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On Manes’ countably compact,

countably tight, non-compact spaces

James Dabbs

Abstract. We give a straightforward topological description of a class of spaces
that are separable, countably compact, countably tight and Urysohn, but not
compact or sequential. We then show that this is the same class of spaces
constructed by Manes [Monads in topology , Topology Appl. 157 (2010), 961–
989] using a category-theoretical framework.
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1. Introduction

In [2], Nyikos asked several questions related to the existence of separable,
countably compact, countably tight spaces that are not compact. In [3], Nyikos
and Vaughn constructed a Hausdorff such a space in ZFC, but their example was
not Urysohn1 and so certainly not regular. Dow [4] constructed a compact, Haus-
dorff, non-sequential such space under the added hypothesis that 2ω = 2ω1 . Manes
[1] later constructed a class of separable, Urysohn, countably compact, countably
tight, non-compact, non-sequential spaces in ZFC, using the category-theoretical
concept of a monad. The question of whether or not a regular such space exists
in ZFC remains open. Our aim is to give a purely topological construction of the
class of spaces studied by Manes.

2. Preliminaries

Throughout, p will denote an arbitrary element of βω \ ω.

Definition 1. Given a sequence xn in a space X , x = p-lim xn if for every open
O ⊂ X with x ∈ O, {n | xn ∈ O} ∈ p.

p-limits provide a natural way to generalize sequential properties. The following
definitions are well known (see [5] for more details):

Definition 2. A space X is p-compact if for every sequence xn in X , p-lim xn

exists and is in X .

1A space is Urysohn if any two distinct points have neighborhoods with disjoint closures.
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Definition 3. A space X is p-sequential if for every non-closed A ⊂ X there is
some x ∈ X \ A and sequence xn in A with x = p-limxn.

It is routine to verify [5] that every compact space is p-compact for any p and
that every p-compact space is limit-point compact (and thus countably compact,
provided it is T1). It can also be shown that any p-sequential space is countably
tight using a straightforward variation of the usual proof that every sequential
space is countably tight, included here for completeness:

Proposition 2.1. Any p-sequential space is countably tight.

Proof: Let X be p-sequential, A ⊂ X and x ∈ A \ A.
Define A′ = {y ∈ X | y = p-liman for some sequence an in A}. Let A0 = A

and A1 = A′, Aα+1 = A′

α for successor ordinals < ω1, and Aα =
⋃

β<α Aβ for
limit ordinals ≤ ω1.

If xn is a sequence in Aω1
then {xn} ⊂ Aα for some least α and so p-lim xn ∈

Aα+1 ⊂ Aω1
. Thus Aω1

is p-sequentially closed and, since X is p-sequential,
closed.

Thus x ∈ Aω1
. We claim that for any y ∈ Aω1

, there is a countable B ⊂ A so
that y ∈ B. If y ∈ A1 then there is a sequence xn in A0 = A so that y = p-lim xn

and so y ∈ {xn}. Suppose that for every β < α and y ∈ Aβ there is a countable

By ⊂ A with y ∈ By. Let y ∈ Aα. If y ∈ Aβ for some β < α then there is
such a By by assumption. So suppose not. Then by construction α must be a
successor ordinal α = γ + 1 so y = p-limxn for a sequence xn in Aγ . Then if

By =
⋃

n∈ω Bxn
, y ∈ By as required. �

3. Construction

We will show that the set of p-compact subsets of any space is closed under
arbitrary intersections and finite unions. Thus the p-compact subsets of a space
form the closed sets of a new topology on that space. The example we seek will
be a topology generated by the p-compact subsets of βω.

First, a useful lemma:

Lemma 3.1. If xn, x′

n are two sequences in X and {n | xn = x′

n} ∈ p, then

p-limxn = p-limx′

n (if either limit exists).

Proof: Let {n | xn = x′

n} = B ∈ p. Suppose without loss of generality that
p-lim xn = x. Then for any open O ⊂ X with x ∈ O, {n | xn ∈ O} ∈ p.
Thus {n | x′

n ∈ O} ⊃ {n | x′

n = xn ∧ xn ∈ O} = B ∩ {n | xn ∈ O} ∈ p. So
x = p-lim x′

n. �

Note that the p-compactness is preserved by finite unions and arbitrary inter-
sections:

Proposition 3.2. If C1, C2 ⊂ X are p-compact, C1 ∪ C2 is p-compact.

Proof: Let xn be a sequence in C1 ∪ C2. Let Bi = {n | xn ∈ Ci}. Since p is
an ultrafilter, assume without loss of generality that B1 ∈ p. Fix an arbitrary
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z ∈ C1 and let x′

n = xn for all n ∈ B1 and x′

n = z otherwise. Then x′

n is a
sequence in C1. Let x = p-limx′

n. Then x exists and x ∈ C1 by assumption and
x = p-lim xn by 3.1. Thus p-lim xn ∈ C1 ∪ C2. �

Proposition 3.3. If Ci ⊂ X is p-compact for each i,
⋂

Ci is p-compact.

Proof: If xn is a sequence in
⋂

Ci, then xn is a sequence in Ci for each i so
p-lim xn ∈ Ci for each i. �

Definition 4. Given a space X and an ultrafilter p, let Xp = X as a set and
define a topology on Xp by letting all p-compact subsets of X be closed in Xp

(along with X if X was not p-compact).

Now, consider the relationship between the topologies X and Xp:

Proposition 3.4. If X is p-compact and C ⊂ X is closed, then C is p-compact.

Proof: If xn is a sequence in C then x = p-limxn exists in X and for every open
O ⊂ βω with x ∈ O, {n | xn ∈ O} ∈ p. In particular, O ∩ C is non-empty and
x ∈ C = C. Thus C is p-compact. �

Corollary 3.5. If X is p-compact, the topology on Xp is finer than the usual

topology on X .

Proposition 3.6. Let xn be a sequence in Xp. If p-limX xn exists, then p-

limXp
xn = p-limX xn.

Proof: Let x = p-limX xn. Suppose x 6= p-limXp
xn. Then there is an O ⊂ Xp

open in Xp with x ∈ O but {n | xn ∈ O} /∈ p. Thus {n | xn /∈ O} ∈ p. Fix a
z ∈ Xp \ O. Define x′

n = xn if xn ∈ Xp \ O and x′

n = z otherwise. Then x′

n is a
sequence in Xp \O and since O is open, Xp \O is closed in Xp and thus p-compact
in X . Thus p-limX x′

n ∈ X \ O. But xn = x′

n for all n ∈ {n | xn /∈ O} so by 3.1,
p-limX xn = p-limX x′

n /∈ O, a contradiction. �

Corollary 3.7. If X is p-compact then Xp is p-compact.

Proposition 3.8. If A ⊂ Xp, let A′ = {x | x = p-lim an for some sequence an

in A} and define Aα inductively by A0 = A, Aα+1 = A′

α for successor ordinals

and Aα =
⋃

β<α Aβ for limit ordinals. Then clXp
(A) = Aω1

.

Proof: By definition,

clXp
(A) =

⋂

{C ⊂ X : C closed in Xp, A ⊂ C}

=
⋂

{C ⊂ X : C p-compact in X, A ⊂ C}.

Note that if xn is a sequence in Aω1
then by construction there is some α < ω1

so that xn is a sequence in Aα. Thus p-lim xn ∈ Aα+1 and so Aω1
is p-compact.

Thus clXp
(A) ⊂ Aω1

.
Conversely, suppose Aβ ⊂ clXp

(A) for all β < α. If α is a limit ordinal then
Aα ⊂ clXp

(A) trivially. If not, then α = γ + 1 and for any a ∈ Aα, a = p-
limxn = p-limXp

xn for some sequence xn in Aγ . Thus for any O open in Xp
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with a ∈ O, {n | xn ∈ O} ∈ p so Aγ ∩ O is infinite and a ∈ clXp
(A). Thus

Aω1
⊂ clXp

(A). �

Corollary 3.9. | clXp
(A)| ≤ |A|ω .

Proposition 3.10. If X is p-compact, then Xp is p-sequential.

Proof: Let A ⊂ Xp be non-closed. Then A ⊂ X is not p-compact. So by
definition there is a sequence xn in A so that x = p-lim xn /∈ A. �

The particular example we seek is obtained by applying this construction to βω:

Proposition 3.11. βωp is Urysohn.

Proof: By 3.5, the topology on βωp is finer than the topology on βω and since
βω is Urysohn, so is βωp. �

Proposition 3.12. βωp is not compact.

Proof: βωp is countably tight by 3.10 and 2.1, so βωp 6∼= βω. Thus the topology
on βωp is strictly finer and so βωp cannot be compact. �

Proposition 3.13. βωp contains no non-trivial convergent sequences.

Proof: Since βωp has a finer topology, the inclusion map i : βωp → βω is
continuous. Thus if xn → x in βωp, i(xn) → i(x) in βω and thus xn is eventually
constant. �

Corollary 3.14. βωp is not sequential.

Proof: If F ⊂ βωp and xn is a sequence in F with xn → x then x = xm for
some m so x ∈ F . Thus every subset of βωp is sequentially closed. But βωp is
not discrete (ω ⊂ βωp is not closed), so βωp is not sequential. �

Thus βωp is a countably compact, countably tight, Urysohn, non-compact, non-
sequential space. It is not separable though: by 3.9, | clβωp

(A)| ≤ |A|ω < |βω| for
any countable A. However:

Proposition 3.15. If A ⊂ βωp is countable, X = clβωp
(A) is a separable,

Urysohn, countably compact, countably tight, non-compact, non-sequential sub-

space of βωp.

Proof: Separability is trivial. Since X is a closed subset of βωp, X is Urysohn,
countably compact and countably tight. X is not discrete so as in 3.14, X is not
sequential.

If X is compact then i(X) ⊂ βω is a compact and thus closed subset of βω and
so i(X) contains a homeomorphic copy of βω. Since βω contains weak P -points
[6], i(X) is not countably tight. But i is a homeomorphism onto its image and X
is countably tight, a contradiction. Thus X is not compact. �
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4. Monads

In [1], Manes defines a monad as a triple (T, η, (·)#) where T is a functor from
the category of sets to itself, ηX : X → TX for all sets X and if f : X → TY
then f# : TX → TY subject to the conditions

(1) f#ηX = f ,
(2) (ηX)# = idTX ,
(3) (g#f)# = g#f# for any set f : X → TY and g : Y → TZ.

The prototypical example of a monad is the Stone-Čech compactification
(β, η, (·)#) where ηX : X → βX is the usual inclusion and f# : βX → βY
by

f#(F) = {B ⊂ Y | {x ∈ X | B ∈ f(x)} ∈ F}.

It is straightforward to verify that this definition of a monad satisfies the listed
properties and that this definition is equivalent to the standard definition [7] in
terms of (T, η, µ) by letting µX = (idTX)# : TTX → TX . A subfunctor T ⊂ β
will generate a submonad (T, η, (·)#) of (β, η, (·)#) provided that for all sets X ,
ηX(X) ⊂ TX and for all maps f : X → βY with f(X) ⊂ TY , f#(TX) ⊂ TY .

Given a function f : X → Y , the functor β takes f to the induced map
βf : βX → βY . Given an ultrafilter r ∈ βX , we let fr denote the ultrafilter
(βf)(r) = {Z ⊂ Y | f−1(Z) ∈ r}.

For a fixed ultrafilter r ∈ ω∗, Manes considers the subfunctor

GrX = {fr | f : ω → X} ⊂ βX

and the monad Tr generated by Gr (i.e., the smallest submonad of β so that
GrX ⊂ TrX for all sets X). Note first that Grω is a familiar object:

Proposition 4.1. Using the notation from 3.8, Grω = ω′.

Proof: Let f : ω → ω. Then for any basic open set O ⊂ βω with fr ∈ O, O ∈ fr.
Thus by definition, f−1(O) = {n | f(n) ∈ O} ∈ r. Thus fr = r-lim f(n). �

To describe Trω, we observe the following: since Tr is a subfunctor of β, given
f : A → Trω, the function Trf : TrA → Tr(Trω) is the restriction of βf to
TrA. Also since (Tr, η, (·)♯) is a submonad of (β, η, (·)♯), if h : Trω → Trω and
F ∈ Tr(Trω), then h♯(F) = {D ⊂ ω | {x ∈ Trω | D ∈ h(x)} ∈ F}.

Proposition 4.2. For any A ⊂ Trω and g : ω → A, if i : A → Trω is the inclusion

map, id#
Trω

(

(Tri)(gr)
)

= r-lim g(n) (with limit taken in βω).

Proof: By definition,

id#
Trω

(

(Tri)(gr)
)

= {D ⊂ ω | {x ∈ Trω | D ∈ x} ∈ (Tri)(gr)}

and

{x ∈ Trω | D ∈ x} ∈ Tri(gr) ⇐⇒

∃C ∈ gr(C ⊂ {x ∈ Trω | D ∈ x}) ⇐⇒
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∃C ∈ gr(∀y ∈ C(y ∈ {x ∈ Trω | D ∈ x})) ⇐⇒

∃C ∈ gr(∀y ∈ C(D ∈ y)) ⇐⇒

∃B ∈ r ∧ ∃C ⊃ g(B)(∀y ∈ C(D ∈ y)) ⇐⇒

∃B ∈ r(∀y ∈ g(B)(D ∈ y)).

The last equivalence following from taking C = g(B). Thus D ∈ id#
Trω

(

(Tri)(gr)
)

⇐⇒ ∃B ∈ r with D ∈
⋂

g(B), and so id#
Trω

(

(Tri)(gr)
)

=
⋃

B∈r ∩g(B).

Given any basic open O ⊂ βω containing
⋃

B∈r ∩g(B), O ∈
⋃

B∈r ∩g(B) so
there is some B ∈ r so that O ∈ x for every x ∈ g(B). Thus B ⊂ {n | O ∈
g(n)} = {n | g(n) ∈ O} and so {n | g(n) ∈ O} ∈ r and

⋃

B∈r ∩g(B) = r-lim g(n)
as required. �

Corollary 4.3. For any g : ω → Trω, id#
Trω(gr) = r-lim g(n).

Proof: Since Tr(idTrω) = idTrTrω. �

Proposition 4.4. As a set, Trω = clβωr
(ω).

Proof: Since Tr is a monad and idTrω : Trω → Trω, id#
Trω(TrTrω) ⊂ Trω.

For any sequence xn in Trω, let g : ω → Trω by n 7→ xn, so gr ∈ TrTrω and

id#

Trω(gr) = r-lim xn ∈ Trω. Thus Trω is r-compact and Trω ⊃ clβωr
(ω).

On the other hand, taking A0 = ω and letting Aα be defined as in 3.8, A1 =
A′ = Grω ⊂ Trω by definition. If Aβ ⊂ Trω for all β < α, then if α is a limit
ordinal, Aα ⊂ Trω trivially. If not, let α = γ + 1 and x ∈ Aα. Then there is a
sequence xn in Aγ with x = r-lim xn. Let g : ω → Aγ ⊂ Trω by n 7→ xn. Then

x = r-lim xn = id#

Trω(gr) ∈ Trω. Thus Aα ⊂ Trω for all α ≤ ω1. �

Definition 5. Following [1], a subset A ⊂ Trω is closed if it is a subalgebra, that
is, if there is a map ξ0 rendering the following diagram commutative:

TrA
Tri

//

ξ0

��

TrTrω

id
#

Trω

��

A
i

// Trω

Proposition 4.5. The topologies on clβωr
(ω) and Trω coincide.

Proof: Such a ξ0 will exist only if id#
Trω

(

(Tri)(TrA)
)

⊂ A, but if this is true,

then ∀gr ∈ TrA, id#
Trω

(

(Tri)(gr)
)

= r-lim g(n) ∈ A. Thus A is closed if and only
if it is r-compact. �
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