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On π–caliber and an application of Prikry’s partial order

Andrzej Szymanski

Abstract. We study the concept of π-caliber as an alternative to the well known
concept of caliber. π-caliber and caliber values coincide for regular cardinals
greater than or equal to the Souslin number of a space. Unlike caliber, π-caliber
may take on values below the Souslin number of a space. Under Martin’s axiom,
2ω is a π-caliber of N

∗. Prikry’s poset is used to settle a problem by Fedeli
regarding possible values of very weak caliber.
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Classification: Primary 54A38, 54A15; Secondary 03E35

Let κ be a cardinal number. A family P of non-empty subsets of a space X is
a point-κ family if for every x ∈ X , |{U ∈ P : x ∈ U}| < κ.

A cardinal number κ is a caliber of a space X if every point -κ family of non-
empty open subsets of X has cardinality less than κ. Since its inception (N. Šanin,
[12], [13]), caliber (and its variations) has been the object of intense study in
general topology, set theory, and combinatorics (cf. [2], [3]).

A cardinal number κ is a π-caliber of a space X if for every point-κ family P
of non-empty open subsets of X and for every non-empty open set G ⊆ X there
exists a non-empty open set V ⊆ G such that |{U ∈ P : V ∩ U 6= ∅}| < κ.

It is obvious that if κ is a caliber of a space X , then κ is a π-caliber of X .
The converse implication does not hold: suffice to notice that if κ is a π-caliber
of Xα for each α, then κ is going to be a π-caliber of the disjoint union of all the
spaces Xα. Thus π-caliber constitutes a proper generalization of caliber because
the values for caliber are bounded from below by the Souslin number of a space
whereas values for π-caliber are not. The distinction between π-caliber and caliber
can only occur for spaces with large (relative to π-caliber) Souslin number. For
we show that if κ is a regular uncountable cardinal and the Souslin number of a
space X is less than or equal to κ, then κ is a caliber of X if and only if κ is a
π-caliber of X .

Let κ be an infinite cardinal. A space X is called κ-Baire if for each family
{Eα : α < κ} of nowhere dense subsets of X and for each non-empty open subset
U of X , U −

⋃

{Eα : α < κ} 6= ∅. ω-Baire spaces are known as Baire spaces .
The cardinal ω cannot be the value of caliber of any infinite Hausdorff space.

The Fletcher-Lindgren theorem ([6]; see also [10]) asserts that ω is a π-caliber of X
if and only if X is a Baire space. However the existence of a normal ultrafilter on
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an uncountable cardinal κ implies the existence of a compact Hausdorff extremally
disconnected space X that is λ-Baire for every λ < κ but ω1 is not a π-caliber of
X . It follows that any infinite regular cardinal λ < κ, in particular, ω1, is a very
weak caliber of the space X but ω1 is not a π-caliber of X . This settles, modulo
measurable cardinals, a conjecture by Fedeli [5].

1. π-caliber and κ-Baire spaces

Characterizing κ-Baire spaces in terms of κ being a possible π-caliber, as indi-
cated in the Fletcher-Lindgren theorem, ends there. At first, let us notice that,
other than ω, a value for the π-caliber has no bearing on the Baire type of the
space. Take, e.g., X to be a T1 countable space without isolated points. Then
X is not a Baire space and yet any cardinal of uncountable cofinality is going to
be a (π-)caliber of X . Now, we are going to construct an example demonstrating
impossibility of the converse.

Let us begin by recalling several pertinent notions and facts. All other unde-
fined terms can be found in [7].

We say that a family F is a λ-complete filter over a set X if F is a family of
infinite subsets of X such that:

(j)
⋂

F = ∅ and for each A ⊆ F, if |A| < λ, then
⋂

A ∈ F;
(jj) if a ∈ F and a ⊆ b ⊆ X , then b ∈ F.

A filter F over a cardinal κ is normal if F is closed under diagonal intersections1.
A cardinal κ is measurable if it is uncountable and there exists an ultrafilter over
κ which is also κ-complete. We will need the following two known facts (cf. [7]).

Theorem 1. (1) If κ is a measurable cardinal, then there exists an ultrafilter

over κ that is κ-complete and normal.

(2) Let F be an ultrafilter over κ that is κ-complete and normal. If P is a

partition of [κ]<ω into less than κ pieces, then there exists A ∈ F such

that for each natural number n there is B ∈ P such that [A]n ⊆ B.

Let F be a filter over a cardinal κ. The following definition of a partially
ordered set P (F, κ) is due to K. Prikry [11]. The underlying set of P (F, κ) is the
collection of all pairs (s, F ) such that s ∈ [κ]<ω, F ∈ F, and α < β whenever
α ∈ s and β ∈ F ; (t, E) ≤ (s, F ) if s is an initial segment of t, i.e., s = t ∩ γ for
some γ < κ, E ⊆ F , and t− s ⊆ F .

Prikry’s poset plays a very important role in forcing considerations involving
measurable cardinals (cf. [7], [9]). In our discussion that follows we are going to
refrain from making any forcing references and present our arguments in purely
topological fashion.

A partially ordered set (P, <) is separative if for all p, q ∈ P , if p 
 q then
there exists an c ≤ p that is incompatible with q. The following lemma is pretty
straightforward but for the sake of completeness we prove it here.

1The diagonal intersection of a family {Aα : α < κ} of subsets of the cardinal κ is the set
∆{Aα : α < κ} = {β < κ : β ∈

⋂

{Aα : α < β}}.
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Lemma 1. Let F be a κ-complete filter over κ. Then the partially ordered set

P (F, κ) is separative.

Proof: Suppose that (t, E) 
 (s, F ).

Case 1. s is not an initial segment of t.

Subcase 1.1. max s ≤ max t. We set c = (t, E). Trivially c is incompatible
with (s, F ).

Subcase 1.2. max s > max t. Pick α, β such that max s < α < β < κ and α ∈
E. We set c = (t∪ {α}, E − β). Then c < (t, E). Trivially, max s < max(t∪ {α})
and since s is not an initial segment of t, s is not an initial segment of t ∪ {α}
either. Thus c is incompatible with (s, F ).

Case 2. s is an initial segment of t but t− s * F . We set c = (t, E). Trivially
c is incompatible with (s, F ).

Case 3. s is an initial segment of t and t − s ⊆ F but E * F . Pick α, β such
that max s < α < β < κ and α ∈ E − F . We set c = (t ∪ {α}, E − β). Since
max t < min E, c < (t, E). To show that c is incompatible with (s, F ), take any
(r, G) ∈ P (F, κ) such that (r, G) ≤ (t ∪ {α}, E − β). Then, in particular, t ∪ {α}
is an initial segment of r. Hence α ∈ r − s and so r − s * F . �

For a non-empty subset D of P (F, κ), let pr(D) = {s : ∃F (s, F ) ∈ D}.

Lemma 2. If D is dense in (s, F ) ∈ P (F, κ), then there exists E ∈ F such that

{0 < n < ω : s ∪ [E]n ⊆ pr(D)} is infinite. Here, s ∪ [E]n stands for the set

{s ∪ t : t ∈ [E]n}.

Proof: For the two-element partition

{

{t− s : t ∈ pr(D)} , [κ]<ω − {t− s : t ∈ pr(D)}
}

of [κ]<ω take A ∈ F that satisfies (2) of Theorem 1 and set E = F ∩ A. Fix
a natural number m, pick an arbitrary subset t of E of size m + 1, and take
(s ∪ t, E − max t). By density of D, there exists (r, H) ∈ D such that (r, H) ≤
(s∪ t, E−max t). Thus r−s ⊂ E and n = |r−s| > m. Hence s∪ [E]n ⊆ pr(D). �

Theorem 2. If κ is a measurable cardinal, then there exists a compact Hausdorff

extremally disconnected space X such that X is λ-Baire for each λ < κ and ω1 is

not a π-caliber of X .

Proof: Let P (F, κ) be the Prikry partially ordered set, where F is an ultrafilter
over κ that is κ-complete and normal. Since P (F, κ) is separative, it is a dense
subset of a complete Boolean algebra B (see [7]). We take X to be the Stone
space of B. Thus X is a compact Hausdorff extremally disconnected space. For
a ∈ B let [a] = {x ∈ X : a ∈ x}. The sets [a] are closed and open subsets of X .
Moreover, for each dense subset D of B, [D] = {[a] : a ∈ D} is a π-base for X .
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Let us show that ω1 is not a π-caliber of X . Towards this goal, for each n < ω,
one can construct Rn so that:

(1) Rn ⊆ [P (F, κ)], Rn is a pairwise disjoint family, and
⋃

Rn is dense in X ;
(2) if m < n, then Rn is a refinement of Rm; moreover, if [(s, F )] ∈ Rm,

[(t, E)] ∈ Rn, and [(t, E)] ⊆ [(s, F )], then |t| > |s|.

Let P =
⋃

{Rn : n < ω}. Clearly, P is a point-ω1 open family in X . We shall
show that each non-empty open subset of X is intersected by exactly κ elements
of P .

Assume not. There exists (s, F ) ∈ P (F, κ) such that [(s, F )] intersects less
than κ elements of P . Hence

A = F ∩
⋂

{E : [(t, E)] ∈ P and [(s, F )] ∩ [(t, E)] 6= ∅} ∈ F.

Pick arbitrary α ∈ A. Then (s∪ {α}, A− (α + 1)) ∈ P (F, κ) and (s∪ {α}, A−
(α + 1)) < (s, F ). Notice that if [(t, E)] ∈ P , [(s, F )] ∩ [(t, E)] 6= ∅, and s 6= t,
then (s ∪ {α}, A − (α + 1)) is incompatible with (t, E). Consequently, by (2),
[(s ∪ {α}, A − (α + 1))] is disjoint with each element of Rn, whenever n > |s|.
This contradicts (1).

Let us show that X is λ-Baire for each λ < κ. Let {Nα : α < λ} be a family
of nowhere dense subsets of X , where λ < κ. Fix (s, F ) ∈ P (F, κ) and set

Dα = {(t, E) ∈ P (F, κ) : (t, E) ≤ (s, F ) and [(s, F )] ∩Nα = ∅} .

Each of the sets Dα, α < λ, is dense in (s, F ). By Lemma 2, for each α < λ
there exists Eα ∈ F such that {0 < n < ω : s ∪ [Eα]n ⊆ pr(Dα)} is infinite. Set
E =

⋂

{Eα : α < λ} and Ln = {α < λ : s ∪ [E]n ⊆ pr(Dα)} for each 0 < n < ω.
Then E ∈ F and λ =

⋃

{Ln : 0 < n < ω}. Let n(0) < n(1) < . . . n(i) < . . . be
such that λ =

⋃

{Ln(i) : i < ω} and Ln(i) 6= ∅ for each i < ω.
Pick a subset s0 of E of size n(0). For each ξ ∈ Ln(0) select Fξ ∈ F so that

(s ∪ s0, Fξ) ∈ Dξ and set Υ0 = E ∩
⋂

{Fξ : ξ ∈ Ln(0)}. Thus (s ∪ s0, Υ0) ≤ (s, F )
and [(s ∪ s0, Υ0)] ∩Nξ = ∅ for each ξ ∈ Ln(0).

Pick a subset s1 of Υ0 of size n(1) − n(0). For each ξ ∈ Ln(1) select Fξ ∈ F

so that (s ∪ s0 ∪ s1, Fξ) ∈ Dξ and set Υ1 = Υ0 ∩
⋂

{Fξ : ξ ∈ Ln(1)}. Thus
(s ∪ s0 ∪ s1, Υ1) ≤ (s ∪ s0, Υ0) and [(s ∪ s0 ∪ s1, Υ1)] ∩Nξ = ∅ for each ξ ∈ Ln(1).

Pick a subset s2 of Υ1 of size n(2) − n(1). For each ξ ∈ Ln(2) select Fξ ∈ F

so that (s ∪ s0 ∪ s1 ∪ s2, Fξ) ∈ Dξ and set Υ2 = Υ1 ∩
⋂

{Fξ : ξ ∈ Ln(2)}. Thus
(s ∪ s0 ∪ s1 ∪ s2, Υ2) ≤ (s ∪ s0 ∪ s1, Υ1) and [(s ∪ s0 ∪ s1 ∪ s2, Υ2)] ∩Nξ = ∅ for
each ξ ∈ Ln(2).

The construction goes on. Consequently, we get a nested downward sequence
{(s ∪ s0 ∪ s1 ∪ · · · ∪ sk, Υk)}∞k=0 of elements of P (F, κ) such that

[(s ∪ s0 ∪ s1 · · · ∪ sk, Υk)] ∩
⋃

{Nξ : ξ ∈ Ln(k)} = ∅
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for each k ∈ ω. Since (s ∪ s0, Υ0) ≤ (s, F ),

∅ 6=
⋂

{[(s ∪ s0 ∪ s1 · · · ∪ sk, Υk)] : k ∈ ω} ⊆ [(s, F )]−
⋃

{Nα : α < λ}.

�

Following A. Fedeli [5], a cardinal number κ is a very weak caliber of a space
X if for every open point-κ family P of cardinality at most κ and for every non-
empty open set G ⊆ X there exists a non-empty open set V ⊆ G such that
|{U ∈ P : V ∩ U 6= ∅}| < κ. It is easy to see (cf. [4] or Lemma 4) that if X is
a κ-(semi)Baire space, then κ is a very weak caliber of X . In [5], 4218, Fedeli
writes: “It would be interesting, for a regular cardinal κ, to know whether there

exists a space which has very weak caliber κ but has not π-caliber2 κ.” The space
X constructed in Theorem 2 is such a space for the measurable cardinal κ.

Problem 1. Construct a consistent example of small cardinality, e.g., by using a
precipitous ideal on ω2, or even an example in ZFC, of a space X that is λ-Baire
and ω1 is not a π-caliber of X , for some regular cardinal λ > ω1.

2. π-calibers of some spaces

A space X is called κ-semibaire if for each family {Eα : α < κ} of nowhere
dense subsets of X and for each non-empty open subset U of X there exists A ⊆ κ,
|A| = κ, such that U −

⋃

{Eα : α ∈ A} 6= ∅.
Observe that any κ-Baire space is a κ-semibaire space and that any ω-semibaire

space is also a Baire space. Thus ω-semibaire = Baire. Let us notice also the
following lemmas.

Lemma 3. Let {Eα : α < λ} be a family of nowhere dense subsets of X such

that Eα ⊆ Eβ whenever α ≤ β < λ. If the set
⋃

{Eα : α < λ} contains a non-

empty open subset of X , then X is not a κ-semibaire space for any cardinal κ of

cofinality λ.

Lemma 4. Let X be a κ-semibaire space and let P be a point-κ open family in

X such that P ≤ κ. If G ⊆ X non-empty open set, then there exists a non-empty

open set V ⊆ G such that |{U ∈ P : V ∩ U 6= ∅}| < κ. Thus κ is a very weak

caliber of X .

Proof: If |P| < κ, then there is nothing to prove. If |P| = κ, faithfully index P ,
say P = {Uα : α < κ}, and set Eα = G−

⋃

{Uξ : α ≤ ξ < κ}. Thus {Eα : α < κ}
is a nested upward family of closed subset of G such that

⋃

{Eα : α < κ} = G.
Since X is κ-semibaire, there must exist an α < κ and a non-empty open set V
such that V ⊆ Eα. Since Eα intersects at most |α| < κ elements of the family P ,
V does too and we are done. �

Proposition 1. If κ is a regular cardinal and κ is a π-caliber of X , then X is a

κ-semibaire space.

2The original has weak caliber .
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Proof: Suppose to the contrary that there exist nowhere dense sets Eα, α < κ,
and a non-empty open set G such that G ⊆

⋃

{Eα : α ∈ A} for each A ⊆ κ such
that |A| = κ. Then P = {G − cl Eα : α < κ} is a point-κ family of dense open
subsets of G, and thus each non-empty open subset of G intersects every element
of P . Since κ is a π-caliber of X , P has to be of cardinality less than κ. Since κ
is a regular cardinal, there exists A ⊆ κ, |A| = κ, such that cl Eα ∩G = clEβ ∩G
for each α, β ∈ A. Let γ ∈ A. Then G ∩

⋃

{Eα : α ∈ A} ⊆ cl Eγ 6= G;
a contradiction. �

In light of Proposition 1, while trying to establish that a regular cardinal κ is a
π-caliber of X , it is necessary to assume that the space X is a κ-semibaire space.

Following Comfort and Negrepontis [1], the Souslin number of X , S(X), is
the smallest cardinal κ such that no family of pairwise disjoint non-empty open
subsets of X has κ elements. Spaces with the Souslin number ω1 are usually called
ccc spaces . By the theorem of Erdös-Tarski theorem [1], if X is an infinite space,
then S(X) is an uncountable regular cardinal.

Theorem 3. Let κ be a regular infinite cardinal and let X be a κ-semibaire space

such that S(X) ≤ κ+. Then κ is a π-caliber of X .

Proof: Let P be a point-κ open family in X and let G be a non-empty open
subset of X . Assume to the contrary that for each non-empty open subset V of
G, |{U ∈ P : U ∩ V 6= ∅}| ≥ κ. By Lemma 4,

(+) If V is a non-empty open subset of G, then |{U ∈ P : U ∩ V 6= ∅}| > κ.

For each α < κ we are going to define Rα and fα so that:

(1) Rα is a family of pairwise disjoint non-empty opens subsets of X and
⋃

Rα is dense in G;
(2) fα is a one-to-one function and Dom(fα) =

⋃

{Rξ : ξ ≤ α} and
Range(fα) ⊆ P ;

(3) fα(W ) ⊃W for each W ∈ Dom(fα);
(4) fα ⊆ fβ if α < β < κ.

Suppose that Rα and fα have already been defined for each α < β, where
β < κ. Set Q = P −

⋃

{fα(Rα) : α < β}. Notice that since |fα(Rα)| ≤ κ for each
α < β, the family Q also satisfies condition (+). We proceed to constructing Rβ

and fβ.
Let {Uξ : ξ < λ} be an enumeration of Q. We set W0 = U0 ∩ G and Wα =

[G − cl(
⋃

{Uξ : ξ < α})] ∩ Uα for each α, 0 < α < λ. Clearly, the open sets Wα,
α < λ, are pairwise disjoint and, because of property (+),

⋃

{Wα : α < λ} is a
dense subset of G. Finally, we set Rβ = {Wα : α < λ and Wα 6= ∅} and fβ =
⋃

{fα : α < β} ∪ {(Wα, Uα) : α < λ and Wα 6= ∅}. One can easily see that Rα

and fα satisfy the conditions (1)–(4) for every α ≤ β; the construction is finished.
Since X is κ-semibaire, there exists A ⊆ κ, |A| = κ, such that G −

⋃

{Eα :
α ∈ A} 6= ∅, where Eα denotes the nowhere dense set G −

⋃

Rα. Pick a point
p from the set G ∩

⋂

{
⋃

Rα : α ∈ A}. For every α ∈ A let Wα be the unique
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element of Rα that contains p. Thus p ∈
⋂

{fα(Wα) : α ∈ A}. It would follow
from condition (2) that |U ∈ P : p ∈ U | ≥ κ; a contradiction. �

Theorem 4. If X is a κ-semibaire space and S(X) ≤ κ, then κ is a π-caliber

of X .

Proof: Suppose to the contrary that there exist a point-κ open family P in X
and a non-empty open set G ⊆ X such that if V is a non-empty open subset of G,
then

(�) |{U ∈ P : U ∩ V 6= ∅}| ≥ κ.

By Theorem 3, κ is a singular cardinal. Since S(X) is a regular cardinal, S(X) <
κ. Virtually the same way as in the proof of Theorem 3, one can constructRα and
fα for every α < κ (the construction goes through since the cardinality of every
Rα is < S(X) < κ and because of condition (�)). This leads to a contradiction
with P being point-κ. �

From Proposition 1 and Theorem 3 we get the following

Corollary 1. Let κ be a regular infinite cardinal and let X be a space such that

S(X) ≤ κ+. X is a κ-semibaire space if and only if κ is a π-caliber of X .

Let N∗ denote the remainder of the Čech-Stone compactification of a countable
discrete space. If p = 2ω (e.g., assuming Martin’s axiom), then N∗ is a 2ω-Baire
space (cf. [8]). Hence By Theorem 3,

Corollary 2. If p = 2ω, then 2ω is a π-caliber of N∗.

Corollary 3. For a regular infinite cardinal κ and for arbitrary space X the

following conditions are equivalent:

(a) κ is a caliber of X ;

(b) S(X) ≤ κ and for each increasing sequence {Eα : α < κ} of nowhere

dense subsets of X ,
⋃

{Eα : α < κ} is a boundary subset of X ;

(c) S(X) ≤ κ and κ is a π-caliber of X ;

(d) S(X) ≤ κ and X is κ-semibaire.

Proof: The equivalence (a)←→(b) is known (cf. [8]).
The equivalence (c)←→(d) has been established in Theorem 3.
The implication (a)−→(d) is proved in Proposition 1. We shall prove the

implication (c)−→(a).
Assume that κ is a π-caliber of X and that the cardinality of any cellular family

in X is < κ. Let P = {Uα : α < κ} be a family of non-empty open subsets of
X . Assume to the contrary that for each A ⊆ κ, |A| = κ,

⋂

{Uα : α ∈ A} = ∅.
Thus P is a point-κ open family in X . Let R be a maximal cellular family in X
such that each member of R intersects < κ members of P . Since κ is a π-caliber
of X ,

⋃

R is a dense subset of X . Let PV = {U ∈ P : U ∩ V 6= ∅}. Clearly,
⋃

{PV : V ∈ R} = P and |PV | < κ for each V ∈ R. Since we have assumed that
κ is a regular cardinal, |P| < κ; a contradiction. �
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Corollary 4 (F. Tall [14]). If X is ccc ω1-Baire space, then ω1 is a caliber of X .

Corollary 5. If κ is a regular cardinal and X is a κ-semibaire space such that

S(X) ≤ κ+, then each open point-κ family in X has cardinality ≤ κ.

Proof: Let P be an open point-κ family in X . Let R be a maximal cellular
family in X such that each member of R intersects < κ members of P . By
Theorem 3,

⋃

R is a dense subset of X . Let PV = {U ∈ P : U ∩V 6= ∅}. Clearly,
⋃

{PV : V ∈ R} = P and |PV | < κ for each V ∈ R. Since |R| ≤ κ and κ is a
regular cardinal, |P| ≤ κ. �

A π-base for X is a family C of non-empty open subsets of X such that each
non-empty open subset of X contains a member of the family C. The cardinal
number πw(X) = inf{|C| : Q is a π-base for X} is called the π-weight of X .

Theorem 5. If κ is a regular cardinal number and X is a κ-semibaire Hausdorff

space such that πw(X) ≤ κ+, then κ is a π-caliber of X .

Proof: Assume otherwise. Then there exist a point-κ open family P in X and
a non-empty open set G ⊆ X such that if V is a non-empty open subset of G,
then |{U ∈ P : U ∩ V 6= ∅}| ≥ κ. In fact, by Lemma 4, we can assume that
|{U ∈ P : U ∩ V 6= ∅}| ≥ κ+, and, by Theorem 3, that S(V ) ≥ κ++.

Let Q be a π-base for X such that |Q| ≤ κ+ and let C = {U ∈ Q : ∅ 6= U ⊆ G}.
Since S(G) ≥ κ++, |C| = κ+. Index faithfully C, say C = {Wα : α < κ+}. Since
|{U ∈ P : U ∩ V 6= ∅}| ≥ κ+ whenever V is a non-empty open subset of G, one
can (by induction) easily construct a one-to-one function f : κ+ → P so that:

(∗) For each α < κ+, Vα = Wα ∩ f (α) 6= ∅.

The condition (∗) implies that the family {Vα : α < κ+} is both a point-κ open
family in X and a π-base for G. For each α < κ+, let {Vαξ : ξ < κ} be a family
of pairwise disjoint non-empty open subsets of X such that Vαξ ⊆ Vα for each
ξ < κ. We set Fβ = G−

⋃

{Vαξ : α < κ+ and β ≤ ξ < κ}. Then {Fβ : β < κ} is
a nested upward sequence of closed subsets of G. To get a contradiction, we are
going to show that each set Fβ is nowhere dense and that

⋃

{Fβ : β < κ} = G.
To prove that Fβ is nowhere dense, take any non-empty open set V ⊆ G.

There exists α < κ+ such that Vα ⊆ V . So, if β < κ, then ∅ 6= Vαβ ⊆ V and
Vαβ ∩ Fβ = ∅.

To prove that the sets Fβ , β < κ, cover G, take any point y ∈ G. For each
α < κ+, let y(α) = 0 in case y /∈

⋃

{Vαξ : ξ < κ}, or in case y ∈
⋃

{Vαξ : ξ < κ},
let y(α) be the unique ξ such that y ∈ Vαξ. Since the family {Vα : α < κ+} is a
point-κ family, there are less than κ non-zero y(α)’s. Since κ is a regular cardinal
number, there exists β < κ such that y(α) < β for each α < κ+. �

Acknowledgment. Thanks to the anonymous referee for the valuable sugges-
tions, in particular, for suggesting a part of Problem 1, and corrections.
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