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Abstract. In this paper, we discuss the globalization of some kind of modified Levenberg-
Marquardt methods for nonsmooth equations and their applications to nonlinear comple-
mentarity problems. In these modified Levenberg-Marquardt methods, only an approximate
solution of a linear system at each iteration is required. Under some mild assumptions, the
global convergence is shown. Finally, numerical results show that the present methods are
promising.
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1. Introduction

In the past few years, there has been a growing interest in the study of nonsmooth

equations, which is a powerful tool to study the variational inequalities problem and

the nonlinear complementarity problem, see for instance [2], [7], [8], [12], [13], [15].

The variational inequalities problem is to find x ∈ C such that

(1.1) f(x)⊤(y − x) > 0

* Supported by National Science Foundation of China (10671126), Shanghai Leading
Discipline Project (S30501), Innovation Program of Shanghai Education Commis-
sion (10YZ99), and Higher Educational Science and Technology Program of Shandong
Province (J10LA05).
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for all y ∈ C, where C is a closed convex set in R
n and f : R

n → R
n. The prob-

lem (1.1) can be reformulated as the system of nonsmooth equations

x− ProjC(x− f(x)) = 0,

where ProjC(z) is the projection of z ∈ R
n onto C.

The nonlinear complementarity problem (for short NCP) is to find a point in R
n

satisfying

(1.2) x > 0, f(x) > 0, x⊤f(x) = 0,

where f(x) = (f1(x), . . . , fn(x))⊤ : R
n → R

n is a continuously differentiable func-

tion. The problem (1.2) has many important applications in mathematical program-

ming, economic equilibrium and mechanics, see [3], [7], [15]. Based on a nonlinear

complementarity function, a nonlinear complementarity problem can be reformulated

as a nonsmooth equation. Let us consider the nonlinear complementarity function,

proposed by Fischer in [5]:

(1.3) ϕ(a, b) =
√

a2 + b2 − a− b.

The nonlinear complementarity function ϕ plays an important role in the area

of numerical methods for complementarity problems, constrained optimization and

variational inequality problems, see [6], [14]. It is easy to see that the function ϕ has

the property:

ϕ(a, b) = 0 ⇐⇒ a > 0, b > 0, ab = 0.

Define H : R
n → R

n as

H(x) := (H1(x), . . . , Hn(x))⊤ =







ϕ(x1, f1(x))
...

ϕ(xn, fn(x))






.

It is easy to see that the nonlinear complementarity problem (1.2) is equivalent to

the nonsmooth system H(x) = 0.

Facchinei and Kanzow in [7] proposed an inexact Levenberg-Marquardt-type

method for the solution of the nonlinear complementarity problem based on the

nonsmooth equation method. Actually, nonsmooth equations are much more diffi-

cult than smooth ones. Many existing classical results for smooth equations cannot

be extended to nonsmooth equations directly. This difficulty motivates us to invoke

the classical tool for solving smooth equations to solve nonsmooth equations, for
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instance, the one based upon the generalized Jacobian and the inexact Levenberg-

Marquardt-type method, see for instance [7], [15].

In this paper, we explore Levenberg-Marquardt methods for the solution of the

general nonsmooth equation

(1.4) H(x) = 0.

Then we study their applications to a nonlinear complementarity problem and non-

smooth equations of maximums of finitely many smooth functions. At each iteration,

our methods require the approximate solution of a symmetric positive semidefinite

and solvable linear system. Denote the natural merit function by

Ψ(x) =
1

2
H(x)⊤H(x).

In order to globalize the local method we perform line search to minimize the natural

merit function

ψ(a, b) =
1

2
ϕ2(a, b),(1.5)

Ψ(x) =

n
∑

i=1

ψ(xi, fi(x)).

This paper is organized as follows: In Section 2, we recall some results on the

generalized Jacobian and semismoothness. Some important properties of the opera-

tors H and Ψ are also summarized in this section. In Section 3, the globalization of

modified Levenberg-Marquardt methods for nonsmooth equations and convergence

results are given. Numerical tests are reported in Section 4.

2. Preliminaries

We start with some notions and propositions, which can be found in [7], [8],

[11], [15].

Let F : R
n → R

n be locally Lipschitzian. Then it is almost everywhere F-

differentiable. Denote the set of points where F is F-differentiable by DF . The

B-differential of F at x ∈ R
n is defined as

∂BF (x) = {V ∈ R
n×n : ∃ {xk} ∈ DF , xk → x, {F ′(xk)} → V }.

The general Jacobian of F : R
n → R

n at x in the sense of Clark is defined by

∂F (x) = conv ∂BF (x).
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Proposition 2.1. The set ∂BF (x) is nonempty and compact for any x. The

set-valued mapping x 7→ ∂BF (x) is upper semicontinuous.

Definition 2.1. F : R
n → R

n is said to be semismooth at x if F is locally

Lipschitz at x and

lim
V ∈∂F (x+th′)

h′→h, t↓0

V h′

exists for any h ∈ R
n.

Proposition 2.2. Suppose that x⋆ is a solution of (1.4) and for any V ∈
∂BH(x⋆) it is nonsingular. Then there exist a neighborhood N(x) of x⋆ and a

constant c such that

‖V −1‖ 6 c, ∀V ∈ ∂BH(x), ∀x ∈ N(x).

Proposition 2.3. If F : R
n → R

n is locally Lipschitz continuous and semis-

mooth at x, then we have

lim
V ∈∂F (x+th)

h→0

‖F (x+ h) − F (x) − V h‖
‖h‖ = 0.

Furthermore, if F : R
n → R

n is locally Lipschitz continuous, strongly semismooth

at x and directionally differentiable in a neighborhood of x, then

lim sup
V ∈∂F (x+th)

h→0

‖F (x+ h) − F (x) − V h‖
‖h‖2

<∞.

Proposition 2.4. Let f(x) = (f1(x), . . . , fn(x))⊤ be given in (1.2). We have:

(I) If f is continuously differentiable, then H is semismooth.

(II) If f is continuously differentiable and f ′(x) is locally Lipschitzian, then H is

strongly semismooth.

(III) If f is continuously differentiable then Ψ is also continuously differentiable, and

its gradient at a point x ∈ R
n is given by ∇Ψ(x) = V ⊤H(x), where V can be

an arbitrary element in ∂BH(x).

484



Proposition 2.5. Suppose f given in (1.2) is continuously differentiable. Then:

(I) Ψ(x) = 0 if and only if x solves the NCP.

(II) The set of solutions of the NCP coincides with the set of global minima of Ψ if

the NCP has a solution.

Definition 2.2. f : R
n → R

n is said to be monotone if

(x− y)⊤(f(x) − f(y)) > 0

for all x, y ∈ R
n, and f is said to be strongly monotone with modulus µ > 0 if

(x− y)⊤(f(x) − f(y)) > µ‖x− y‖2

for all x, y ∈ R
n.

Proposition 2.6 (see [9]). Suppose the function f is continuously differentiable.

Then f is monotone if and only if ∇f(x) is positive semidefinite for all x ∈ R
n.

3. Modified Levenberg-Marquardt methods and their globalization

In this section, we describe some kind of modified Levenberg-Marquardt meth-

ods for nonsmooth equations (1.4) with applications to nonlinear complementarity

systems and finitely many maximum functions systems and give global convergence

results. Roughly speaking, the following algorithms can be taken as an attempt to

solve the semismooth system of equations by using the inexact Levenberg-Marquardt

type method. We now give a modified Levenberg-Marquardt method for (1.4).

Modified Levenberg-Marquardt Method (I)

Step 0. Given an initial point x0 ∈ R
n and parameters ̺ > 0, p > 2, β ∈ (0, 1

2 ),

a < 1, ε > 0, λk
i ∈ R

n with 0 < |λk
i | <∞.

Step 1. If Ψ(xk) 6 ε, stop.

Step 2. Select an element Vk ∈ ∂BH(xk), find an approximate solution dk ∈ R
n of

the system

(3.1) ((Vk)⊤Vk + diag(λ
(k)
i Hi(xk)))d = −(Vk)⊤H(xk) + rk, Vk ∈ ∂BH(x)

for i = 1, . . . , n which satisfies

(3.2) ‖rk‖ 6 αk‖(Vk)⊤H(xk)‖,
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where rk is the vector of residuals and αk is a sequence of positive numbers such

that αk 6 a < 1 for every k. If the condition

(3.3) ∇Ψ(xk)⊤dk 6 −̺‖dk‖p

is not satisfied, set dk = −(Vk)⊤H(xk).

Step 3. Find the smallest ik ∈ {0, 1, 2, . . .} such that

(3.4) Ψ(xk + 2−ik

dk) 6 Ψ(xk) + β2−ik∇Ψ(xk)⊤dk.

Set xk+1 = xk + 2−ik

dk, let k := k + 1, and go to Step 1.

Notice that if Vk is nonsingular in (3.1), the choice of λ
k
i = 0, ‖rk‖ = 0 at each

step is allowed by the above algorithm. Then (3.1) is equivalent to the generalized

Newton equation in [13]. In what follows, as usual in analyzing the behavior of

algorithms, we shall assume that ε = 0. Then the algorithm produces an infinite

sequence of points. Similarly to Theorem 12 in [7], we give the following global

convergence result.

Theorem 3.1. Suppose that there exist constants M > 0 such that

‖diag(λ
(k)
i Hi(x))‖ 6 M <∞.

Then each accumulation point of the sequence {xk} generated by the above Modified
Levenberg-Marquardt Method (I) is a stationary point of Ψ.

P r o o f. Assume that {xk}K → x⋆. If there are infinitely many k ∈ K such that

dk = −∇Ψ(xk), then the assertion follows immediately from Proposition 1.16 in [1].

Without loss of generality, we assume that if {xk}K is a convergent subsequence

of {xk}, then dk is always given by the solution of (3.1). We show that for every

convergent subsequence {xk}K for which

(3.5) lim
k∈K, k→∞

∇Ψ(xk) 6= 0,

we have

(3.6) lim sup
k∈K, k→∞

‖dk‖ <∞

and

(3.7) lim sup
k∈K, k→∞

|∇Ψ(xk)⊤dk| > 0.
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In what follows, we assume that xk → x⋆. Suppose that x⋆ is not a stationary point

of Ψ. From (3.1) we have

‖∇Ψ(xk) − rk‖ = ‖((Vk)⊤Vk + diag(λ
(k)
i Hi(xk)))dk‖(3.8)

6 ‖(Vk)⊤Vk + diag(λ
(k)
i Hi(xk))‖‖dk‖,

so

‖dk‖ >
‖∇Ψ(xk) − rk‖

‖(Vk)⊤Vk + diag(λ
(k)
i Hi(xk))‖

.

Note that the denominator in the above inequality is nonzero, otherwise we have

∇Ψ(xk) − rk = 0 because of (3.8) together with (3.2), and we get ‖∇Ψ(xk)‖ = 0.

Then xk is a stationary point and the algorithm has stopped. By assumption

‖diag(λ
(k)
i Hi(x))‖ 6 M < ∞ and Proposition 2.1 there exists a constant k1 > 0

such that

‖(Vk)⊤Vk + diag(λ
(k)
i Hi(xk))‖ 6 k1.

From the above inequality and (3.2), we obtain

(3.9) ‖dk‖ >
1 − αk

k1
‖∇Ψ(xk)‖ >

1 − a

k1
‖∇Ψ(xk)‖.

Formula (3.6) now readily follows from the fact that we have assumed that the

direction satisfies (3.3) with p > 2, while the gradient ∇Ψ(xk) is bounded on the

convergent sequence {xk}. If (3.7) is not satisfied there exists a subsequence {xk}K′

of {xk}K with

lim
k∈K′, k→∞

|∇Ψ(xk)⊤dk| = 0.

This implies, by (3.3), that lim
k∈K′, k→∞

‖dk‖ = 0. Together with (3.9) it implies

lim
k∈K′, k→∞

‖∇Ψ(xk)‖ = 0,

which contradicts (3.5). The sequence {dk} is uniformly gradient related to {xk}
according to the definition given in [1] and the assertion of the theorem also follows

from Proposition 1.16 in [1]. �

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Let {xk} be any
sequence generated by the algorithm. If one of the accumulation points of {xk}, say
x⋆, is an isolated solution of NCP (1.1), then the entire sequence {xk} converges
to x⋆.

P r o o f. The thesis follows by Theorem 3.1 and Proposition 2.5. Let K be

a subset of {1, 2, . . .} such that xk → x⋆, k ∈ K. Since {‖∇Ψ(xk)‖}K → 0, we

get, either because dk = −∇Ψ(xk) or by (3.3) with p > 2 that {dk}K → 0. By

Lemma 4.10 in [11], the entire sequence {xk} converges to x⋆. �
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R em a r k 3.1. In Modified Levenberg-Marquardt Method (I), we also can use

the non-monotone line search stepsize

Ψ(xk + 2−ik

dk) − max
06j6m(k)

Ψ(xk−j) 6 β2−ik∇Ψ(xk)⊤dk,

where m(0) = 0, m(k) = min{m(k − 1) + 1,M0}, M0 is a nonnegative integer.

Finitely many maximum functions systems are also very useful in the study of

nonlinear complementarity problems, variational inequality problems, Karush-Kuhn-

Tucker systems of nonlinear programming problems and many problems in mechanics

and engineering. The finitely many maximum functions system which have been

proposed in [8] as
max
j∈J1

H1j(x) = 0,

...

max
j∈Jn

Hnj(x) = 0,

where Hij : R
n → R for j ∈ Ji, i = 1, . . . , n are continuously differentiable, Ji for

i = 1, . . . , n are finite index sets. Denote

Hi(x) = max
j∈Ji

Hij(x), x ∈ R
n, i = 1, . . . , n,

H(x) = (H1(x), . . . , Hn(x))⊤, x ∈ R
n,

Ji(x) = {ji ∈ N : Hij(x) = Hi(x)}, x ∈ R
n, i = 1, . . . , n;

the above finitely many maximum functions system can also be rewritten as (1.4).

R em a r k 3.2. Modified Levenberg-Marquardt Method (I) can also be used for

the above finitely many maximum functions system.

Now we give another Modified Levenberg-Marquardt method for nonsmooth equa-

tions (1.4) with applications to nonlinear complementarity systems (1.2).

Modified Levenberg-Marquardt Method (II)

Data. Given an initial x0 ∈ R
n and parameters ̺ > 0, p > 2, β ∈ (0, 1), σ ∈ (0, 1),

a < 1, ε > 0, λk
i ∈ R

n with 0 < |λk
i | <∞.

Step 1. If ‖∇Ψ(xk)‖ 6 ε, stop.

Step 2. Select an element Vk ∈ ∂BH(xk), find an approximate solution dk ∈ R
n of

the system

((Vk)⊤Vk + diag(λ
(k)
i Hi(xk)))d = −(Vk)⊤H(xk) + rk, Vk ∈ ∂BH(x),
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for i = 1, . . . , n, where rk is the vector of residuals

‖rk‖ 6 αk‖(Vk)⊤H(xk)‖,

where αk is a sequence of positive numbers such that αk 6 a < 1 for every k. If the

condition

∇Ψ(xk)⊤dk 6 −̺‖dk‖p

is not satisfied, set dk = −(∇bψ(xk
1 , f1(xk)), . . . ,∇bψ(xk

n, fn(xk)))⊤, where

∇bψ(0, 0) = 0, (a, b) 6= (0, 0), ∇bψ(a, b) = (b/
√
a2 + b2 − 1)ϕ(a, b).

Step 3. Find the smallest nonnegative integer, say mk, satisfying

(3.10) Ψ(xk + βmk

dk) − Ψ(xk) 6 −σ(βmk

)2Ψ(xk).

Set xk+1 = xk + βmk

dk, let k := k + 1, and go to Step 1.

R em a r k 3.3. In Step 3 of Modified Levenberg-Marquardt Method (II), a change

is made for the line search rule. This line search rule uses only the function values

of Ψ. This line search is motivated by the work [10].

Lemma 3.1. Let ϕ and ψ be defined by (1.3) and (1.5), respectively. Then

(i) ϕ(a, b) = 0 if and only if ψ(a, b) = 0.

(ii) ∇aψ(a, b) · ∇bψ(a, b) > 0 for all (a, b) ∈ R
n. The equality holds if and only if

ϕ(a, b) = 0.

P r o o f. (i) The desired result is satisfied by virtue of the definition (1.3) and

(1.5).

(ii) By direct computation we obtain ∇aψ(0, 0) = ∇bψ(0, 0) = 0. For (a, b) 6=
(0, 0),

∇aψ(a, b) =

(

a√
a2 + b2

− 1

)

ϕ(a, b),

∇bψ(a, b) =

(

b√
a2 + b2

− 1

)

ϕ(a, b).

Clearly,

∇aψ(a, b) · ∇bψ(a, b) =

(

a√
a2 + b2

− 1

)(

b√
a2 + b2

− 1

)

ϕ2(a, b).

It follows immediately that ∇aψ(a, b) ·∇bψ(a, b) > 0 for all (a, b) ∈ R
n. The equality

holds if and only if ϕ(a, b) = 0. �
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Lemma 3.2. Suppose f in (1.2) is continuously differentiable and monotone.

Line search rule (3.10) is then well defined.

P r o o f. Assume that there is no nonnegative integer satisfying the line search

rule (3.10). It follows that for any integer l > 0 we have

Ψ(xk + βldk) − Ψ(xk) > −σ(βl)2Ψ(xk).

Dividing the above inequality by βl and letting l → ∞, we get

Ψ′(xk, dk) > 0.

By the continuous differentiability of Ψ on R
n, we find that

∇Ψ(xk)⊤dk = Ψ′(xk, dk) > 0.

On the other hand, if xk is not a solution of Ψ(x), from the gradient of ∇Ψ(xk) we

have

∇Ψ(xk)⊤dk = −
n

∑

i=1

∇aψ(xk
i , fi(xk))∇bψ(xk

i , fi(xk)) − (dk)⊤∇f(xk)(dk).

By Proposition 2.6, the second term of the above equation is nonnegative. By

Lemma 3.1, the first term of the above equation is also nonnegative. So we get

∇Ψ(xk)⊤dk < 0.

This leads to a contradiction. Thus, the line search rule (3.10) is well defined. �

Lemma 3.3. Suppose f in (1.2) is continuously differentiable and monotone. If

∇Ψ(xk)⊤dk = 0, then we have Ψ(xk) = 0.

P r o o f. From ∇Ψ(xk)⊤dk = 0 we get ∇aψ(xk
i , fi(xk))∇bψ(xk

i , fi(xk)) = 0. By

Lemma 3.1 we have ϕ(xi
k, fi(xk)) = 0, Ψ(xk) = 0. �

Lemma 3.4. Assume f in (1.2) is continuously differentiable and strongly mono-

tone. Then the level set

L(Ψ, γ) = {x ∈ R
n : Ψ(x) 6 γ}

is bounded for any γ ∈ R
n.
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P r o o f. Suppose there exists an unbounded sequence {xk}k∈K → ∞ with

{‖xk‖}k∈K ⊂ L(Ψ, γ) for some γ > 0, where K is a subset of N . We define J =

{i ∈ {1, 2, . . .}} when {xk
i } is unbounded. Since {xk} is unbounded, J 6= ∅. Let

{zk} denote a bounded sequence defined by zk
i = 0 if i ∈ J , zk

i = xk
i otherwise. Then

from the definition of {zk} and the strong monotonicity of f(x) we obtain

µ
∑

i∈J

(xk
i )2 = µ‖xk − zk‖2 6 (xk − zk)⊤(f(xk) − f(zk))

=
∑

i∈J

xk
i (fi(xk) − fi(zk)) 6

(

∑

i∈J

(xk
i )2

)1/2
∑

i∈J

|fi(xk) − fi(zk)|.

Since
∑

i∈J

(xk
i )2 6= 0 for k ∈ K, hence dividing by

∑

i∈J

(xk
i )2 both sides of the above

formula, we get

(3.11) µ

(

∑

i∈J

(xk
i )2

)1/2

6
∑

i∈J

|fi(xk) − fi(zk)|, k ∈ K.

On the other hand, we know that {fi(zk)}k∈K is bounded (i ∈ J), because {zk}k∈K

is bounded and f(x) is continuous. From (3.11) we know that {|fi0(xk)|} → ∞ for
some i0 ∈ J . Also, {‖xk

i0‖} → ∞ by the definition of the index set J . Thus, when
k → ∞ then

ϕ(xk
i0 , fi0(xk)) → ∞.

This contradicts {xk} ⊂ L(Ψ, γ). �

Theorem 3.3. Suppose f in (1.2) is continuously differentiable and monotone.

Then each accumulation point of the sequence {xk} generated by the above proce-
dure (II) is a stationary point of Ψ.

P r o o f. Assume that {xk}K → x⋆. If there are infinitely many k ∈ K such that

dk = −(∇bψ(xk
1 , f1(xk)), . . . ,∇bψ(xk

n, fn(xk)))⊤, assume that x⋆ is an accumulation

point of {xk}, say the limit of a subsequence of {xk, k ∈ K}. Then {xk, k ∈ K} is
bounded, which implies that {dk, k ∈ K} is also bounded by virtue of the continuous
differentiability of ψ. Without loss of generality, we may assume dk → d⋆, k → ∞,
k ∈ K. Next, we discuss two cases. If {mk, k ∈ K} is bounded, then from (3.10)

∑

k∈K

Ψ(xk) <∞.

This shows that Ψ(x⋆) = 0, i.e., x⋆ is a solution of the NCP.
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Assume that {mk, k ∈ K} is unbounded. Clearly,

(3.12) ∇Ψ(x⋆)⊤d⋆ 6 0.

On the other hand, the line search rule (3.10) yields

Ψ(xk + βmk

dk) − Ψ(xk) 6 −σ(βmk

)2Ψ(xk), k ∈ K

and

Ψ(xk + βmk
−1dk) − Ψ(xk) > −σ(βmk

−1)2Ψ(xk), k ∈ K.

Dividing the above inequality by βmk−1, taking the limit and using Lemma 3.4, we

have

∇Ψ(x⋆)⊤d⋆
> 0.

From (3.12) we get

∇Ψ(x⋆)⊤d⋆ = 0.

By Lemma 3.3, Ψ(x⋆) = 0, i.e., x⋆ is a solution of the NCP. Hence, we can assume

without loss of generality that if {xk}K is a convergent subsequence of {xk}, then
dk is always given by (3.1). The rest is similar to Theorem 3.1, so we omit it. We

have completed the proof. �

Theorem 3.4. Let the assumptions of Theorem 3.3 hold. Let {xk} be a sequence
generated by the algorithm. If one of the accumulation points of {xk}, say x⋆, is an

isolated solution of NCP (1.2), then the entire sequence {xk} converges to x⋆.

P r o o f. By Theorem 3.3 and Proposition 2.5, we get the conclusion of the

theorem immediately. �

R em a r k 3.4. In Modified Levenberg-Marquardt Method (II), we also can use

the non-monotone line search; we have stepsize βmk

,

Ψ(xk + βmk

dk) − max
06j6m(k)

Ψ(xk−j) 6 −σ(βmk

)2Ψ(xk),

where m(0) = 0, m(k) = min{m(k − 1) + 1,M0}, and M0 is a nonnegative integer.
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4. Numerical test

In this section, we give the comparison of Modified Levenberg-Marquardt Meth-

od (I) with the algorithms in [4], [7]. We also present some numerical results of

Modified Levenberg-Marquardt Method (II) for nonlinear complementarity.

E x am p l e 4.1. Consider the finitely many maximum functions systems

max{H11(x1, x2), H12(x1, x2)} = 0,

max{H21(x1, x2), H22(x1, x2)} = 0,

where

H11 =
1

2
x2

1 − x2
2, H12 = x2

1, H21 =
4

5
x2

1, H22 = x2
1.

We get a nonsmooth equation

H(x) = (H1(x), H2(x))
⊤,

where H1(x) = x2
1, H2(x) = x2

1, x ∈ R
2. The natural merit function is

Ψ(x) =
1

2
H(x)⊤H(x).

Here we also use the differential of H proposed in [8]:

∂⋆H(x) = {(∇H1j1 , . . . ,∇Hnjn
)⊤ : j1 ∈ J1(x), . . . , jn ∈ Jn(x)}, x ∈ R

n.

We use the Modified Levenberg-Marquardt Method (I) for the above finitely many

maximum functions system, cf. Example 4.1. The comparison of Modified Levenberg-

Marquardt Method (I) with algorithms in [7] are listed.

Results of the numbers of function evaluations and the CPU times for Example 4.1

with the initial point x0 = (1000, 0)⊤, λ1 = 0.01, λ2 = 1, ̺ = 10, p = 3, β = 1
10 ,

ε = 1e−4 computed by the algorithm in paper [7] are listed in Tab. 4.1.

Results of the numbers of function evaluations and the CPU times for Example 4.1

with the initial point x0 = (1000, 0)⊤, λ1 = 0.01, λ2 = 1, ̺ = 10, p = 3, β = 1
10 ,

ε = 1e−4 computed by method (I) are listed in Tab. 4.2.
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Step H(x)

1 1.0e+005 ∗ (2.500000, 2.500000)⊤

2 1.0e+004 ∗ (6.250000, 6.250000)⊤

3 1.0e+004 ∗ (1.562500, 1.562500)⊤

4 1.0e+003 ∗ (3.906251, 3.906251)⊤

5 1.0e+002 ∗ (9.765633, 9.765633)⊤

6 1.0e+002 ∗ (2.441415, 2.441415)⊤

7 (61.035990, 61.035990)⊤

8 (15.259622, 15.259622)⊤

9 (3.815531, 3.815531)⊤

10 (0.954508, 0.954508)⊤

11 (0.239251, 0.239251)⊤

12 1.0e−003 ∗ (0.442255, 0.442255)⊤

Table 4.1. x0 = (1000, 0)
⊤. CPU time is 0.031000 seconds.

Step H(x)

1 1.0e+005 ∗ (2.506246, 2.506246)⊤

2 1.0e+004 ∗ (6.281269, 6.281269)⊤

3 1.0e+004 ∗ (1.574241, 1.574241)⊤

4 1.0e+003 ∗ (3.945434, 3.945434)⊤

5 1.0e+002 ∗ (9.888230, 9.888230)⊤

6 1.0e+002 ∗ (2.478233, 2.478233)⊤

7 (62.110638, 62.110638)⊤

8 (15.566454, 15.566454)⊤

9 (3.901336, 3.901336)⊤

10 (0.977770, 0.977770)⊤

11 (0.245053, 0.245053)⊤

12 1.0e−004 ∗ (0.959363, 0.959363)⊤

Table 4.2. x0 = (1000, 0)
⊤. CPU time is 0.078000 seconds.

E x am p l e 4.2. Consider the finitely many maximum functions systems

max{H11(x1, x2, x3), H12(x1, x2, x3), H13(x1, x2, x3)} = 0,

max{H21(x1, x2, x3), H22(x1, x2, x3), H23(x1, x2, x3)} = 0,

max{H31(x1, x2, x3), H32(x1, x2, x3), H33(x1, x2, x3)} = 0,

where

H11 =
1

2
x2

1 − x2
2 − 5, H12 = x2

1 − 3, H13 = x2
1 + x2

2,

H21 = x2
1 + x2

3, H22 = x2
1, H23 =

4

5
x2

1 − 8,

H31 =
1

2
x2

3, H32 = x2
3, H33 =

4

5
x2

3 − 8.
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We get the nonsmooth equation

H(x) = (H1(x), H2(x), H3(x))
⊤,

where H1(x) = x2
1 + x2

2, H2(x) = x2
1 + x2

3, H3(x) = x2
3, x ∈ R

3. The natural merit

function is

Ψ(x) =
1

2
H(x)⊤H(x).

We give the comparison of Modified Levenberg-Marquardt Method (I) with algo-

rithms in [4]. Results of the numbers of function evaluations for Example 4.2 with

the initial point x0 = (1, 1, 1)⊤, ̺ = 10, p = 3, β = 1
10 , ε = 1e−4 computed by the

algorithm in [4] and computed by Modified Levenberg-Marquardt Method (I) are

listed in Tab. 4.3. We use ‖xk −xk−1‖ 6 ε as the stop rule in Method (I) and the al-

gorithm in paper [4]. The comparison of Modified Levenberg-Marquardt Method (I)

with the algorithms in [4] are also in Tab. 4.3.

Algorithm Step H(x)

Algorithm in [4] 21 (0.007933, 0.006719, 0.006716)⊤

MLM(I) 3 (0.003911, 0.007816, 0.003906)⊤

‖xk − xk−1‖ 6 ε as stop rule

Algorithm in [4] 1955 1.0e−005 ∗ (0.118430, 0.197182, 0.104059)⊤

MLM(I) 143 (0.000512, 0.001023, 0.000511)⊤

Table 4.3. x0 = (1, 1, 1)
⊤.

Results of the numbers of function evaluations and the CPU times for Example 4.2

with the initial point x0 = (100000, 100000, 100000)⊤, ̺ = 10, p = 3, β = 1
10 ,

ε = 1e−4 computed by Modified Levenberg-Marquardt Method (I) by 28 steps gives

H(x) = (0.013596, 0.003396, 0.001831)⊤, CPU time is 0.031000 seconds. Algorithm

in [4] fails for Example 4.2.

E x am p l e 4.3. Consider the finitely many maximum functions systems

max{H11(x1, . . . , x8), . . . , H18(x1, . . . , x8)} = 0,

max{H21(x1, . . . , x8), . . . , H28(x1, . . . , x8)} = 0,

max{H31(x1, . . . , x8), . . . , H38(x1, . . . , x8)} = 0,

max{H41(x1, . . . , x8), . . . , H48(x1, . . . , x8)} = 0,

max{H51(x1, . . . , x8), . . . , H58(x1, . . . , x8)} = 0,

max{H61(x1, . . . , x8), . . . , H66(x1, . . . , x8)} = 0,

max{H71(x1, . . . , x8), . . . , H78(x1, . . . , x8)} = 0,

max{H81(x1, . . . , x8), . . . , H88(x1, . . . , x8)} = 0,
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where H11 = 1
2x

2
1 − x2

2 − 5, H12 = x2
1 − 3, H13 = x2

1 − x2
2, H14 = x2

1, H15 = 1
2x

2
1 − 5,

H16 = x2
1 − 9, H17 = x2

1 − 2
3x

2
2, H18 = x2

1 − 6, H21 = 1
2x

2
2 − x2

7 − 5, H22 = x2
2,

H23 = x2
2 − x2

6, H24 = x2
2 − 4, H25 = 1

2x
2
2 − 5, H26 = x2

2 − 9, H27 = x2
2 − 2

3x
2
8,

H28 = x2
2 − 6, H31 = 1

2x
2
1 + x2

3, H32 = x2
1 + x2

3, H33 = 1
2x

2
1 + x2

3 − 4, H34 = 1
8x

2
1 + x2

3,

H35 = x2
1 + 1

2x
2
3, H36 = x2

1 − 9, H37 = x2
3 − 2

3x
2
8, H38 = x2

3 − 6, H41 = x2
4,

H42 = x2
4 − 7, H43 = x2

4 − x2
6, H44 = x2

4 − 4, H45 = 1
2x

2
4 − 5, H46 = x2

4 − 9,

H47 = x2
4 − 2

3x
2
3, H48 = x2

4 − 6, H51 = 1
2x

2
1 + x2

5, H52 = x2
1 + x2

5, H53 = 1
2x

2
1 + x2

5 − 4,

H54 = 1
8x

2
1 + x2

5 − 89, H55 = x2
1 + 1

2x
2
5, H56 = x2

5 − 9, H57 = x2
1 − 2

3x
2
8, H58 = x2

5 − 6,

H61 = x2
6, H62 = x2

6 − 7, H63 = x2
6 − x2

7, H64 = x2
6 − 4, H65 = 1

2x
2
6 − 5, H66 = x2

6 − 9,

H67 = x2
6− 2

3x
2
7, H68 = x2

6−6, H71 = x2
2, H72 = x2

2−7, H73 = x2
2−x2

7, H74 = x2
2−4,

H75 = 1
9x

2
2 − 5, H76 = x2

2 − 5, H77 = x2
2 − 2

3x
2
7, H78 = x2

2 − 6x2
7, H81 = 1

6x
2
8 + x2

7,

H82 = x2
7 + x2

8, H83 = 1
2x

2
7 + x2

8 − 4, H84 = 1
8x

2
7 + x2

8 − 9, H85 = x2
7 + 1

2x
2
8 − 3,

H86 = x2
7 − 9, H87 = x2

8 − 2
3x

2
3, H88 = x2

8 − 1. We get the nonsmooth equation

H(x) = (H1(x), H2(x), H3(x), H4(x), H5(x), H6(x), H7(x), H8(x))
⊤,

where H1(x) = x2
1, H2(x) = x2

2, H3(x) = x2
1 + x2

3, H4(x) = x2
4, H5(x) = x2

1 + x2
5,

H6(x) = x2
6, H7(x) = x2

2, H8(x) = x2
7 + x2

8, x ∈ R
8. The natural merit function is

Ψ(x) =
1

2
H(x)⊤H(x).

Results of the numbers of function evaluations and the CPU times for Example 4.3

with the initial point x0 = (10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000)⊤,

̺ = 10, p = 3, β = 1
10 , ε = 1e−4 computed by Modified Levenberg-Marquardt

Method (I) are listed in Tab. 4.4. CPU time is 0.047000 seconds.

Step H(x)

48 1.0e−004 ∗ (1.4976, 59.1713, 37.0532, 68.6733, 37.0532, 68.6733, 59.1714, 9.5633)⊤

Table 4.4. x0 = (10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000)
⊤.

Results are shown for Example 4.3 with the initial point

x0 = (100000, 100000, 100000, 100000, 100000, 100000, 100000, 100000)⊤.

We get by 54 steps that

H(x)

= (0.001448, 0.007901, 0.001774, 0.003845, 0.001774, 0.003845, 0.007901, 0.005789)⊤

and CPU time is 0.062000 seconds.
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E x am p l e 4.4. Similarly to [7], we consider the following nonlinear complemen-

tarity problem. The function in (1.2) is of the form

f(x) = (x2
1 + 1 + x3, x

2
1 + x2 + 3, x3 − 2)⊤.

Computed by Modified Levenberg-Marquardt Method (II), results of the numbers of

iteration and the CPU times for Example 4.4 with different starting points are given

in Tab. 4.5.

Starting points Number of iterations xk CPU times

(0.1, 0.1, 1.5)⊤ 3 (0.099922, 0.099949, 2.264911)⊤ 0.031000 seconds

(0.1, 0.1, 1.8)⊤ 3 (0.099937, 0.099949, 2.034386)⊤ 0.031000 seconds

Table 4.5. Numerical results for Example 4.4.

Conclusion

The numerical results of Modified Levenberg-Marquardt Method (I) and Mod-

ified Levenberg-Marquardt Method (II) for the above examples indicate that the

algorithms work quite well in practice, which is a typical feature of Newton-type

methods. And the algorithms are fairly robust and capable of finding a solution

to the above examples with a limited amount of steps. Furthermore, in all cases

the global convergence is observed. The assumptions necessary to establish the

global convergence of the algorithms are usually met in practice. Supposing in

Theorem 3.1 that there exist constants M > 0, ‖diag(λ
(k)
i Hi(x))‖ 6 M < ∞,

we can let λ1 = 0.01, λ2 = 1 in the computation of Example 4.1. We also can

let λ1 = 0.1, λ2 = 1, by 18 steps H(x) = (0.009616, 0.009616)⊤, let λ1 = 1,

λ2 = 1, by 14 steps H(x) = (0.001385, 0.001385)⊤, but if we let λ1 = 10, λ2 = 1,

by 40 steps H(x) = (0.009379, 0.009379)⊤, if we let λ1 = 100, λ2 = 1, the al-

gorithm fails for the example. The same situation occurs in the computation of

Example 4.2. We also can let λ1 = 0.001, λ2 = 0.001, λ3 = 0.001, by 29 steps

H(x) = (0.012876, 0.003265, 0.001740)⊤, let λ1 = 0.01, λ2 = 0.01, λ3 = 0.01, by

29 steps H(x) = (0.012949, 0.003463, 0.001198)⊤, but if we let λ1 = 10, λ2 = 10,

λ3 = 10, by 45 steps H(x) = (0.009895, 0.009989, 0.000097)⊤, if we let λ1 = 1000,

λ2 = 1000, λ3 = 1000, by 2174 steps H(x) = (0.013207, 0.003102, 0.000001)⊤, the

algorithm almost fails for the example.
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