

p=1

∣∣∣∣∣
det∆

(p)
αj

det∆

∣∣∣∣∣
∣∣∣Dk

ξ(p)

〈
f, η(p)

〉
(x)

∣∣∣ ≤ B · sup
(ξ,η)∈Λ

∣∣Dk
ξ 〈f, η〉 (x)

∣∣ ,

for all α with |α| = k, and all j = 1, 2, . . . , m.

(iii)⇒(i). Suppose (i) does not hold. Let Φ ∈ Bk be such that Φ
∣∣
Λ

≡ 0.

We can write Φ(ξ, η) = 〈ϕ·(ξ), η〉, where ϕ·(ξ) := (ϕ1(ξ), ϕ2(ξ), . . . , ϕm(ξ)) and
ϕj(ξ) =

∑
|α|=k ϕαjξ

α, j = 1, 2, . . . , m, homogeneous polynomials of degree k.

Define the map

f(x) :=

{
(ln |ln |x||)ϕ·(x) if x 6= 0,

0 if x = 0.

Clearly f /∈ Ck and f is C∞ in {x ∈ Rn : 0 < |x| < 1}. We will prove that
Dk

ξ 〈f(x), η〉 exists at x = 0, for all (ξ, η) ∈ Λ. It is easy to see that here are
constants Cα such that

|∂α ln |ln |x||| ≤
Cα

|x||α| |ln |x||
, ∀α, |α| ≥ 1.

Since the ϕj(x)’s are homogeneous polynomials of degree k, when the Leibniz’s
formula is applied to the products (ln | ln |x||)ϕj(x), it is clear that all terms in
Dp

ξ 〈f(x), η〉, 1 ≤ p ≤ k, except possibly

(3) (ln |ln |x||)
〈
Dk

ξ ϕ·(x), η
〉

tend to 0 as x → 0. We only need to prove that the function in (3) also tends to
0 as x → 0. By expanding (x1 + tξ1)

α1(x2 + tξ2)
α2 . . . (xn + tξn)αn binomially, we

can write

ϕ·(x + tξ) := ϕ·(x) + P (x, ξ, t) + ϕ·(ξ)t
k.
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But since (ξ, η) ∈ Λ,

〈
Dk

ξ ϕ·(x), η
〉

= k! 〈ϕ·(ξ), η〉 = 0.

It follows that |Dp
ξ 〈f(0), η〉| = 0 for p ≤ k. Thus, f ∈ Ck

ξ for all (ξ, η) ∈ Λ, but

f /∈ Ck. �

Remark 1 (cf. [6]). Suppose (i) is satisfied for all k ≥ 0. It would be of interest
to know whether there exists a constant ρ = ρ(Λ), depending only on some
appropriate notion of capacity of Λ, so that (2) is satisfied with B = (ρ(Λ))−k for
all f and all k.

Remark 2. Suppose Λ satisfies (i) or (ii). The proof of Theorem 1 shows that
if f is continuous and Dk

ξ 〈f, η〉 = 0, ∀ (ξ, η) ∈ Λ, then f is a polynomial. The
assumption of continuity of f is not necessary but our proof is valid only if f is
continuous (see [4]).

Remark 3. If Λ satisfies (i), then Λ contains at least mkn elements. Furthermore,
if (i) holds for k then (i) also holds for all j ≤ k. Suppose there exists Φ ∈ Bj , j < k

such that Φ
∣∣
Λ

≡ 0 but Φ 6≡ 0. Then, ξk−j
1 Φ ∈ Bk, ξk−j

1 Φ
∣∣
Λ

≡ 0 but this is
a contradiction.

Let {Mk}
∞
k=0, be a sequence of nonnegative numbers. For h > 0 and K ⊂⊂ Rn

define the seminorm on C∞(Rn),

ph,K(f) = sup
α∈Zn

+

sup
x∈K

|∂αf(x)|

h|α|M|α|

.

The spaces

C {Mk} = {f ∈ C∞(Rn) : ∀K ⊂⊂ Rn, ∃h > 0, s.t. ph,K(f) < ∞}

and

C (Mk) = {f ∈ C∞(Rn) : ph,K(f) < ∞, ∀K ⊂⊂ Rn, ∀h > 0}

are called the Carleman and Beurling classes, respectively. The classes C{(k!)ν},
ν > 1, known as Gevrey classes, are especially important in partial differential
equations and harmonic analysis. The class C{k!} is precisely the class of real
analytic functions.

We assume that

M0 = 1 and Mk ≥ k!, ∀ k;(4)

M
1/k
k is strictly increasing;(5)
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(6) ∃C > 0 such that Mk+1 ≤ CkMk, ∀ k.

These conditions insure that the classes C{Mk} and C(Mk) are nontrivial and
are closed under product and differentiation of functions. For more properties of
these spaces, see [5], [11] and references therein.

It is well known that f ∈ C∞(Rn) if and only if supξ∈Rn |ξ|j |χ̂f(ξ)| < ∞, ∀χ ∈
C∞

c (Rn), j ≥ 1. A similar characterization is also available for C{Mk} (see [5]) a
routine modification of which yields an analogous characterization of C(Mk).

Let r > 0. Choose a sequence of cut-off functions χ(j) ∈ C∞
c , j = 1, 2, . . . , such

that χ(j)(x) = 1 if |x − x0| < r, χ(j)(x) = 0 if |x − x0| > 3r and

∣∣∂αχ(j)(x)
∣∣ ≤ (C1j)

|α|
, ∀ j, ∀ |α| ≤ j, ∀x,

where the constant C1 is independent of j.
Then f ∈ C{Mk} (resp. C(Mk)) in a neighborhood of x0 ∈ Rn if and only if

there exists a constant ~ > 0 (resp. for every ~ > 0) such that

sup
ξ∈Rn

sup
j≥1

~−jM−1
j |ξ|j |f̂χ(j)(ξ)| < ∞.

Call a subset Λ ⊂ Rn × Rm a determining set for bilinear forms of rank 1 if
there is no nonzero bilinear form ϕ(ξ, η), ξ ∈ Rn, η ∈ Rm of rank 1 such that
ϕ(ξ, η) = 0 for all (ξ, η) ∈ Λ.

Clearly Λ is a determining set for bilinear forms of rank 1 if and only if

〈u, ξ〉 〈v, η〉 = 0, ∀ (ξ, η) ∈ Λ ⇒ |u||v| = 0

(here 〈u, ξ〉 and 〈v, η〉 are dot products on Rn and Rm, respectively), or equiva-
lently,

⋂

(ξ,η)∈Λ

{(u, v) ∈ Rn × Rm : 〈u, ξ〉〈v, η〉 = 0} = (Rn × 0) ∪ (0 × Rm).

Since R[u, v] is a Noetherian ring, Λ contains a finite subset Λ′ such that the sets
{〈u, ξ〉〈v, η〉 : (ξ, η) ∈ Λ} and {〈u, ξ〉〈v, η〉 : (ξ, η) ∈ Λ′} generate the same ideal in
R[u, v] and thus define the same varieties:

⋂

(ξ,η)∈Λ

{(u, v) ∈ Rn × Rm : 〈u, ξ〉〈v, η〉 = 0}

=
⋂

(ξ,η)∈Λ′

{(u, v) ∈ Rn × Rm : 〈u, ξ〉〈v, η〉 = 0}.

Thus, any determining set for bilinear forms of rank 1 contains a finite determining
set for bilinear forms of rank 1.
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Let C{Mk}(ξ) (resp. C(Mk)(ξ)) denote the set of all f ∈ C∞
ξ (Rn) such that

for every subset K ⊂⊂ Rn, supj,x∈K |Dj
ξf(x)|~−jM−1

j < ∞, ∀ j, for some ~ > 0

(resp. for every ~ > 0).

Theorem 2. Let {Mk}
∞
k=0 be a sequence of nonnegative numbers satisfying the

conditions (4), (5) and (6). The following statements are equivalent:

(i) Λ is a determining set for bilinear forms of rank 1;

(ii) for any locally bounded map f : Rn → Rm,

〈η, f〉 ∈ C {Mk} (ξ) , ∀ (η, ξ) ∈ Λ ⇒ f ∈ C {Mk} ;

(iii) for any locally bounded map f : Rn → Rm,

〈η, f〉 ∈ C (Mk) (ξ) , ∀ (η, ξ) ∈ Λ ⇒ f ∈ C (Mk) ;

(iv) for any locally bounded map f : Rn → Rm,

〈η, f〉 ∈ C∞ (ξ) , ∀ (η, ξ) ∈ Λ ⇒ f ∈ C∞.

Proof: (cf. Theorem 4 in [4]) Assume (i) holds. By the remark above, by re-
placing Λ by a subset, if necessary, we may assume Λ is finite. Suppose for every
(η, ξ) ∈ Λ, 〈η, f〉 ∈ C{Mk}(ξ) (resp. 〈η, f〉 ∈ C(Mk)(ξ)). Now for a suitable
function f ,

〈ξ, z〉〈̂η, f〉(z) = 〈ξ, z〉
〈
η, f̂(z)

〉
=

〈
η, i

∫ [
〈ξ, ∂x〉 e−i〈x,z〉

]
f(x) dx

〉

=

〈
η,−i

∫
e−i〈x,z〉 〈ξ, ∂xf〉 (x)dx

〉
=

〈
η,−i

∫
e−i〈x,z〉Dξf(x) dx

〉
.

Let g(j) := fχ(j) ∈ C{Mk} near a fixed point x0. Assume, without loss of
generality, x0 = 0. By assumption, for all (ξ, η) ∈ Λ there exist constants C = Cξη

and ~ = ~ξη > 0 (resp. for all (ξ, η) ∈ Λ and for all ~ > 0 there exists a constant
C = Cξη,~) such that

∣∣∣ ̂〈
η, g(j)

〉
(ζ)

∣∣∣ |〈ξ, ζ〉|j =
∣∣〈η, ĝ(j)(ζ)

〉∣∣ |〈ξ, ζ〉|j ≤ C~jMj ,

∀ (ξ, η) ∈ Λ, ζ ∈ Rn, j ∈ Z+.

The function

(7) Rn × Rm ∋ (u, v) →
∑

(ξ,η)∈Λ

|〈η, v〉| |〈ξ, u〉|
l
,

is homogeneous of degree 1 in v, of homogeneous degree l in u. Since none of
the terms |〈η, v||〈ξ, u〉| can vanish on all of Λ, the function in (7) has a positive
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minimum on the compact set {(u, v) : |u| = 1, |v| = 1}. Thus, there is an ε > 0
such that ∑

(ξ,η)∈Λ

|〈η, v〉| |〈ξ, u〉|
l
≥ ε|v||u|l,

(see [Lemma 1][4]). Applying this to u = ζ, v = ĝ(j)(ζ), we get

∣∣ĝ(j)(ζ)
∣∣ |ζ|l ≤ ε−1

∑

(ξ,η)∈Λ

∣∣〈η, ĝ(j)(ζ)
〉∣∣ |〈ξ, ζ〉|l ≤ C~jMj,

where ~ = max(ξ,η)∈Λ ~ξη (resp. for all ~ > 0) and C = ε−1
∑

(ξ,η)∈Λ Cξη. Thus

(ii) and (iii) hold. By setting ~ = 1 and Mj = 1, ∀ j, in the above argument, it is
clear that (iii) holds as well.

Conversely if Λ is not a determinant set for bilinear forms of rank 1, there exist
u 6= 0 and v 6= 0 such that

〈u, ξ〉 〈v, η〉 = 0, ∀ (ξ, η) ∈ Λ.

Let h : R → R be an arbitrary continuous function. Let f : Rn → Rm be defined
as f(z) = h(〈u, z〉) · v. Then

(
d

dt
〈η, f(z + tξ)〉

)∣∣∣∣
t=0

= 〈η, v〉 〈u, ξ〉h′ (〈u, z + tξ〉)|t=0 ≡ 0.

Thus 〈η, f〉 ∈ C(Mk)(ξ) ⊂ C{Mk}(ξ) ⊂ C∞(ξ), ∀ (ξ, η) ∈ Λ but f need not be
even differentiable. �
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