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A note on coclones of topological spaces

Artur Barkhudaryan

Abstract. The clone of a topological space is known to have a strictly more ex-
pressive first-order language than that of the monoid of continuous self-maps.
The current paper studies coclones of topological spaces (i.e. clones in the cate-
gory dual to that of topological spaces and continuous maps) and proves that, in
contrast to clones, the first-order properties of coclones cannot express anything
more than those of the monoid, except for the case of discrete and indiscrete
spaces.

Keywords: clone, coclone, monoid of continuous self-maps, clone theory, monoid
theory

Classification: 54H15, 08A68

1. Introduction

The monoid Mon(X) of a topological space X is the set of all continuous maps
from X to X , together with the composition operator. This algebraic structure
has been extensively studied and is known to reflect many of the topological
properties of the underlying space. For some quite large classes of spaces —
e.g. the class of completely regular T1 spaces which contain an arc, this monoid
completely describes the topology of the space; see [9].

In his monograph [11], W. Taylor introduced a multi-sorted extension of the
monoid of continuous self-maps, namely, the clone of a topological space. More
specifically, Taylor studied those properties of spaces which can be described by a
formula in the first order language of the theory of clones. Since then, a number
of publications have been devoted to this topic; see [1] for a survey of these.

Let ω denote the set of all finite ordinals.
Generally, in a category K with finite products, the clone of an objectX ∈ objK

is the ω-sorted algebra (in the sense of [2])

Clo(X) = 〈Cn;Sn
m;πn

i 〉m,n∈ω,i<n

with

Cn = K(Xn, X) n ∈ ω,

Sn
m : Cn × (Cm)n → Cm m,n ∈ ω,

πn
i ∈ Cn i < n ∈ ω,
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where πn
i is the i-th projection of Xn onto X and Sn

m composes a morphism
f ∈ K(Xn, X) with the diagonal product of an n-tuple g0, . . . , gn−1 ∈ K(Xm, X)
to obtain

Sn
m(f ; g0, . . . , gn−1) = f ◦ (g0 △ · · · △ gn−1) ∈ K(Xm, X).

The k-segment Clok(X) is the reduction of Clo(X) to the first k sorts:

Clok(X) = 〈Cn;Sn
m;πn

i 〉m,n<k,i<n.

The term clone was apparently coined by P. Hall in [4]. The above definition
of a clone of an object is tightly related to F.W. Lawvere’s algebraic theories (see
[7], [8]).

By the clone of a topological space X we mean its clone in the category of all
topological spaces and continuous maps. Clearly, the clone of a topological space
extends the monoid of continuous maps in the sense that its 1-st sort 〈C1;S

1
1 ;π1

0〉
is exactly Mon(X). Thus, every topological property of the space which can be
described by an algebraic or first-order property of the monoid of continuous maps
can also be described by a corresponding property of the clone. The opposite is
not true: there are topological properties which can be described by a first order
property of the clone and yet which cannot be described by properties of the
monoid. The following, much stronger result was proved by Sichler and Trnková
in [10]:

Theorem. For any triple 2 ≤ n1 ≤ n2 ≤ n3 of finite ordinals there exist metriz-

able topological spaces X and Y on the same carrier set such that

• Clon(X) and Clon(Y ) coincide if and only if n ≤ n1;

• Clon(X) is isomorphic to Clon(Y ) if and only if n ≤ n2;

• Clon(X) is elementarily equivalent to Clon(Y ) if and only if n ≤ n3.

It should be noted, however, that for a lot of spaces the monoid of continuous
self-maps possesses strong enough properties to determine properties of the clone
of continuous maps. An obvious example of this was already presented above: for
completely regular T1 spaces containing an arc the monoid of continuous maps
determines the topology of the space. Hence, in the class of completely regular
T1 spaces which contain an arc, isomorphism of monoids implies isomorphism of
clones.

Another example can be found in [5], [6]. Consider a rigid space, i.e. one with
only identical and constant continuous self-maps (for example, a Cook contin-
uum [3]). Under the assumption that the space is Hausdorff, Herrlich proved that
the only continuous operations on such a space are projections and constants.
In [11], Taylor noted that Herrlich’s proof is valid in any concrete category with
constants as long as the object has at least 3 elements. Thus, the clone of a rigid
space with at least 3 elements consists solely of projections and constants. On
the other hand, being rigid is a first order property of the monoid of continuous
self-maps. The monoid of a rigid space hence completely describes its clone. In
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contrast to the case of completely regular T1 spaces containing an arc, the monoid
of a rigid space is not strong enough to describe the topology of the space, yet it
is strong enough to fully determine the space’s clone.

As usual in set theory, we will assume any natural number n is the set of smaller
numbers {0, 1, . . . , n− 1}. For a topological space X , denote by n×X = nX the
direct sum of n copies of X . The i-th copy of X in the sum nX is {i} ×X for
i = 0, 1, . . . , n− 1.

The coclone of a topological space X is the clone of X in the category dual to
that of topological spaces and continuous maps. Thus, the coclone Coclo(X) of
the space X is the ω-sorted algebra

〈Cn;Sn
m; ιni 〉m,n∈ω,i<n,

where

• Cn is the set of all continuous maps from X to nX ;
• ιni is the identical injection

ιni : X →֒ {i} ×X ⊆ nX

for i < n ∈ ω; and
• Sn

m : nX × (mX)n → mX is the composition operation which maps any
(n + 1)-tuple (f ; g0, . . . , gn−1) to the continuous function F : X → mX
defined as follows:

F (x) = gi(f(x)) if f(x) ∈ {i} ×X.

The first sort 〈C1;S
1
1 ; ι10〉 of Coclo(X) is again a monoid — one which is dual

to Mon(X). Let us denote this monoid by Mond(X).
In this paper, we show that results similar to those obtained by Sichler and

Trnková cannot be proved for coclones of topological spaces. In Section 3, we
prove that for non-indiscrete spaces, isomorphism of monoids implies isomor-
phism of coclones. Similarly, in Section 4 we prove that elementary equivalence of
monoids of non-indiscrete spaces implies elementary equivalence of their coclones.

Note that a map F : Mon(X) → Mon(Y ) is an isomorphism of Mon(X) and

Mon(Y ) if and only if it is an isomorphism of Mond(X) and Mond(Y ). Also, the
bijection ϕ 7→ ϕd of the set of all monoid-theoretic first-order formulas onto itself
which turns the order of multiplication around has the property that Mon(X) |= ϕ

if and only if Mond(X) |= ϕd. In light of these facts, in the later sections we will

not distinguish between Mon(X) and Mond(X) and will thus identify the first
sort of Coclo(X) with Mon(X).

2. Preliminaries

In Section 4, we will construct transformations of first order formulas of the
theory of (co)clones. For this reason, we need to exactly specify the first order
language of this theory that we will be using.
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As we are talking about an ω-sorted theory, we need infinitely many variables
of each sort n ∈ ω. We will take symbols fn

i to be the n-th sort variables of the
theory of coclones, i ∈ ω. In each sort n we have n constants: ιn0 , . . . , ι

n
n−1. For

any pair m,n ∈ ω of finite ordinals, Sn
m is a heterogeneous operation symbol of

type n×mn → m. And, of course, in addition to these the alphabet of the theory
of coclones contains parentheses, comma, equation sign =, logical operations &
and ¬ and the universal quantifier ∀ . All other logical operations, as well as the
existence quantifier, are defined in terms of & , ¬ and ∀ in the traditional way.

Terms in the first order theory of coclones are constructed by the following
scheme:

• each variable fn
i and each constant ιni is an n-th sort term;

• if t is an n-th sort term and t0, . . . , tn−1 are m-th sort terms, then the
sequence Sn

m(t, t0, . . . , tn−1) is an m-th sort term.

Note that we usually write Sn
m(t; t0, . . . , tn−1) instead of Sn

m(t, t0, . . . , tn−1). The
semicolon has neither syntactic nor semantical meaning here — we use it merely
for better visual separation of the two parts of the composition.

Formulas of the first order theory of coclones are again constructed according
to the usual scheme:

• if t and t′ are terms of the same sort, t = t′ is a formula (an elementary

formula);
• if ϕ and ψ are formulas, so are (ϕ & ψ) and (¬ϕ);
• if ϕ is a formula, so is (∀ fn

i )ϕ.

And again as usual, we will omit parentheses in formulas if doing so does not
introduce ambiguity in the meaning of the formula, and will add unnecessary
parentheses if they improve readability.

The 1-st sort of the clone is simply a monoid. Similarly, the reduction of the
above specified language to the 1-st sort is the language of the theory of monoids.
Hence we will consider monoid-theoretical formulas to also be clone-theoretical
formulas.

However, we will allow a richer set of variables for the first order language of
the theory of monoids and will usually denote monoid-theoretic variables by small
letters of the Latin alphabet. Also, we will write g ◦ f instead of S1

1(f, g).
Let us consider the following example of a monoid-theoretic formula:

(1) ∀ f(x ◦ f = x).

Obviously, (1) claims that x is a left zero. Now, if we are considering a monoid of
continuous self-maps of some topological space, left zeroes coincide with constant
maps. Taking this into account, we denote formula (1) by Const(x). We will
abbreviate the formula

∀x∀ y . . .∀ z(Const(x) & Const(y) & · · · & Const(z) → ϕ)
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as

(∀x, y, . . . , z ∈ Const) ϕ.

In the same way, we will abbreviate

∃x∃y . . . ∃z(Const(x) & Const(y) & · · · & Const(z) & ϕ)

as

(∃x, y, . . . , z ∈ Const) ϕ.

We will also sometimes write f(x) instead of f ◦ x, in cases when x is assumed to
be constant.

Lastly, to avoid symbol overloading, we denote formula equality by ≡.
Let us consider another example of a monoid-theoretical formula:

(2)
⋆Discr ≡ ∀x, y ∈ Const ∃f(f(x) = y &

∀ z ∈ Const (z 6= x→ f(z) = x)).

Note that this formula holds for both discrete and indiscrete spaces.
Conversely, let X be a non-indiscrete space for which Mon(X) |= ⋆Discr. As

X is non-indiscrete, it contains a non-empty proper open subset U ⊆ X . Pick
any x /∈ U and any y ∈ U ; then there is a continuous map f : X → X which
maps x into U and the complement outside of U . Thus, the singleton {x} is open
as the preimage of the open set U under the continuous map f . Applying the
same reasoning to {x} instead of U , we get that every other singleton in X is also
open. Thus, X is discrete.

To summarize, the monoid-theoretical formula (2) characterizes discrete and
indiscrete spaces in the class of all topological spaces.

Note that discrete and indiscrete topologies on a set with at least two elements
have the same monoid of continuous self-maps and are thus indistinguishable by
their monoids. Coclones of these spaces, on the other hand, are different. The
coclone of the indiscrete topological space satisfies the following formula:

(3) Conn ≡ ∀ f2
0∃f

1
0 {f

2
0 = S1

2(f1
0 ; ι20) ∨ f

2
0 = S1

2(f1
0 ; ι21)}.

The coclone of a discrete non-trivial space clearly does not satisfy this formula.
Thus, the formula ⋆Discr & Conn identifies indiscrete spaces, and ⋆Discr &
¬Conn identifies discrete non-trivial spaces in the first-order language of the the-
ory of coclones. The monoid of continuous self-maps is only able to identify spaces
with discrete and indiscrete topologies but is not able to distinguish between those.

A subset of a topological space which is both open and closed is called clopen.
A partition of a topological space into n clopen subsets is called a clopen n-
partition. A central aspect of our paper is the representation of clopen partitions
of a space X in Mon(X). As the only objects we possess in Mon(X) are maps,
we have to represent clopen partitions as collections of continuous self-maps.
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Let C be a non-empty clopen subset of a topological space X . Choose an
arbitrary point c ∈ C. The map pC,c defined by the following formula is obviously
continuous:

(4) pC,c(x) =

{
x; if x ∈ C;

c; if x /∈ C.

It is also a projection:

pC,c ◦ pC,c = pC,c.

The set C can be determined as the set of fixed points of pC,c.
On the other hand, every continuous map p identifies a subset

Cp = {x ∈ X ; p(x) = x}.

If p is a projection, then Cp = ℑ(p) is non-empty.
Continuous projections are objects which can be described in the first-order

theory of monoids (and clones). Taking this into account, we will represent non-
empty clopen sets by the projections as defined by (4). Empty sets are, curiously,
more tricky to deal with. In the case of disconnected spaces, we will represent
them by continuous maps with no fixed points. Note, however, that the sets of
fixed points in general do not need to be open or closed.

LetX be a non-indiscrete and non-trivial space; then there exist points a, b ∈ X
such that a has a neighborhood which does not contain b. If A ⊆ X is a clopen
set, the function which maps A to a and the complement to b is continuous. So
is the function mapping A to b and the complement to a. Conversely, if there are
continuous functions mapping A and its complement to a and b and vice-versa,
then A is necessarily a clopen set. This condition can be expressed in the first
order theory of monoids. The following formula is equivalent to the set of fixed
points of p being a clopen set:

(5)
Clopen(p) ≡∀x, y ∈ Const ∃f ∀ z ∈ Const

{(p(z) = z → f(z) = x) & (p(z) 6= z → f(z) = y)}.

It is easily seen that the requirement of the space X being non-trivial can be
relaxed. Really, the only self-map of a trivial space satisfies (5), and its set of
fixed points is clopen. Thus, the formula Clopen describes maps which represent
clopen sets for any non-indiscrete space.

Let p and q be two continuous maps. The sets they represent are complemen-
tary if and only if they satisfy the following conditions:

• p and q do not have common fixed points;
• each point is a fixed point for either p or q.

These conditions are described by the following monoid-theoretic formula:

Compl(p, q) ≡ ∀x ∈ Const (p(x) = x↔ q(x) 6= x).
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This formula can be easily generalized to describe an arbitrary partition of the
set into finitely many sets:

(6)

Compl(p0, p1, . . . ,pn−1) ≡

∀x ∈ Const {(p0(x) = x ∨ · · · ∨ pn−1(x) = x) &

&
i6=j

(pi(x) = x→ pj(x) 6= x)}.

Combining Compl and Clopen, we get a formula which describes maps repre-
senting a clopen n-partition for non-indiscrete spaces:

(7)
Clopen Part(p0, p1, . . . , pn−1) ≡Compl(p0, . . . , pn−1) &

Clopen(p0) & · · · & Clopen(pn−1).

3. The isomorphism case

Theorem 1. Suppose X and Y are non-indiscrete spaces. Further, suppose that

Mon(X) is isomorphic to Mon(Y ). Then Coclo(X) is isomorphic to Coclo(Y ).

Proof: Let F : Mon(X) → Mon(Y ) be a monoid isomorphism. We will extend
F to an isomorphism of coclones of X and Y .

Suppose f : X → nX = {0, . . . , n − 1} × X is a continuous function. As a
function into the product of two sets, the function f is uniquely determined by
its continuous components fn : X → n and fX : X → X . The first of these is
in its turn uniquely determined by the clopen n-partition {Xi; i = 0, . . . , n− 1},
where

Xi = {x ∈ X ; fn(x) = i} = {x ∈ X ; f(x) ∈ {i} ×X}.

Let I be the set of those indices i for which Xi is not empty. For any collection
of symbols σ0, . . . , σn−1, let −→σI denote the sequence

−→σI = (σi)i∈I .

For i /∈ I we define Yi = ∅. For i ∈ I, we define the set Yi ⊆ Y below.
As in the previous section, we represent Xi (i ∈ I) by a continuous projec-

tion pi. We know that the collection −→pI satisfies the formula Clopen Part(−→pI).

As F is a monoid isomorphism, the images
−−−→
F (pI) are also projections and also

satisfy Clopen Part(
−−−→
F (pI)). Thus, these projections represent sets Yi ⊆ Y for

i ∈ I which, together with the empty sets Yi for i /∈ I, form a clopen n-partition
Y0, . . . , Yn−1 of Y .

We now denote gY = F (fX) and construct the continuous map F̃ (f) = g as
follows:

g(y) = (i, gY (y)) for y ∈ Yi.

We will show that F̃ : Coclo(X) → Coclo(Y ) is a clone isomorphism.

First, note that F̃ (f) does not depend on the choice of projections pi. Indeed,
F is a bijection of the set of left zeroes of Mon(X) onto that of Mon(Y ), i.e. F
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maps constants bijectively onto constants. Thus, is we identify constant maps
and their values, y ∈ Yi if and only if F (pi) ◦ y = y, which in turn is equivalent
to pi ◦ F−1(y) = F−1(y), and the latter is the same as F−1(y) ∈ Xi. So the sets

Yi do not depend on the choice of pi and thus neither does F̃ (f).

The map F̃ is inverse to F̃−1. Indeed, F̃ (f) = g is uniquely determined by the
n-partition Y0, . . . , Yn−1 and the map gY : Y → Y . Each non-empty Yi can be
represented by the projection F (pi) which F−1 maps to pi. The latter represents

the set Xi. The function F̃−1(g) is then given by the partition X0, . . . , Xn−1 and

the function F−1(gY ) = fX and hence coincides with f . Thus the bijection of F̃
is established.

Now, let f : X → nX and g0, . . . , gn−1 : X → mX be continuous maps.
Denote h = Sn

m(f ; g0, . . . , gn−1). As above, let fX be the second component of f
and let X0, . . . , Xn−1 be the clopen partition associated with its first component.
Similarly, for each gi let gi

X denote its second component and let X i
0, . . . , X

i
m−1

denote the partition corresponding to its first component. Denote

X i
i,j = Xi ∩ f

−1
X (X i

j)

for j = 0, 1, . . . ,m− 1. Evidently X i
i,0, . . . , X

i
i,m−1 is a clopen partition of Xi.

Note that the first component of h is given by the clopen partition

n−1⋃

i=0

X i
i,0, . . . ,

n−1⋃

i=0

X i
i,m−1.

Denote Xj =
⋃n−1

i=0 X
i
i,j . On each component Xj, the second component of h

equals

(8) hX | Xj =

n−1⋃

i=0

gi
X ◦ fX |X i

i,j .

Suppose each non-emptyXi is represented by the projection pi, each non-empty
X i

i,j is represented by the projection pi
i,j , and each non-empty Xj is represented

by pj . Evidently pj ◦ pi
i,j = pi

i,j , thus also F (pj) ◦ F (pi
i,j) = F (pi

i,j). Hence,

if we denote by Y i
i,j and Y j the clopen sets represented by F (pi

i,j) and F (pj),

respectively, then Y i
i,j ⊆ Y j . Similarly, if Yi is the set represented by the projection

F (pi), we get Y i
i,j ⊆ Yi. Now, as

{X i
i,j ; i = 0, . . . , n− 1, j = 0, . . . ,m− 1}

is a clopen partition of X , the same is true of

{Y i
i,j; i = 0, . . . , n− 1, j = 0, . . . ,m− 1}

and Y (here we take Y i
i,j = ∅ if X i

i,j = ∅).
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It is now sufficient to prove that F̃ (h) and Sn
m(F̃ (f); F̃ (g0), . . . , F̃ (gn−1)) co-

incide on each nonempty set Y i
i,j . According to the definition,

F̃ (h)(y) = (j, F (hX)(y)) for y ∈ Y i
i,j .

Taking into account the equation (8) and the fact that y ∈ Y i
i,j is equivalent to

F (pi
i,j)(y) = y, for y ∈ Y i

i,j we get

(9)

F̃ (h)(y) = (j, F (hX)(F (pi
i,j)(y)))

= (j, F (hX ◦ pi
i,j)(y))

= (j, F (gi
X ◦ fX ◦ pi

i,j)(y))

= (j, F (gi
X ◦ fX)(y)).

On the other hand, as Y i
i,j ⊆ Yi, we have F̃ (f)(y) = (i, F (fX)(y)) for y ∈ Y i

i,j . Let

pi
j be a projection representing X i

j and let Y i
j be the set represented by F (pi

j). As

fX(X i
i,j) ⊆ X i

j , we get F (fX)(Y i
i,j) ⊆ Y i

j and again, according to the definition

of F̃ ,

(10) F̃ (gi)(F (fX)(y)) = (j, F (gi
X)(F (fX)(y))).

Comparing (9) and (10) completes the proof. �

Remark. Suppose the isomorphism F in Theorem 1 is identical, i.e. X and Y are
defined on the same set and their monoids of continuous self-maps coincide. Then

the clone isomorphism F̃ constructed in the above proof is again identical. In other
words, for non-indiscrete spaces monoid coincidence implies coclone coincidence.

4. The elementary equivalence case

We have chosen to represent clopen sets as sets of fixed points of continuous
maps. Thus, we cannot represent empty sets in spaces with the fixed point prop-
erty. Such spaces are necessarily connected; hence, in this section, we will consider
the cases of connected and disconnected spaces separately.

First, for a non-indiscrete space, its connectedness can be expressed by the
following monoid-theoretical formula:

(11) Connected ≡ ∀ p∀ q(p ◦ p = p & q ◦ q = q → ¬Clopen Part(p, q)).

For connected spaces, the coclone differs very little from the monoid. Each con-
tinuous map F : X → nX is given by an index i < n and a continuous map
f : X → X , for which F (x) = (i, f(x)) for every x ∈ X . If F : X → nX
is given by the pair (i, f) and G0, . . . , Gn−1 : X → mX are given by the pairs
(j0, g0), . . . , (jn−1, gn−1), respectively, then the composition Sn

m(F ;G0, . . . , Gn−1)
is given by the pair (ji, gi ◦ f).
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The above gives an idea for translating first order properties of coclones of
connected topological spaces into first order properties of their monoids. For
any variable fn

i in the language of clones, let us have n new “shadow” variables
fn

i,0, . . . .f
n
i,n−1. Let ϕ(fn

i ) be an arbitrary first order clone-theoretic formula. The
variable fn

i may or may not actually occur in ϕ. By ϕ(fn
i ) we denote the formula

(12) ϕ(fn
i ) = &

j<n
ϕ(fn

i,j).

For every clone-theoretic formula ϕ in the original language we define another
clone-theoretic formula ϕ′ in the language enriched with shadow variables. The
formula ϕ′ is constructed by recursion on the complexity of the formula ϕ:

• if ϕ is an elementary formula, then ϕ′ ≡ ϕ;
• if ϕ ≡ ψ & θ, then ϕ′ ≡ ψ′ & θ′;
• if ϕ ≡ ¬ψ, then ϕ′ ≡ ¬ψ′;
• if ϕ ≡ ∀ fn

i (ψ(fn
i )), then ϕ′ ≡ ∀ fn

i (ψ(fn
i )).

Note that if ϕ is a closed formula, then ϕ′ only contains non-shadow variables as
parts of quantifiers (e.g. ∀ fn

i ). In other words, each variable occurring in a term
is annotated with an index. We can now translate clone-theoretic formulas having
the latter property into the first order language of monoids. To do that, we first
define a monoid-theoretic term and an integer index for every clone-theoretic term
having no non-shadow variables. For any variable fn

i , pick a monoid-theoretic
variable fn,i. Clone-theoretic terms are translated according to the following
rules:

• if t ≡ ιnj , take tMc ≡ 1 and i(t) = j;

• if t ≡ fn
i,j , take tMc ≡ fn,i and i(t) = j;

• if t ≡ Sn
m(τ ; t0, . . . , tn−1), take tMc ≡ tMc

i(τ) ◦ τ
Mc and i(t) = i(ti(τ)).

The translation of formulas ϕ with no non-shadow variables in terms is con-
structed as follows:

• if ϕ is the elementary formula t = τ with i(t) = i(τ), we take ϕMc ≡
tMc = τMc;

• if ϕ is the elementary formula t = τ with i(t) 6= i(τ), we take ϕMc ≡ 1 6= 1;
• if ϕ ≡ ψ & θ, we take ϕMc ≡ ψMc & θMc;
• if ϕ ≡ ¬ψ, we take ϕMc ≡ ¬ψMc;
• if ϕ ≡ ∀ fn

i (ψ), take ϕMc ≡ ∀ fn,i(ψ
Mc).

The composition ϕ 7→ ϕ′ 7→ (ϕ′)Mc achieves the sought translation of first
order properties of coclones to those of monoids for connected spaces. We will
henceforth write ϕMc instead of (ϕ′)Mc.

Theorem 2. Let X be a connected non-indiscrete space and let ϕ be an arbitrary

closed clone-theoretic formula. Then Coclo(X) |= ϕ if and only if Mon(X) |=
ϕMc.

Proof: The proof closely follows the construction of the mapping ϕ 7→ ϕMc.
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Suppose X is a connected non-indiscrete space. Let

ϕ(fn1

i1
, . . . , fnk

ik
)

be a clone-theoretic formula with free variables among fn1

i1
, . . . , fnk

ik
and let F1 :

X → n1X , . . . , Fk : X → nkX be any continuous maps. Suppose Fs is given
by the index js and the continuous map fs : X → X , i.e. Fs(x) = (js, fs(x)) for
x ∈ X , s = 1, . . . , k. The formula

ϕI ≡ ϕ(fn1

i1,j1
, . . . , fnk

ik,j1
)

only contains bound non-shadow variables. This implies that ϕ′
I only contains

indexed variables in terms and hence (ϕ′
I)

Mc can be constructed. Again, we will
write ϕMc

I instead of (ϕ′
I)

Mc. We will prove that Coclo(X) |= ϕ(F1, . . . , Fk) if
and only if Mon(X) |= ϕMc

I (f1, . . . , fk).
The proof of the latter claim is constructed by induction on the complexity

of ϕ.
If ϕ is the elementary formula t = τ , then Coclo(X) |= ϕ(F1, . . . , Fk) if and

only if t(F1, . . . , Fk) and τ(F1, . . . , Fk) are represented by the same index and
continuous map X → X . Due to the way the translation of terms is done, this
is true if and only if tMc

I and τMc
I evaluate to the same index and map on the

k-tuple (f1, . . . , fk), that is Mon(X) |= ϕMc
I (f1, . . . , fk).

If ϕ ≡ ψ & θ or ϕ ≡ ¬ψ, and the claim is true for ψ and θ, then it is also
clearly true for ϕ.

If ϕ ≡ ∀ fn
i (ψ(fn

i , f
n1

i1
, . . . , fnk

ik
)), then Coclo(X) |= ϕ(F1, . . . , Fk) if and only

if for every continuous F : X → nX Coclo(X) |= ψ(F, F1, . . . , Fk). According
to the induction hypothesis, the latter means that Mon(X) |= ψMc

I (f, f1, . . . , fk)
for each index j chosen for fn

i and for every continuous f : X → X , or, equiva-

lently, Mon(X) |= (ψ(fn
i ))Mc

I (f, f1, . . . , fk). The latter is equivalent to Mon(X) |=
ϕMc

I (f1, . . . , fk). This completes the proof of the claim.
Now, if ϕ is a closed formula, then ϕI is identical with ϕ, hence ϕMc

I is identical
with ϕMc and the above claim reduces to Coclo(X) |= ϕ if and only if Mon(X) |=
ϕMc. �

We will now do a similar construction for disconnected spaces. Disconnected
spaces necessarily have continuous self-maps with no fixed points, which will have
the task of representing empty sets in clopen partitions.

In Section 3, for every continuous map f : X → nX we constructed a clopen
partition X0, . . . , Xn−1 of the space X and a continuous self-map fX . We have
a monoid-theoretic formula (7) which describes clopen partitions. Hence, for
disconnected spaces, we can represent a continuous map f : X → nX by a
collection of n maps which satisfy Clopen Part, and another map which represents
the second component of f .
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Every clone-theoretic formula is equivalent to one with simple elementary for-
mulas, where a simple elementary formula is one of the form

τ1 = τ2

or

t′ = Sn
m(t; t0, . . . , tn−1)

with τ1, τ2 being variables or constants and t′, t, t0, . . . , tn−1 being variables. We
will construct a translation of clone-theoretical formulas which only contain simple
elementary subformulas to the language of the theory of monoids.

For each variable fn
i take n+ 1 distinct monoid-theoretic variables pn,i,0, . . . ,

pn,i,n−1, fn,i.
First, we construct a monoid-theoretic formula ϕMd for every simple elemen-

tary formula ϕ.
Let ϕ denote the formula ιni = ιnj . If i = j, put ϕMd ≡ 1 = 1; if i 6= j, put

ϕMd ≡ 1 6= 1. Let ϕ be the formula ιni = fn
j or fn

j = ιni . In this case, put

ϕMd ≡ pn,j,i = 1 & fn,j = 1. For ϕ ≡ fn
i = fn

j , put

(13)
ϕMd ≡∀x ∈ Const

{
&

l=0,...,n−1
[pn,i,l(x) = x→ pn,j,l(x) = x]

}
&

fn,i = fn,j.

Now, let ϕ ≡ fm
j = Sn

m(fn
i ; fm

j0
, . . . , fm

jn−1
). In this case, put

(14)

ϕMd ≡ ∀x ∈ Const

{
&

k=0,...,m−1
l=0,...,n−1

[pm,j,k(x) = x & pn,i,l(x) = x→

pm,jl,k(fn,i(x)) = fn,i(x) &

fm,jl
(fn,i(x)) = fm,j(x)]

}
.

By recursion on the complexity of ϕ, we extend the above construction to
arbitrary clone-theoretic formulas with only simple elementary subformulas. If
ϕ ≡ ψ & θ, put ϕMd ≡ ψMd & θMd. If ϕ ≡ ¬ψ, put ϕMd ≡ ¬ψMd. If
ϕ ≡ ∀ fn

i (ψ), put

(15)
ϕMd ≡ ∀ pn,i,0 . . . ∀ pn,i,n−1{ClopenPart(pn,i,0, . . . , pn,i,n−1) →

∀ fn,i(ψ
Md)}.

The following theorem holds for the mapping ϕ 7→ ϕMd:

Theorem 3. Let X be a disconnected space and let

ϕ(fn1

i1
, . . . , fnk

ik
)
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be a clone-theoretic formula containing only simple elementary subformulas, with

free variables among fn1

i1
, . . . , fnk

ik
. Evidently, the free variables of ϕMd are then

among pn1,i1,i, . . . , pnk,ik,i, fn1,i1 , . . . , fnk,ik
.

Suppose F1 : X → n1X , . . . , Fk : X → nkX are continuous maps with their

first components given by projections Pn1,i1,i, . . . , Pnk,ik,i and second components

Fn1,i1 , . . . , Fnk,ik
. Then

Coclo(X) |= ϕ(F1, . . . , Fk)

if and only if Mon(X) satisfies the formula ϕMd, with maps Pnj ,ij ,i and Fnj ,ij

substituted for each of the variables pnj ,ij ,i and fnj ,ij
, respectively.

Proof: Again, we prove this theorem by induction on the complexity of the
formula ϕ.

It is easy to see that the claim of the theorem holds for simple elementary
formulas. The same is true for formulas of type ψ & θ and ¬ψ when the claim
of the theorem is known to be true for ψ and θ.

Let now ϕ be the formula ∀ fn
i (ψ) and suppose the claim of the theorem is true

for ψ(fn
i , f

n1

i1
, . . . , fnk

ik
). Thus, for every continuous function F : X → nX given

by projections Pn,i,0, . . . , Pn,i,n−1 and a map Fn,i,

(16) Coclo(X) |= ψ(F, F1, . . . , Fk)

if and only if

(17) Mon(X) |= ψMd(Pn,i,0, . . . , Pn,i,n−1, Fn,i, . . . ).

Now, Coclo(X) |= ϕ(F1, . . . , Fk) if and only if (16) holds for any continuous
F : X → nX , which is the case if and only if (17) holds for any continuous
Pn,i,0, . . . , Pn,i,n−1 and Fn,i such that ClopenPart(Pn,i,0, . . . , Pn,i,n−1) is satisfied.
The latter is equivalent to Mon(X) |= ϕMd(. . . ). �

We can easily extend the mapping ϕ 7→ ϕMd to arbitrary formulas. For any
clone-theoretic formula ϕ we can choose a clone-theoretically equivalent formula
ϕ′ with only simple equivalent subformulas and then take ϕMd ≡ (ϕ′)Md. We get
an easy consequence of Theorem 3 for this extension:

Consequence. If X is a disconnected space and if ϕ is a closed formula, then
Coclo(X) |= ϕ if and only if Mon(X) |= ϕMd.

We can now prove the main theorem of this paper:

Theorem 4. There is a mapping ϕ 7→ ϕM of first order formulas of clones to

those of monoids which satisfies the following condition: for any non-indiscrete

topological space X and any closed formula ϕ of the theory of clones,

Coclo(X) |= ϕ
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if and only if

Mon(X) |= ϕM .

Proof: Simply take

ϕM ≡ (Connected → ϕMc) & (¬Connected → ϕMd).

Theorems 2 and 3 complete the proof. �
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[1] Barkhudaryan A., Sichler J., Trnková V., The clone of a topological space: an inspiring

book by Walter Taylor , Algebra Universalis 55 (2006), 319–344.
[2] Birkhoff G., Lipson J.D., Heterogeneous algebras, J. Combin. Theory 8 (1970), 115–153.
[3] Cook H., Continua which admit only the identity mapping onto non-degenerate sub-

continua, Fund. Math. 60 (1967), 241–249.

[4] Hall P., Some word problems, J. London Math. Soc. 33 (1958), 482–496.
[5] Herrlich H., On the concept of reflections in general topology , in Proc. Symp. on Extension

Theory of Topological Structures, Berlin, 1967, pp. 105–114.
[6] Herrlich H., Topologische Reflexionen und Coreflexionen, Lecture Notes in Mathematics,

78, Springer, Berlin, 1968.
[7] Lawvere F.W., Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. USA 50

(1963), 869–872.
[8] Lawvere F.W., Some algebraic problems in context of functorial semantics of algebraic

theories, Lecture Notes in Mathematics, 61, Springer, Berlin, 1968, pp. 41–46.
[9] Magill K.D., Jr., A survey of semigroups of continuous selfmaps, Semigroup Forum 11

(1975/1976), 189–282.
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