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Abstract. We apply a theoretical framework for solving a class of worst scenario prob-
lems to a problem with a nonlinear partial differential equation. In contrast to the one-
dimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583–598,
the two-dimensional problem requires stronger assumptions restricting the admissible set
to ensure the monotonicity of the nonlinear operator in the examined state problem, and,
as a result, to show the existence and uniqueness of the state solution. The existence of
the worst scenario is proved through the convergence of a sequence of approximate worst
scenarios. Furthermore, it is shown that the Galerkin approximation of the state solution
can be calculated by means of the Kachanov method as the limit of a sequence of solutions
to linearized problems.

Keywords: worst scenario problem, nonlinear differential equation, uncertain input pa-
rameters, Galerkin approximation, Kachanov method
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1. Introduction: Worst scenario problem

In this paper we extend the results obtained in [5] to a problem with an uncertain

partial differential equation.

First of all, let us present the worst scenario problem framework that we will use

later (see also [5], [8], [9]). Let us consider a real, separable and reflexive Banach

space V . Let V ∗ denote its dual space. We are concerned with state problems that

are described by means of the following operator state equation:

(1.1) Au = b, u ∈ V,

*The work was supported by the Academy of Sciences of the Czech Republic, Institutional
Research Plan No. AV0Z 30860518.
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where A : V → V ∗, b ∈ V ∗. The operator A depends on an input parameter A that

belongs to an admissible set Uad ⊂ U , where U is a Banach space. The set Uad rep-

resents an uncertainty in the input parameter of A. Consequently, the state solution
also depends on the parameter A. This A-dependent solution is then evaluated by a

criterion functional Φ that can, in general, explicitly depend on input data, so that

Φ: Uad × V → R. The goal is to solve the following worst scenario problem: Find

A0 ∈ Uad such that

(1.2) A0 = arg max
A∈Uad

Φ(A, u(A)).

The solution of (1.2) can be obtained as the limit of a sequence of solutions to

approximate worst scenario problems [5, Theorem 3.1]. To this end, we replace the

admissible set Uad by its finite-dimensional approximation UM
ad ⊂ Uad ⊂ U , and

the space V by its finite-dimenional subspace Vh. Let uh(A) ∈ Vh be the Galerkin

approximation of the state solution u(A). We define the approximate worst scenario

problem in the following way: Find AM0
h ∈ UM

ad such that

(1.3) AM0
h = arg max

AM∈UM
ad

Φ(AM , uh(AM )).

Theorem 3.1 in [5] guarantees the existence of a solution to the problem (1.2) if

the following assumptions are fulfilled:

(i) the set Uad is compact in U ;

(ii) a unique state solution u(A) of equation (1.1) exists for any parameterA ∈ Uad;

(iii) if An ∈ Uad, An → A in U and vn → v in V as n → ∞, then

Φ(An, vn) → Φ(A, v);

(iv) the set UM
ad is compact in U ;

(v) for any A ∈ Uad, there exists a unique Galerkin approximation uh(A) of the

state solution u(A);

(vi) if An ∈ Uad and An → A in U as n → ∞, then uh(An) → uh(A) in Vh;

(vii) if An ∈ Uad, An → A in U as n → ∞, and if hn → 0 as n → ∞, then
uhn

(An) → u(A) in V , where {uhn
(An)} is an n-controlled sequence of the

Galerkin approximations;

(viii) for any A ∈ Uad, there exists a sequence {AM}, AM ∈ UM
ad , M → ∞, such

that AM → A in U as M → ∞.
The basis assertion concerning the existence of the solution to the problem (1.2) is

preserved if we replace the strong convergence vn → v in (iii) and uhn
(An) → u(A)

in (vii) by the weak convergence.

460



Quasilinear elliptic boundary value problems with uncertain coefficients were stud-

ied in [6], [7], [1], [2], see also [9, Chapter III]. This paper, primarily, generalizes the

one-dimensional problem examined in [5] to a two-dimensional uncertain partial dif-

ferential equation. As well as in the case of the ordinary differential equation, we

assume that the equation coefficients depend on the squared gradient of the state

solution u. Equations of this kind describe some electromagnetic phenomena, fluid

flow phenomena, and the elastoplastic deformation of a body, see [11, p. 212]. Since

a common and more straightforward technique fails, we will prove the existence of

the worst scenario via the convergence of a sequence of solutions to approximate

worst scenario problems.

The crucial problem in this paper is to prove the monotonicity of the nonlin-

ear operator A in (1.1), which guarantees the existence of a solution to the state
problem. In addition, the monotonicity of A is required for the verification of the
assumption (vii) above. Unlike the one-dimensional case, we add an additional re-

quierement on the admissible set Uad. Consequently, the operator A is even strictly
monotone, which guarantees the uniqueness of the state solution.

To solve the approximate nonlinear state problem, the Galerkin approxima-

tion uh(A) of the state solution u(A) can be found by means of the Kachanov

Method (or Method of secant modules). We prove, motivated by [10], that a se-

quence of linearized state problems converges to the Galerkin approximation uh(A)

if an appropriate condition is fulfilled (see (2.26) below).

2. Application to problem with an uncertain partial

differential equation

In this section we apply the theoretical framework proposed in the previous section

to the following state problem: Find u ∈ H1
0 (Ω) such that

(2.1)

∫∫

Ω

A(|∇u|2)∇u · ∇v dxdy =

∫∫

Ω

fv dxdy ∀ v ∈ H1
0 (Ω),

where Ω ⊂ R
2 is a bounded open domain with a polygonal boundary, H1

0 (Ω) is the

usual Sobolev space on Ω with vanishing traces on ∂Ω, A = (aij)
2
i,j=1 is a diagonal

matrix, aii, i ∈ {1, 2}, are Lipschitz continuous fuctions on R
+
0 (nonnegative real

numbers), and f ∈ L2(Ω).

The uncertainty in the input parameter A is modeled through the admissible

set Uad. This admissible set, whose elements are represented by diagonal matrices,

is defined as the Cartesian product U1
ad × U2

ad, where, for i ∈ {1, 2}, we define

U i
ad := {aii ∈ U i0

ad : 0 < amin,i 6 aii(x) 6 amax,i ∀x ∈ R
+
0 }
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and

U i0
ad :=

{

aii ∈ C(0),1(R+
0 ) : 0 < cmin,i 6

daii

dx
6 CL,i a.e.,

aii(x) = aii(xC) for x > xC

}

,

where CL,i, cmin,i, amin,i, amax,i, xC are positive constants, and C(0),1(R+
0 ) stands

for the Lipschitz continuous functions defined on R+
0 .

We observe that Uad is a subset of the Cartesian product U2, where U is the

Banach space of functions continuous on R+
0 and constant for x > xC, with the norm

‖f‖U := max
x∈[0,xC]

|f(x)| for f ∈ U . The space U2 is a Banach space with the norm

‖(f1, f2)‖U2 := max
16i62

‖fi‖U for (f1, f2) ∈ U2.

R em a r k 2.1. The state problem (2.1) is the weak formulation of the following

boundary value problem: Find a function u ∈ C1(Ω) ∩ C2(Ω) such that

− div(A(|∇u|2)∇u) = f on Ω,(2.2)

u = 0 on ∂Ω,

where the elements of the matrix A and the right-hand side function f are sufficiently

smooth.

The operator equation (1.1) arrises from (2.1) if we set V := H1
0 (Ω) and define

A : V → V ∗ and b ∈ V ∗ by

(2.3) 〈Au, v〉 :=

∫∫

Ω

[a11(|∇u|2)uxvx + a22(|∇u|2)uyvy] dxdy

and

(2.4) 〈b, v〉 :=

∫∫

Ω

fv dxdy,

where u, v ∈ V , and where ux, vx, uy, vy denote the partial derivatives of u and v.

It is obvious that the functionals Au and b are linear. Let us define amax :=

max
16i62

amax,i. Since

|〈Au, v〉| =

∣

∣

∣

∣

∫∫

Ω

[

a11(|∇u|2)uxvx + a22(|∇u|2)uyvy

]

dxdy

∣

∣

∣

∣

(2.5)

6 amax

∫∫

Ω

[

|ux||vx| + |uy||vy|
]

dxdy

6 amax

(

‖ux‖L2(Ω)‖vx‖L2(Ω) + ‖uy‖L2(Ω)‖vy‖L2(Ω)

)

6 C0‖u‖V ‖v‖V
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and

(2.6) |〈b, v〉| =

∣

∣

∣

∣

∫∫

Ω

fv dxdy

∣

∣

∣

∣

6 C1‖v‖V ,

where C0 := 2amax, and C1 := ‖f‖L2(Ω), the functionals Au and b are also bounded.

To be able to apply [5, Theorem 3.1], we have to verify its assumptions, mentioned

in Section 1. First we will prove some auxiliary assertions.

Lemma 2.1. Let us denote amin := min
16i62

amin,i, C
max
L := max

16i62
CL,i. If we assume

that

(2.7) 4xCCmax
L 6 amin,

then the operator A defined by (2.3) is monotone, that is

(2.8) 〈Au −Av, u − v〉 > 0 for all u, v ∈ V.

P r o o f. Let us rewrite the left-hand side of (2.8) as follows:

∫∫

Ω

[

a11(u
2
x + u2

y)u2
x − a11(u

2
x + u2

y)uxvx − a11(v
2
x + v2

y)uxvx

+ a11(v
2
x + v2

y)v2
x + a22(u

2
x + u2

y)u
2
y − a22(u

2
x + u2

y)uyvy

− a22(v
2
x + v2

y)uyvy + a22(v
2
x + v2

y)v2
y

]

dxdy.

We can write the functions aii(x), i ∈ {1, 2}, as

aii(x) = ai(x) + bi,

where ai(x) is a Lipschitz continuous function on R
+
0 such that cmin,i 6 dai/dx 6

CL,i, ai(0) = 0, and ai(x) = ai(xC) for x > xC, and where bi > 4xCCmax
L . Now, the

left-hand side of (2.8) takes the form

(2.9)

∫∫

Ω

z(ux, uy, vx, vy) dxdy,

where, for u1, u2, v1, v2 ∈ R,

z(u1, u2, v1, v2) := [a1(u
2
1 + u2

2) + b1]u
2
1 − [a1(u

2
1 + u2

2) + b1]u1v1(2.10)

− [a1(v
2
1 + v2

2) + b1]u1v1 + [a1(v
2
1 + v2

2) + b1]v
2
1

+ [a2(u
2
1 + u2

2) + b2]u
2
2 − [a2(u

2
1 + u2

2) + b2]u2v2

− [a2(v
2
1 + v2

2) + b2]u2v2 + [a2(v
2
1 + v2

2) + b2]v
2
2 .
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We will show that

(2.11) z(u1, u2, v1, v2) > 0 ∀u1, u2, v1, v2 ∈ R,

hence the integral (2.9) will be non-negative and the inequality (2.8) will hold.

1. First we consider the case

(2.12) u2
1 + u2

2 6 xC and v2
1 + v2

2 6 xC.

The relation (2.10) can be equivalently written as

z(u1, u2, v1, v2) = a1(u
2
1 + u2

2)(u1 − v1)
2 + a2(u

2
1 + u2

2)(u2 − v2)
2(2.13)

+ [a1(v
2
1 + v2

2) − a1(u
2
1 + u2

2)](v
2
1 − u1v1)

+ [a2(v
2
1 + v2

2) − a2(u
2
1 + u2

2)](v
2
2 − u2v2)

+ b1(u1 − v1)
2 + b2(u2 − v2)

2.

Let us denote: α1 := a1(v
2
1 + v2

2) − a1(u
2
1 + u2

2), α2 := a2(v
2
1 + v2

2) − a2(u
2
1 + u2

2),

β1 := v2
1 − u1v1, β2 := v2

2 − u2v2. Since the functions a1 and a2 are increasing,

both α1 and α2 are either non-negative or non-positive. Three situations can be

distinguished:

(i) Let α1, α2 > 0, β1, β2 > 0, or α1, α2 6 0, β1, β2 6 0. Then evidently

z(u1, u2, v1, v2) > 0.

(ii) Let α1, α2 > 0 and β1, β2 6 0. The case α1, α2 6 0 and β1, β2 > 0 can be

treated analogously. Since the functions ai, i ∈ {1, 2}, are Lipschitz continuous
and increasing, ai(v

2
1 + v2

2) − ai(u
2
1 + u2

2) and CL,i(v
2
1 + v2

2 − u2
1 − u2

2) have the

same sign. Moreover,

|ai(v
2
1 + v2

2) − ai(u
2
1 + u2

2)| 6 |CL,i(v
2
1 + v2

2 − u2
1 − u2

2)|.

For the function z defined by (2.13) we have

z(u1, u2, v1, v2) > CL,1(v
2
1 + v2

2 − u2
1 − u2

2)(v
2
1 − u1v1)

+ CL,2(v
2
1 + v2

2 − u2
1 − u2

2)(v
2
2 − u2v2)

+ b1(u1 − v1)
2 + b2(u2 − v2)

2

=: z1(u1, u2, v1, v2).
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We will show that z1 is a non-negative function. We have

z1(u1, u2, v1, v2)

= CL,1[(v1 + u1)(v1 − u1) + (v2 + u2)(v2 − u2)]v1(v1 − u1)

+ CL,2[(v1 + u1)(v1 − u1) + (v2 + u2)(v2 − u2)]v2(v2 − u2)

+ b1(u1 − v1)
2 + b2(u2 − v2)

2

= CL,1v1(v1 + u1)(v1 − u1)
2 + CL,1v1(v2 + u2)(v1 − u1)(v2 − u2)

+ CL,2v2(v1 + u1)(v1 − u1)(v2 − u2) + CL,2v2(v2 + u2)(v2 − u2)
2

+ b1(u1 − v1)
2 + b2(u2 − v2)

2.

We infer from (2.12) that |ui| 6
√

xC, |vi| 6
√

xC, i ∈ {1, 2}. Consequently,

|CL,1v1(v2 + u2) + CL,2v2(v1 + u1)| 6 2p,

where we have set p := 2xCCmax
L . This implies that

[CL,1v1(v2 + u2) + CL,2v2(v1 + u1)](v1 − u1)(v2 − u2)

> −2p(v1 − u1)(v2 − u2)

for (v1 − u1)(v2 − u2) > 0, and

[CL,1v1(v2 + u2) + CL,2v2(v1 + u1)](v1 − u1)(v2 − u2)

> 2p(v1 − u1)(v2 − u2)

for (v1 − u1)(v2 − u2) 6 0. Moreover, it is obvious that for i ∈ {1, 2} we have

CL,ivi(vi + ui)(vi − ui)
2 > −p(vi − ui)

2,

and by virtue of (2.7), bi > 2p, i ∈ {1, 2}, and we can write bi = 2p + di, where

di > 0.

Thus, if (v1 − u1)(v2 − u2) > 0, then

z1(u1, u2, v1, v2)

> − p(v1 − u1)
2 − 2p(v1 − u1)(v2 − u2) − p(v2 − u2)

2

+ 2p(v1 − u1)
2 + 2p(v2 − u2)

2 + d1(v1 − u1)
2 + d2(v2 − u2)

2

= p[(v1 − u1) − (v2 − u2)]
2 + d1(v1 − u1)

2 + d2(v2 − u2)
2 > 0.
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If (v1 − u1)(v2 − u2) 6 0, then

z1(u1, u2, v1, v2)

> − p(v1 − u1)
2 + 2p(v1 − u1)(v2 − u2) − p(v2 − u2)

2

+ 2p(v1 − u1)
2 + 2p(v2 − u2)

2 + d1(v1 − u1)
2 + d2(v2 − u2)

2

= p[(v1 − u1) + (v2 − u2)]
2 + d1(v1 − u1)

2 + d2(v2 − u2)
2

> 0.

(iii) We consider the following four groups of assumptions:

(A) α1, α2 > 0, β1 > 0, β2 6 0,

(B) α1, α2 > 0, β1 6 0, β2 > 0,

(C) α1, α2 6 0, β1 > 0, β2 6 0,

(D) α1, α2 6 0, β1 6 0, β2 > 0.

They can be analysed in a very similar way. Let us do it for (A) only. We

have

z(u1, u2, v1, v2)

> [a1(v
2
1 + v2

2) − a1(u
2
1 + u2

2)](v
2
1 − u1v1)

+ CL,2[(v1 + u1)(v1 − u1) + (v2 + u2)(v2 − u2)]v2(v2 − u2)

+ b1(v1 − u1)
2 + b2(v2 − u2)

2

> CL,2[(v1 + u1)(v1 − u1) + (v2 + u2)(v2 − u2)]v2(v2 − u2)

+ b1(v1 − u1)
2 + b2(v2 − u2)

2

= CL,2v2(v1 + u1)(v1 − u1)(v2 − u2) + CL,2v2(v2 + u2)(v2 − u2)
2

+ b1(v1 − u1)
2 + b2(v2 − u2)

2 =: z2(u1, u2, v1, v2).

We can again use the parameters p and di, i ∈ {1, 2}, defined in (ii), and
analogously conclude: If (v1 − u1)(v2 − u2) > 0, then

z2(u1, u2, v1, v2)

> − 2p(v1 − u1)(v2 − u2) − p(v2 − u2)
2

+ p(v1 − u1)
2 + 2p(v2 − u2)

2 + (p + d1)(v1 − u1)
2 + d2(v2 − u2)

2

= p[(v1 − u1) − (v2 − u2)]
2 + (p + d1)(v1 − u1)

2

+ d2(v2 − u2)
2 > 0;

and if (v1 − u1)(v2 − u2) 6 0, then

z2(u1, u2, v1, v2)

> p[(v1 − u1) + (v2 − u2)]
2 + (p + d1)(v1 − u1)

2 + d2(v2 − u2)
2 > 0.
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2. Now, we consider the case

(2.14) u2
1 + u2

2 6 xC and v2
1 + v2

2 > xC.

The relation (2.10) becomes

z(u1, u2, v1, v2) = a1(u
2
1 + u2

2)(u1 − v1)
2 + a2(u

2
1 + u2

2)(u2 − v2)
2

+ [a1(xC) − a1(u
2
1 + u2

2)](v
2
1 − u1v1)

+ [a2(xC) − a2(u
2
1 + u2

2)](v
2
2 − u2v2)

+ b1(u1 − v1)
2 + b2(u2 − v2)

2.

Since the functions ai, i ∈ {1, 2}, are increasing and the condition u2
1 + u2

2 6 xC is

fulfilled, the expressions ai(xC) − ai(u
2
1 + u2

2), i ∈ {1, 2}, are non-negative. As in
the previous section, we denote β1 := v2

1 − u1v1, β2 := v2
2 − u2v2. We observe that

β1 < 0 and β2 < 0 is not possible. Indeed, these inequalities would imply |u1| > |v1|
and |u2| > |v2|, which contradicts (2.14).
It remains to examine the following situations:

(i) Let β1 > 0, β2 > 0. Then obviously z(u1, u2, v1, v2) > 0.

(ii) Let β1 6 0, β2 > 0, or β1 > 0, β2 6 0. We examine the first case, the other one

is analogical. We have

z(u1, u2, v1, v2) > [a1(xC) − a1(u
2
1 + u2

2)](v
2
1 − u1v1)

+ [a2(xC) − a2(u
2
1 + u2

2)](v
2
2 − u2v2)

+ b1(u1 − v1)
2 + b2(u2 − v2)

2

> CL,1(xC − u2
1 − u2

2)(v
2
1 − u1v1)

+ b1(u1 − v1)
2 + b2(u2 − v2)

2 =: z3(u1, u2, v1, v2).

If u1v1 6 0, then z3(u1, u2, v1, v2) > 0. Let us concentrate on the case u1v1 > 0.

It is sufficient to suppose that u1, v1 > 0; the other possibility can be treated

analogously. In view of the condition u2
1 + u2

2 6 xC, the function z3 is obvi-

ously bounded from below. Consequently, there exists a sufficiently large value

v2,0 > 0 such that z3(u1, u2, v1, v2) > 0 if |v2| > v2,0. Now, it is sufficient to

show that the minimum of z3 over the set M , where

M := {(u1, u2, v1, v2) ∈ R
4 : u1 > 0 ∧ v1 > 0 ∧ v1 6 u1

∧ −v2,0 6 v2 6 v2,0 ∧ u2
1 + u2

2 6 xC ∧ v2
1 + v2

2 > xC},

is equal to zero. The minimum of the function z3 over the compact set M is

either a local minimum in the interior of M , or the minimum on the boundary
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of M . At the point of a local extreme, all partial derivatives are equal to zero.

In particular, in our problem, we have

∂z3

∂v2
= −2b2(u2 − v2) = 0.

Thus, a necessary condition for a local minimum of the function z3 is u2 = v2.

By the definition of M ,

u2
1 + u2

2 6 v2
1 + v2

2 and u1, v1 > 0,

and therefore it has to be u1 6 v1 at a local minimum. The inequality v1 6 u1

has to be valid, too (see the definition ofM). Consequently, the minimum of z3

belongs to the boundary of M . The point lies on the boundary of M , if at

least one of the inequalities in the definition of M becomes an equality. We will

examine the case v2
1 + v2

2 = xC (in the others, it is obvious that z3 > 0). We

obtain

z3(u1, u2, v1, v2)

= CL,1(xC − u2
1 − u2

2)(v
2
1 − u1v1) + b1(u1 − v1)

2 + b2(u2 − v2)
2

= CL,1(v
2
1 + v2

2 − u2
1 − u2

2)(v
2
1 − u1v1) + b1(u1 − v1)

2 + b2(u2 − v2)
2

= CL,1[(v1 + u1)(v1 − u1) + (v2 + u2)(v2 − u2)]v1(v1 − u1)

+ b1(u1 − v1)
2 + b2(u2 − v2)

2

= CL,1v1(v1 + u1)(v1 − u1)
2 + CL,1v1(v2 + u2)(v1 − u1)(v2 − u2)

+ b1(u1 − v1)
2 + b2(u2 − v2)

2.

If we use the parameters p and di, i ∈ {1, 2}, defined in the previous section,
we can analogously show: If (v1 − u1)(v2 − u2) 6 0, then

z3(u1, u2, v1, v2)

> CL,1v1(v2 + u2)(v1 − u1)(v2 − u2) + b1(u1 − v1)
2 + b2(u2 − v2)

2

> p[(v1 − u1) + (v2 − u2)]
2 + d1(v1 − u1)

2 + d2(v2 − u2)
2 > 0;

and if (v1 − u1)(v2 − u2) > 0, then

z3(u1, u2, v1, v2)

> p[(v1 − u1) − (v2 − u2)]
2 + d1(v1 − u1)

2 + d2(v2 − u2)
2

> 0.

3. Finally, by considering

(2.15) u2
1 + u2

2 > xC and v2
1 + v2

2 > xC,
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we arrive at

aii(u
2
1 + u2

2) = aii(v
2
1 + v2

2) = ai(xC) + bi = Ki,

where Ki, i ∈ {1, 2}, are positive constants. Now, the left-hand side of the inequal-
ity (2.8) becomes

∫∫

Ω

[K1ux
2 − K1uxvx − K1uxvx + K1v

2
x(2.16)

+ K2uy
2 − K2uyvy − K2uyvy + K2v

2
y ] dxdy

= K1

∫∫

Ω

(ux − vx)2 dxdy + K2

∫∫

Ω

(uy − vy)2 dxdy > 0.

�

Lemma 2.2. The operator A defined by (2.3) is continuous on V .

P r o o f. We can write the operator A as the sum two operators, namely A1

and A2:

〈Au, v〉 =

∫∫

Ω

a11(|∇u|2)uxvx dxdy +

∫∫

Ω

a22(|∇u|2)uyvy dxdy

= 〈A1u, v〉 + 〈A2u, v〉.

The sum of continuous operators is continuous. That is why it is sufficient to prove

the continuity of A1. The proof of the continuity of A2 is similar.

The function q : Ω × R
2 → R defined as

q(x, y, ξ1, ξ2) = a11(ξ
2
1 + ξ2

2)ξ1

does not depend on x, y ∈ Ω and satisfies the Carathéodory conditions [4, p. 288]

and also the growth condition

|q(x, y, ξ1, ξ2)| 6 g(x) + c

2
∑

i=1

|ξi|pi/r,

where g ∈ Lr(Ω), c > 0, and p1, p2, r ∈ [1,∞). It is sufficient to set g(x) = 0,

c = amax,1, p1 = 2, p2 = 0, and r = 2. Then the operator

H : L2(Ω) × L2(Ω) → L2(Ω),

(v, w) 7→ a11(v
2 + w2)v,

is continuous, see [4, p. 288].
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Let {un} be a sequence in V such that un → u ∈ V . Then (un)x → ux and

(un)y → uy in L2(Ω). Since the operator H is continuous, we have

(2.17) a11(|∇un|2)(un)x → a11(|∇u|2)ux in L2(Ω).

We will show that ‖A1u −A1un‖V ∗ → 0. We have

‖A1u −A1un‖V ∗ = sup
‖v‖V =1

∣

∣

∣

∣

∫∫

Ω

[

a11(|∇u|2)ux − a11(|∇un|2)(un)x

]

vx dxdy

∣

∣

∣

∣

.

From the Schwarz inequality and from the fact that ‖vx‖L2(Ω) 6 ‖v‖V = 1, we obtain

∣

∣

∣

∣

∫∫

Ω

[

a11(|∇u|2)ux − a11(|∇un|2)(un)x

]

vx dxdy

∣

∣

∣

∣

6 ‖a11(|∇u|2)ux − a11(|∇un|2)(un)x‖L2(Ω)‖vx‖L2(Ω)

6 ‖a11(|∇u|2)ux − a11(|∇un|2)(un)x‖L2(Ω).

By (2.17), the last quantity tends to zero if n → ∞. �

Lemma 2.3. The operator A defined by (2.3) is coercive on V , that is,

(2.18) lim
‖u‖V →∞

〈Au, u〉
‖u‖V

= ∞.

P r o o f. Let amin be the constant defined in Lemma 2.1. We have

〈Au, u〉 :=

∫∫

Ω

[a11(|∇u|2)u2
x + a22(|∇u|2)u2

y] dxdy(2.19)

> amin

∫∫

Ω

(u2
x + u2

y) dxdy > C2‖u‖2
V ,

where C2 > 0. Consequently, (2.18) holds. �

Lemma 2.4. Suppose that the condition (2.7) is fulfilled. Then the operator A
defined by (2.3) is strictly monotone, that is,

(2.20) 〈Au −Av, u − v〉 > 0 for all u, v ∈ V, u 6= v.

P r o o f. Let u 6= v in H1
0 (Ω). Since the seminorm | · |H1(Ω) is a norm in H1

0 (Ω)

equivalent to the norm ‖ · ‖H1
0(Ω), it holds |u− v|H1

0 (Ω) > 0. This means that ux 6= vx

in L2(Ω) or uy 6= vy in L2(Ω). Consequently, there exists a set Ω1 with positive
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measure and such that ux 6= vx or uy 6= vy in Ω1. It is sufficient to prove the

following statement: If

(2.21) u1 6= v1 or u2 6= v2,

then the function z defined by (2.10) is positive. Again, we consider three cases:

1. Let

u2
1 + u2

2 6 xC and v2
1 + v2

2 6 xC.

If u2
1 + u2

2 = 0, then (2.21) implies that v1 6= 0 or v2 6= 0, and thus

z(u1, u2, v1, v2) > 0, see (2.13). If u2
1 + u2

2 > 0, the condition (2.21) guar-

antees that at least one of the first two terms in (2.13) is positive. Furthermore,

the sum of the remaining terms is non-negative (see the proof of Lemma 2.1).

Consequently, z(u1, u2, v1, v2) > 0.

2. If

u2
1 + u2

2 6 xC and v2
1 + v2

2 > xC,

we can anologously prove that z is positive.

3. Let

u2
1 + u2

2 > xC and v2
1 + v2

2 > xC.

Since |u − v|V > 0, it is obvious that (2.16) is positive.

�

Theorem 2.1. Suppose that the inequality (2.7) is fulfilled. Then the prob-

lem (2.1) has a unique solution.

P r o o f. The existence of a solution is guaranteed by [14, Theorem 2.K], see

also [5]. It is sufficient to verify that A is monotone, continuous, and coercive on V ,

which, if we suppose that 4xCCmax
L 6 amin, follows from Lemmas 2.1, 2.2, and 2.3.

In addition, according to Lemma 2.4, the operator A is strictly monotone and the
uniqueness follows from [14, p. 93, Corollary 1]. �

The last theorem means that the assumption (ii) (see Section 1) is fulfilled.

R em a r k 2.2. The existence of a weak solution to quasilinear elliptic equation

of the type (2.2) is examined also in [12]. In that work, the crucial assumption for

ensuring the existence of a weak solution is the so-called monotonicity in the main

part, see [12, p. 47]. This assumption is equivalent to our condition (2.11).
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R em a r k 2.3. In our problem, a condition of the type (2.7) to ensure (2.11)

cannot be omitted. Indeed, for example, let us consider the input parameters

a11(x) =

{

1
2x + 2 for 0 6 x 6 10,

7 for x > 10,

a22(x) =























1
10x + 1.275 for 0 6 x 6 7.25,

32
3 x − 226

3 for 7.25 < x 6 8,

1
10x + 9.2 for 8 < x 6 10,

10.2 for x > 10,

and take u1 = 2, u2 = 2, v1 = 1 and v2 = 2.5. Then, by substitution into (2.10), we

get z(u1, u2, v1, v2) = −1.125. In this case, the inequality (2.11) is not valid.

Now, we turn our attention to the approximation of the equation (2.1) and to

the corresponding approximate worst scenario problem (1.3). We will define the set

UM
ad ⊂ Uad and a finite-dimensional space Vh. Let xj , j = 1, . . . , M , be equally

spaced points in [0, xC], x1 = 0 and xM = xC. For i ∈ {1, 2}, we define

UM,i
ad := {a ∈ U i

ad : a|[xj,xj+1] ∈ P1([xj , xj+1]), j = 1, . . . , M − 1},

where P1([xj , xj+1]) denotes the linear polynomials on the interval [xj , xj+1]. The

admissible set UM is defined as the Cartesian product UM,1
ad × UM,2

ad .

To approximate the space V , we introduce a triangulation Th = {T1, . . . , TN} of Ω.
The finite-dimensional subspace Vh is defined as

(2.22) Vh := {vh ∈ V ∩ C(Ω): vh|Tj
∈ P1(Tj), j = 1, . . . , N},

where C(Ω) denotes the space of continuous functions on Ω, and P1(Tj) are poly-

nomials of degree less than or equal to one on the triangle Tj . We assume that the

diameter of any triangle Tj , j ∈ {1, . . . , N}, does not exceed h.

The Galerkin approximation uh(A) ∈ Vh of the solution to problem (2.1) is defined

by the identity

∫∫

Ω

[a11(|∇uh|2)(uh)xvx + a22(|∇uh|2)(uh)yvy] dxdy(2.23)

=

∫∫

Ω

fv dxdy ∀ v ∈ Vh.

Theorem 2.2. Suppose that the condition (2.7) is fulfilled. Then there exists a

unique Galerkin approximation uh(A) of the solution to the problem (2.1).
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P r o o f. The space Vh, as well as V , is a real, separable, and reflexive Banach

space. Since the operator A is strictly monotone, continuous, and coercive on V and,

consequently, on its subspace Vh, the existence of a unique Galerkin approximation

follows from [14, Theorem 2.K] and [14, p. 93, Corollary 1] applied to (2.23). �

Thus, the assumption (v) of Section 1 is fulfilled.

We will show in Theorem 2.3 (see bellow) that the Galerkin approximation uh(A)

of the nonlinear problem (2.1) can be determined as the limit of a sequence of solu-

tions to linearized problems.

Let us introduce the following notation. We set

a(y; u, v) :=

∫∫

Ω

[a11(|∇y|2)uxvx + a22(|∇y|2)uyvy] dxdy,

y, u, v ∈ H1
0 (Ω).

Let y ∈ H1
0 (Ω) be fixed. In view of (2.5) and (2.19), the expression a(y; ·, ·) defines

a bounded (continuous) and Vh-elliptic bilinear form.

In the proof of Theorem 2.3 we will use the equivalence of norms on finite-

dimensional spaces. To this end, we fix a triangulation Th.

First, let Vh,c be the space of functions on Ω that are constant on each triangle

Tj ∈ Th, j ∈ {1, . . . , N}. It follows from the equivalence of norms on Vh,c that

(2.24) ‖u‖L∞(Ω) 6 C3‖u‖L2(Ω) ∀u ∈ Vh,c,

where C3 > 0.

Further, we consider the corresponding space Vh. We have

(2.25) ‖ux − vx‖L2(Ω) + ‖uy − vy‖L2(Ω) 6 C4‖u − v‖V ∀u, v ∈ Vh,

where C4 > 0.

Theorem 2.3. Suppose that Th is the fixed triangulation considered above and

that Vh is the corresponding finite-dimensional space. Let Cmax
L be the constant

defined in Lemma 2.1 and let C1, C2, C3, and C4 be the constants defined in (2.6),

(2.19), (2.24), and (2.25), respectively. Moreover, we assume that

(2.26)
2C1C3C4C

max
L

√
xC

C2
2

< 1.

Under these assumptions, the Galerkin approximation uh ≡ uh(A) ∈ Vh of the

solution to the problem (2.1) can be calculated by means of the Kachanov method:
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Let u0 ∈ Vh be arbitrary. If uk ∈ Vh is known, let uk+1 ∈ Vh be defined by the

relation

a(uk; uk+1, v) = 〈b, v〉 ∀ v ∈ Vh.

Then

(2.27) ‖uh − uk‖V → 0 as k → ∞.

P r o o f. We will proceed similarly as the authors of [10]. We define a mapping

S : Vh → Vh by the formula

a(u; Su, v) = 〈b, v〉 ∀ v ∈ Vh.

Since the bilinear form a(y; ·, ·) is continuous and V -elliptic, it follows from the Lax-

Milgram theorem that the element Su is uniquely determined. Moreover,

C2‖Su‖2
V 6 a(u; Su, Su) = 〈b, Su〉 6 C1‖Su‖V ,

hence

(2.28) ‖Su‖V 6
C1

C2
,

independently of u. We will show that S is a contractive mapping on Vh. Let

u, v ∈ Vh be arbitrary. We set w := Su − Sv. Then

C2‖w‖2
V 6 a(u; w, w) = a(u; Su, w) − a(u; Sv, w)(2.29)

= 〈b, w〉 − a(u; Sv, w) = a(v; Sv, w) − a(u; Sv, w)

=

∫∫

Ω

[

a11(|∇v|2)(Sv)xwx + a22(|∇v|2)(Sv)ywy

]

dxdy

−
∫∫

Ω

[

a11(|∇u|2)(Sv)xwx + a22(|∇u|2)(Sv)ywy

]

dxdy

=

∫∫

Ω

[

(a11(|∇v|2) − a11(|∇u|2))(Sv)xwx

+ (a22(|∇v|2) − a22(|∇u|2))(Sv)ywy

]

dxdy

6 ‖a11(|∇v|2) − a11(|∇u|2)‖L∞(Ω)

∫∫

Ω

|(Sv)xwx| dxdy

+ ‖a22(|∇v|2) − a22(|∇u|2)‖L∞(Ω)

∫∫

Ω

|(Sv)ywy | dxdy =: I.

Since the partial derivatives of u and v belong to the space Vh,c defined above, in

other words they are constant on each triangle, also aii(|∇v|2) − aii(|∇u|2) ∈ Vh,c,

474



i ∈ {1, 2}. First we will show that for each element Tj ∈ Th, j ∈ {1, . . . , N}, and for
i ∈ {1, 2} the following estimate holds:

‖aii(|∇v|2) − aii(|∇u|2)‖L∞(Tj)(2.30)

6 2Cmax
L

√
xC(‖vx − ux‖L∞(Tj) + ‖vy − uy‖L∞(Tj)).

To this end, let us consider the three following cases:

1. Let |∇v|2 6 xC and |∇u|2 6 xC. Then

‖aii(|∇v|2) − aii(|∇u|2)‖L∞(Tj) 6 Cmax
L |v2

x + v2
y − u2

x − u2
y|

6 Cmax
L (|vx + ux||vx − ux| + |vy + uy||vy − uy|)

6 2Cmax
L

√
xC(‖vx − ux‖L∞(Tj) + ‖vy − uy‖L∞(Tj)).

2. Let |∇v|2 6 xC and |∇u|2 > xC. Then

‖aii(|∇v|2) − aii(|∇u|2)‖L∞(Tj)

= |aii(xC) − aii(|∇v|2)|
6 Cmax

L [xC − (v2
x + v2

y)]

= Cmax
L

(√
xC +

√

v2
x + v2

y

)(√
xC −

√

v2
x + v2

y

)

6 2Cmax
L

√
xC

(√

u2
x + u2

y −
√

v2
x + v2

y

)

6 2Cmax
L

√
xC

√

(ux − vx)2 + (uy − vy)2

6 2Cmax
L

√
xC(|ux − vx| + |uy − vy|)

= 2Cmax
L

√
xC(‖ux − vx‖L∞(Tj) + ‖uy − vy‖L∞(Tj)).

3. Let |∇v|2 > xC and |∇u|2 > xC. In this case we have

‖aii(|∇v|2) − aii(|∇u|2)‖L∞(Tj) = 0

and the estimate (2.30) holds.

Hence,

‖aii(|∇v|2) − aii(|∇u|2)‖L∞(Ω)(2.31)

= max
Tj∈Th

‖aii(|∇v|2) − aii(|∇u|2)‖L∞(Tj)

6 2Cmax
L

√
xC(‖vx − ux‖L∞(Ω) + ‖vy − uy‖L∞(Ω)).
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By combining (2.24), (2.25), (2.28), (2.31), and

∫∫

Ω

(|(Sv)xwx| + |(Sv)ywy|) dxdy

6 ‖(Sv)x‖L2(Ω)‖wx‖L2(Ω) + ‖(Sv)y‖L2(Ω)‖wy‖L2(Ω) 6 ‖Sv‖V ‖w‖V ,

we obtain

I 6 2Cmax
L

√
xC(‖ux − vx‖L∞(Ω)

+ ‖uy − vy‖L∞(Ω))

∫∫

Ω

(|(Sv)xwx| + |(Sv)ywy|) dxdy

6 2C3C
max
L

√
xC(‖ux − vx‖L2(Ω) + ‖uy − vy‖L2(Ω))‖Sv‖V ‖w‖V

6
2C1C3C4C

max
L

√
xC

C2
‖u − v‖V ‖w‖V .

By using this result in (2.29), we infer that

‖Su − Sv‖V 6
2C1C3C4C

max
L

√
xC

C2
2

‖u − v‖V .

By virtue of (2.26), the mapping S is contractive. Consequently, the Banach fixed-

point theorem gives (2.27). �

By the Arzelà-Ascoli theorem [13, page 35], the sets U i
ad, U

M,i
ad , i ∈ {1, 2}, are

compact in U . Since the Cartesian product of compact sets is compact, the admissible

sets Uad, UM
ad are compact, and the asssumptions (i) and (iv) of Section 1 are fulfilled.

Further, we show that the assumptions (vi)–(viii) from Section 1 are also fulfilled.

Theorem 2.4. Let us assume that condition (2.7) from Lemma 2.1 is valid. If

An ∈ Uad and An → A in U2 as n → ∞, then uh(An) → uh(A) in Vh.

P r o o f. Let us fix the space Vh. Let us denote the Galerkin approximation

uh(An) ∈ Vh by un. By using (2.1), (2.3), (2.4), (2.6), (2.19), and Friedrichs’ in-

equality, we obtain

‖un‖V 6
C‖f‖L2(Ω)

amin

independently of n, where C is a positive constant. Since Vh is finite-dimensional,

this sequence has a convergent subsequence {unk
}, we denote it simply by {uk}. The

corresponding subsequences of input parameters are {aii,k}, i ∈ {1, 2}. Thus,

(2.32) uk → wh in H1(Ω) as k → ∞,
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where wh is an element of Vh. We will show that wh = uh(A). Let v ∈ Vh be

arbitrary. We can write:

∫∫

Ω

fv dxdy =

∫∫

Ω

[

a11,k(|∇uk|2)(uk)xvx + a22,k(|∇uk|2)(uk)yvy

]

dxdy(2.33)

=

∫∫

Ω

[

a11,k(|∇uk|2)((uk)x − (wh)x)vx

+ a22,k(|∇uk|2)((uk)y − (wh)y)vy

]

dxdy

+

∫∫

Ω

(

[a11,k(|∇uk|2) − a11(|∇uk|2)](wh)xvx

+ [a22,k(|∇uk|2) − a22(|∇uk|2)](wh)yvy

)

dxdy

+

∫∫

Ω

(

[a11(|∇uk|2) − a11(|∇wh|2)](wh)xvx

+ [a22(|∇uk|2) − a22(|∇wh|2)](wh)yvy

)

dxdy

+

∫∫

Ω

[

a11(|∇wh|2)(wh)xvx + a22(|∇wh|2)(wh)yvy

]

dxdy

= I1 + I2 + I3 + I4.

As k → ∞, the integrals I1, I2, and I3 tend to zero by virtue of (2.32), the

boundedness and the uniform convergence of the sequences {aii,k}, i ∈ {1, 2}, the
boundedness of {uk}, and the equivalence of norms on a finite dimensional space.
Let us examine the convergence of I3. We can estimate I3 as follows:

I3 6 ‖(wh)x‖L∞(Ω)‖vx‖L∞(Ω)

∫∫

Ω

|a11(|∇uk|2) − a11(|∇wh|2)| dxdy

+ ‖(wh)y‖L∞(Ω)‖vy‖L∞(Ω)

∫∫

Ω

|a22(|∇uk|2) − a22(|∇wh|2)| dxdy

6 K1C
max
L

∫∫

Ω

||∇uk|2 − |∇wh|2| dxdy

= K1C
max
L

∫∫

Ω

|(uk)2x − (wh)2x + (uk)2y − (wh)2y| dxdy

6 K1C
max
L

(
∫∫

Ω

|(uk)x + (wh)x||(uk)x − (wh)x| dxdy

+

∫∫

Ω

|(uk)y + (wh)y ||(uk)y − (wh)y| dxdy

)

6 K1C
max
L

[

‖(uk)x + (wh)x‖L2(Ω)‖(uk)x − (wh)x‖L2(Ω)

+ ‖(uk)y + (wh)y‖L2(Ω)‖(uk)y − (wh)y‖L2(Ω)

]

6 K1K2C
max
L

[

‖(uk)x − (wh)x‖L2(Ω) + ‖(uk)y − (wh)y‖L2(Ω)

]

,
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where we have set

K1 := ‖(wh)x‖L∞(Ω)‖vx‖L∞(Ω) + ‖(wh)y‖L∞(Ω)‖vy‖L∞(Ω),

and where K2 > 0 stems from the boundedness of {uk} in H1(Ω). Thus, (2.32) im-

plies that for k → ∞ the integral I3 tends to zero.

Consequently, the left-hand side of (2.33) equals I4 for any v ∈ Vh, which means

that wh = uh(A). It follows from the uniqueness of the Galerkin approximation that

the entire sequence {un} converges to uh(A). �

To verify assumption (vii) from Section 1, we have to introduce an appropriate

sequence of finite-dimensional subspaces of V . To this end, let {Th}, h → 0, be

a regular family of triangulations of Ω. Then
⋃

h

Vh is dense in V (this is a simple

consequence of [3, Theorem 3.2.1]).

Theorem 2.5. Suppose that condition (2.7) is fulfilled. Let {An}, where An ∈
Uad and An → A in U2 as n → ∞, be a sequence of parameters. Further, let {Th},
h → 0, be a regular family of triangulations of Ω, {Thn

} ⊂ {Th}, hn → 0 as n → ∞,
be a sequence of these triangulations, {Vhn

} be the corresponding sequence of the
finite-dimenional spaces defined by (2.22), and let {uhn

(An)}, uhn
(An) ∈ Vhn

, be

the corresponding sequence of the Galerkin approximations. Then

uhn
(An) ⇀ u(A) (weakly) in V,

where u(A) is the solution of problem (2.1) for the parameter A.

P r o o f. We can prove analogously to the proof of Theorem 2.4 that the sequence

{uhn
(An)} is bounded in V .

Since V is a reflexive Banach space, the sequence {uhn
(An)} has a weakly conver-

gent subsequence, we denote it simply by {uk}, such that

(2.34) uk ⇀ w as k → ∞,

where w ∈ V .

For any u ∈ V let us define the operators A,Ak : V → V ∗ by

〈Au, v〉 :=

∫∫

Ω

[a11(|∇u|2)uxvx + a22(|∇u|2)uyvy] dxdy ∀ v ∈ V,

〈Aku, v〉 :=

∫∫

Ω

[a11,k(|∇u|2)uxvx + a22,k(|∇u|2)uyvy] dxdy ∀ v ∈ V.

By virtue of [5, Lemma 4.4], a generalization of [14, p. 94, Lemma 3], we obtain

w = u(A). It is sufficient to verify the assumptions, that is:
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(α) 〈Akuk, v〉 → 〈b, v〉 as k → ∞ ∀ v ∈ V ,

(β) 〈Akuk, uk〉 → 〈b, w〉 as k → ∞,
(γ) 〈Akv, uk〉 → 〈Av, w〉 as k → ∞ ∀ v ∈ V ,

(δ) 〈Akv, v〉 → 〈Av, v〉 as k → ∞ ∀ v ∈ V ,

where the functional b is defined by (2.4). Then w is a solution of the equation

Aw = b. We can verify (α)–(δ) analogously as in the proof of [5, Theorem 4.4]. �

Lemma 2.5. Let A ∈ Uad be arbitrary. Then there exists a sequence {AM},
AM ∈ UM

ad , such that

AM → A in U2 as M → ∞.

P r o o f. The assertion is a consequence of [5, Lemma 4.5]. �

We have shown that under condition (2.7), the assumptions from Section 1, if

we replace the strong convergence vn → v in (iii) and the strong convergence of

the Galerkin approximations in (vii) by the weak convergence, are fulfilled. It is

possible to show, analogously as in [9, Theorem 3.3], that the approximate worst

scenario problem (1.3) has at least one solution. According to [5, Theorem 3.1 and

Remark 3.1], there exists a sequence of approximate worst scenarios that converges

to A0, where A0 ∈ Uad solves the problem (1.2). Furthermore, the corresponding

sequence of state solutions weakly converges to u(A0) ∈ V , where u(A0) is the state

solution related to the parameter A0, and the corresponding sequence of values of

the criterion functional Φ converges to Φ(A0, u(A0)).

In addition, we have shown that the Galerkin approximation uh(A) of the state

solution u(A) can be calculated as the limit of a sequence of solutions to linearized

problems if the condition (2.26) is fulfilled.
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