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Abstract. We consider Stanley-Reisner rings k[x1, . . . , xn]/I(H) where I(H) is the edge
ideal associated to some particular classes of hypergraphs. For instance, we consider hyper-
graphs that are natural generalizations of graphs that are lines and cycles, and for these we
compute the Betti numbers. We also generalize some known results about chordal graphs
and study a weak form of shellability.
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1. Introduction

Stanley-Reisner rings associated to graphs have been widely studied since edge

ideals were introduced by R.Villarreal in [22]. Chordal graphs have been in particular

focus and indeed, many natural results and questions seem to be connected to this

class of graphs. See for example [3], [14], [15], [17], [18], [11]. More recently, also edge

ideals of hypergraphs have been studied and many results and familiar properties of

graphs have got hypergraph analogue. See for example [7], [8], [15], [21]. Also [19]

should be mentioned. In that paper the author computes Betti numbers of many

classes of graphs.

Graphs may be generalized in several different ways of which hypergraphs is merely

one. S. Faridi introduced ([9]) a way of viewing a simplicial complex as a general-

ization of a graph. The complexes considered are called facet complexes. The idea

is to consider the facets of a complex as a kind of generalized edges. Since a graph

may be considered as a one dimensional simplicial complex, in this way one indeed

obtains a natural generalization of graphs. Many nice results may be found in [9],
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[10], [17], [18], [23]. In [23], the author introduces the class of quasi-forests, which

relates to chordal graph, see [18]. Also, in this paper, we show that they are closely

related to chordal hypergraphs.

In Section 3 we consider natural hypergraph generalizations of graphs that are

lines and cycles. We call them line hypergraphs and hypercycles. Here we generalize

known results about Betti numbers from [19].

In Section 4 we consider chordal hypergraphs, as defined in [8]. Corollary 4.4 is

known from [18], and Theorem 4.3 provides a partial generalization of this result.

The results in Section 5 are related to the concept of connectivity. Connectivity

in graph theory is a well known concept and we explore it in a hypergraph context.

Using (hypergraph) connectivity we are able to generalize some results on bounds

on Betti numbers from [19]. Also, some results connecting the depth of certain

Stanley-Reisner rings to connectivity, given in [14], can be seen in a wider context

and explained a bit deeper.

In the last section, Section 6, we consider the notion of d-shellability, a weaker

notion than ordinary shellability. We see that, to some extent, d-shellability behaves

like ordinary shellability. In particular, we show that there is an Alexander dual

notion called d-quotients, that provides a natural generalization of the concept of

linear quotients that is known to be Alexander dual to shellability. For ideals with

d-quotients we give a formula for the Betti numbers and show that these ideals admit

Betti splittings.

2. Basics

We give some basics that will be used in the paper. A good reference for hyper-

graphs is Berge’s book [1].

Let X be a finite set and E = {E1, . . . , Es} a finite collection of non empty subsets

of X . The pair H = (X , E) is called a hypergraph. The elements of X and E , respec-

tively, are called the vertices and the edges, respectively, of the hypergraph. If we

want to specify what hypergraph we consider, we may write X (H) and E(H) for the

vertices and edges respectively. A hypergraph is called simple if: (1) |Ei| > 2 for all

i = 1, . . . , s and (2) Ej ⊆ Ei only if i = j. If the cardinality of X is n we often just

use the set [n] = {1, 2, . . . , n} instead of X .

Let H be a hypergraph. A subhypergraph K of H is a hypergraph such that

X (K) ⊆ X (H), and E(K) ⊆ E(H). If Y ⊆ X , the induced hypergraph on Y, HY , is

the subhypergraph with X (HY) = Y and with E(HY ) consisting of the edges of H

that lie entirely in Y. A hypergraph H is said to be d-uniform if |Ei| = d for every

edge Ei ∈ E(H). By a uniform hypergraph we mean a hypergraph that is d-uniform

for some d. Note that a simple 2-uniform hypergraph is just an ordinary simple
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graph. In this paper we consider only simple uniform hypergraphs, and hence, by

hypergraph we will always mean a simple hypergraph.

A free vertex v of a hypergraph is, if there is one, a vertex v that lies in at most

one edge.

One type of hypergraphs of particular importance are the d-complete hypergraphs

Kd
n: The d-complete hypergraph, Kd

n, on a set of n vertices, is defined by

E(Kd
n) =

(
[n]

d

)

where
(
F

d

)
denotes the set of all subsets of F , of cardinality d. If n < d, we interpret

Kd
n as n isolated points.

Recall that an (abstract) simplicial complex on vertex set [n] is a collection, ∆,

of subsets of [n] with the property that G ⊆ F , F ∈ ∆ ⇒ G ∈ ∆. The elements

of ∆ are called the faces of the complex and the maximal (under inclusion) faces

are called facets. The set of facets of ∆ is denoted by F(∆). The dimension,

dimF , of a face F in ∆, is defined to be |F | − 1, and the dimension of ∆ is defined

as dim∆ = max{dimF ; F ∈ ∆}. Note that the empty set ∅ is the unique −1

dimensional face of every complex that is not the void complex {} which has no

faces. The dimension of the void complex may be defined as −∞. Let V ⊆ [n]. We

denote by ∆V the simplicial complex

∆V = {F ⊆ [n] ; F ∈ ∆, F ⊆ V }.

H̃n(∆; k) will denote the reduced homology of (the chain complex of) ∆ with coeffi-

cients in the field k.

To every d-uniform hypergraph on vertex set [n] we associate two simplicial com-

plexes, the Independence complex of H, ∆H, and the Clique complex of H, ∆(H).

These are defined as follows:

∆H = {F ⊆ [n] ; E 6⊆ F, ∀E ∈ E(H)}

∆(H) =
{
F ⊆ [n] ;

(
F

d

)
⊆ E(H)

}
.

Throughout the paper R will denote some polynomial ring k[x1, . . . , xn]. The

number n will be the cardinality of the vertex set of some hypergraph considered.

We use the convention that for a subset F ⊆ [n], xF =
∏

i∈F

xi. Now, let ∆ be a

simplicial complex on [n]. The Stanley-Reisner ring R/I∆ of ∆ is the quotient of

the ring R = k[x1, . . . , xn] by the Stanley-Reisner ideal

I∆ = (xF ; F 6∈ ∆)
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generated by the nonfaces of∆. Conversely, to every squarefree monomial ideal I one

may associate a unique simplicial complex ∆I in such way that its Stanley-Reisner

ideal is precisely I. If ∆ is a given simplicial complex on vertex set [n], its Alexander

dual simplicial complex is defined by

∆∗ = {F ⊆ [n]; [n] \ F 6∈ ∆}.

This yields a natural duality of squarefree monomial ideals as well. Hence we may

denote the Stanley-Reisner ideal of ∆∗ by I∗∆. More information about the relations

between the ideals I∆ and I∗∆ can be found in [20].

If I is any monomial ideal, we denote by G(I) its unique set of minimal monomial

generators.

If H is a hypergraph, the Stanley-Reisner ideal of ∆H is called the edge ideal of

H, and is denoted I(H).

Recall that the projective dimension, pdR(M) of an R-module M , is defined as

pdR(M) = max{i ; TorR
i (M, k) 6= 0}.

This number may depend on the characteristic of k. Furthermore, recall that the

number βi(M) = dimk TorR
i (M, k) is called the i’th Betti number of M . Note that

the Tor-modules and the Betti numbers are, in the cases we consider, naturally Nn-

graded. For details about the algebra used in connection with simplicial complexes,

we refer the reader to the books [2] and [20].

3. Hypercycles and line hypergraphs

In [19] the author computes the Betti numbers of, among other things, graphs that

are lines and cycles. When trying to lift these concepts to hypergraph analogue, one

may handle the increased degree of freedom in potentially many different ways. We

define line hypergraphs Ld,α
n , and hypercycles C

d,α
n in a natural way and we compute

their Betti numbers. In particular, we see that the formulas for the Betti numbers

are independent of the characteristic of the field k.

Definition 3.1. For positive integers n, α and d, where d > 2α, we define the line

hypergraph Ld,α
n as the d-uniform hypergraph with edge set E(Ld,α

n ) = {E1, . . . , En}

and vertex set X (Ld,α
n ) =

n⋃
i=1

Ei such that:

(i) For any i 6= j, Ei ∩ Ej 6= ∅ if and only if |j − i| = 1, 0 6 i 6 n.

(ii) |Ei ∩ Ei+1| = α for all i, 1 6 i 6 n − 1.

The length of a line hypergraph is defined as the number of edges.
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Definition 3.2. The hypercycle Cd,α
n is the d-uniform hypergraph with edge set

E(Cd,α
n ) = {E1, . . . , En} and vertex set X (Cd,α

n ) =
n⋃

i=1

Ei such that:

(i) For any i 6= j we have Ei ∩ Ej 6= ∅ if and only if |j − i| ≡ 1 (mod n).

(ii) |Ei ∩ Ei+1| = α for all i, 1 6 i 6 n − 1 and |E1 ∩ En| = α.

3.1. Betti numbers of line hypergraphs.

Assume that in a d-uniform hypergraph H the following holds: 1) If Ei, Ej are

two intersecting edges, then |Ei ∩ Ej | = α for some fixed α. 2) Every edge has a

free vertex. For such hypergraph it is easy to see that 2α < d must hold. This is

the motivation of the following theorem, and the reason that it is natural to divide

our further considerations into two cases, namely the case when 2α < d and the case

when 2α = d.

Theorem 3.3. Let H be a hypergraph such that each edge of H has a free vertex.

Then βi(R/I(H)) =
(
n

i

)
, where n is the number of edges of H.

P r o o f. Let E(H) = {E1, . . . , En} and vi ∈ Ei be a free vertex for any i, 1 6 i 6

n. Then, for any j, 1 6 j 6 n, xEj does not divide lcm(xE1 , . . . , xEj−1 , xEj+1 , . . . ,

xEn), since vj ∤ lcm(xE1 , . . . , xEj−1 , xEj+1 , . . . , xEn). Therefore the Taylor resolution

of R/I(H) is minimal and βi(R/I(H)) =
(
n
i

)
. �

In the following theorem, we give a combinatorial interpretation of the graded

Betti numbers of a hypergraph in which all edges have a free vertex.

Theorem 3.4. Let H be a hypergraph with edges E1, . . . , En such that each edge

has a free vertex. Then

βi,j(R/I(H)) =
∣∣∣
{

F ⊆ [n] ; |F | = i,
∣∣∣
⋃

k∈F

Ek

∣∣∣ = j
}∣∣∣.

P r o o f. Since each edge of H has a free vertex, it is enough to find the

number of basis elements ek1,...,ki
of degree j in the Taylor resolution of R/I(H).

We have deg(ek1,...,ki
) = deg(lcm(xEk1 , . . . , xEki )). Since all xEkl ’s are squarefree,

deg(lcm(xEk1 , . . . , xEki )) =
∣∣∣

i⋃
l=1

Ekl

∣∣∣, which completes the proof. �

We have the following corollary:
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Corollary 3.5. Let Ld,α
n be a line hypergraph such that d > 2α. Then

βn,j(R/I(Ld,α
n )) =

{
0 if j 6= n(d − α) + α,

1 if j = n(d − α) + α.

P r o o f. Since d > 2α, each edge has a free vertex. Thus by Theorem 3.4,

βn,j(R/I(Ld,α
n )) =

∣∣∣
{
F ⊆ [n] ; |F | = n,

∣∣∣
⋃

k∈F

Ek

∣∣∣ = j
}∣∣∣.

Therefore it equals 1 if j =
∣∣∣

n⋃
i=1

Ei

∣∣∣ and 0 if j 6=
∣∣∣

n⋃
i=1

Ei

∣∣∣. Since
∣∣∣

n⋃
i=1

Ei

∣∣∣ = n(d−α)+α,

the assertion holds. Note that n(d − α) + α = |X (Ld,α
n )|. �

To compute the Betti numbers of a line hypergraph, when d > 2α we need to

prove a lemma. Let si (1 6 i 6 r) be positive integers and Ld,α
n be a line hypergraph

of length n. Set E(s1, . . . , sr, n) = {H ; H is a subhypergraph of Ld,α
n , which is

comprised of r disjoint line hypergraphs of lengths s1, . . . , sr with no isolated vertex}.

Then we have the following lemma:

Lemma 3.6. Let s1, . . . , sr be positive integers such that 1 6 s1 = . . . = sl1 <

sl1+1 = . . . = sl1+l2 < sl1+l2+1 = . . . = sl1+l2+l3 < . . . < sl1+...+lt−1+1 = . . . =

sl1+...+lt = sr and s1 + . . . + sr = i, then |E(s1, . . . , sr, n)| = (r!/l1! . . . lt!)
(

n−i+1
r

)
.

P r o o f. Let Ld,α
n be a line hypergraph of length n and S be the set of hyper-

graphs H ∈ E(s1, . . . , sr, n) such that H is comprised of line hypergraphs Q1, . . . , Qr

such that the length of Qi is si and for any 1 6 i < j 6 r, if vλ ∈ X (Qi) and

vγ ∈ X (Qj), then λ < γ. It can be seen that |E(s1, . . . , sr, n)| = (r!/l1! . . . lt!)|S|.

We claim that there is a bijection between S and the set
{
(t1, . . . , tr+1), t1, tr+1 > 0,

t2, . . . , tr > 1,
r+1∑
l=1

tl = n − i
}
. For any H ∈ S, let H′ be the subhypergraph of

Ld,α
n with edge set E(Ld,α

n ) \ E(H). Assume H′ is comprised of l line hypergraphs

Q′
1, . . . , Q

′
l such that for any 1 6 i < j 6 l, if vλ ∈ X (Q′

i) and vγ ∈ X (Q′
j), then

λ < γ. We have r − 1 6 l 6 r + 1. Set vH = (t1, . . . , tr+1), where ti (1 6 i 6 r + 1)

are as follows:

(i) If l = r − 1, set t1, tr+1 = 0 and ti = l(Q′
i−1) for any i (2 6 i 6 r).

(ii) If l = r and v0 ∈ X (Q1), set t1 = 0 and ti = l(Q′
i) for any i (2 6 i 6 r + 1).

(iii) If l = r and v0 ∈ X (Q′
1), set tr+1 = 0 and ti = l(Q′

i) for any i (1 6 i 6 r).

(iv) If l = r + 1, set ti = l(Q′
i) for any i (1 6 i 6 r + 1).
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We have
r+1∑
k=1

tk =
l∑

k=1

l(Q′
k) = n − i. Define a function

ϕ : S −→

{
(t1, . . . , tr+1), t1, tr+1 > 0, t2, . . . , tr > 1,

r+1∑

l=1

tl = n − i

}

by ϕ(H) = vH. It is easy to see that ϕ is a bijection and hence

|S| =

∣∣∣∣
{

(t1, . . . , tr+1), t1, tr+1 > 0, t2, . . . , tr > 1,

r+1∑

l=1

tl = n − i

}∣∣∣∣

=

∣∣∣∣
{

(t′1, . . . , t
′
r+1), t′1, . . . , t

′
r+1 > 1,

r+1∑

l=1

t′l = n − i + 2

}∣∣∣∣ =

(
n − i + 1

r

)
.

Thus |E(s1, . . . , sr, n)| = (r!/l1! . . . lt!)
(
n−i+1

r

)
. �

We now give the graded Betti numbers of a line hypergraph Ld,α
n in the case when

d > 2α.

Theorem 3.7. Let i < n be an integer and let Ld,α
n be a line hypergraph such

that d > 2α. Then βi,id−α(i−r)(R/I(Ld,α
n )) =

(
i−1
r−1

)(
n−i+1

r

)
for any r, 1 6 r 6 i and

βi,j(R/I(Ld,α
n )) = 0 for all other j.

P r o o f. Let i < n and j be integers such that βi,j(R/I(Ld,α
n )) 6= 0. Since d > 2α,

each edge has a free vertex. Thus as was shown in Theorem 3.4, βi,j(R/I(Ld,α
n ) =∣∣∣

{
F ⊆ [n] ; |F | = i,

∣∣∣
⋃

k∈F

Ek

∣∣∣ = j
}∣∣∣. Let El1 , . . . , Eli be some edges of L

d,α
n such that

∣∣∣
i⋃

t=1
Elt

∣∣∣ = j and let H be the subhypergraph of Ld,α
n with edge set {El1 , . . . , Eli}

and assume that H is comprised of r line hypergraphs which are of lengths s1, . . . , sr.

Then s1 + . . . + sr = i. Let Ld,α
t ⊆ H be the line hypergraph of length st, so that

|X (Ld,α
t )| = std−α(st − 1). Therefore |X (H)| =

r∑
t=1

(std−α(st − 1)) = id−α(i− r)

and j = id − α(i − r) for some 1 6 r 6 i. Hence

βi,id−α(i−r)(R/I(Ld,α
n )) =

∑

16s16...6sr,s1+...+sr=i

|E(s1, . . . , sr, n)|

and βi,j(R/I(Ld,α
n )) = 0 for those j that can not be written in the form id−α(i−r) for

some r. Let l1, . . . , lm be positive integers and P(l1,...,lm) be the number of solutions

of x1 + . . . + xr = i such that xj > 1 (1 6 j 6 r) and li components of (x1, . . . , xr)

are equal for all i, 1 6 i 6 m. Then
∑

m>1,li>1

P(l1,...,lm) =
(

i−1
r−1

)
. Also the number of
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solutions of x1 + . . . + xr = i such that 1 6 x1 = . . . = xl1 < xl1+1 = . . . = xl1+l2 <

xl1+l2+1 = . . . = xl1+l2+l3 < . . . < xl1+...+lm−1+1 = . . . = xl1+...+lm = xr is equal to

P(l1,...,lm)l1! . . . lm!/r!. Thus using Lemma 3.6 we see that

βi,id−α(i−r)(R/I(Ld,α
n )) =

∑

m>1,li>1

P(l1,...,lm)
l1! . . . lm!

r!

r!

l1! . . . lm!

(
n − i + 1

r

)

=
∑

m>1,li>1

P(l1,...,lm)

(
n − i + 1

r

)
=

(
i − 1

r − 1

)(
n − i + 1

r

)
.

The proof is complete. �

We now consider Ld,α
n in the case when d = 2α.

Theorem 3.8. Let Ld,α
n be a line hypergraph such that d = 2α. Then the non

zero Betti numbers of R/I(Ld,α
n ) are, for 2j > i, as follows:

βi,jα(R/I(Ld,α
n )) =

(
j − i

2i − j

)(
n + 1 − 2j + 2i

j − i

)
+

(
j − i − 1

2i − j

)(
n + 1 − 2j + 2i

j − i − 1

)
.

P r o o f. Let E(Ld,α
n ) = {E1, . . . , En}, where Ei = {x1,i, . . . , xd,i}. Set Xi =

x1,i . . . xα,i and Xi+1 = xα+1,i . . . xd,i for any i, 1 6 i 6 n. Here {xα+1,i . . . xd,i} are,

for every i = 1, . . . , n− 1, the vertices in the intersection Ei ∩Ei+1. Then I(Ld,α
n ) =

(X1X2, . . . , XnXn+1). Since the Xi’s are independent variables and deg(Xi) = α,

we have βi,jα(R/I(Ld,α
n )) = βi,j(R/(X1X2, . . . , XnXn+1)). The result now follows,

using Theorem 7.7.34 of [19]. �

3.2. Betti numbers of hypercycles.

We start by giving a corollary that is similar to Corollary 3.5.

Corollary 3.9. Let Cd,α
n be a hypercycle such that each edge has a free vertex.

Then

βn,j(R/I(Cd,α
n )) =

{
0 if j 6= n(d − α),

1 if j = n(d − α).

P r o o f. By Theorem 3.4, βn,j(R/I(Cd,α
n )) =

∣∣∣
{
F ⊆ [n] ; |F | = n,

∣∣∣
⋃

k∈F

Ek

∣∣∣ =

j
}∣∣∣. Therefore it is equal to 1 if j =

∣∣∣
n⋃

t=1
Et

∣∣∣ and 0 if j 6=
∣∣∣

n⋃
t=1

Et

∣∣∣. Since
∣∣∣

n⋃
t=1

Et

∣∣∣ =

n(d − α), the assertion holds. �
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We compute the Betti numbers of the hypercycle Cd,α
n in the same manner as

in the previous section. That is, we consider the two cases d > 2α and d = 2α

separately.

Let si (1 6 i 6 r) be integers and Cd,α
n be a cycle of length n. Set F (s1, . . . , sr, n) =

{H ; H is a subhypergraph of Cd,α
n , which is comprised of r disjoint line hypergraphs

of lengths s1, . . . , sr and with no isolated vertex}, then we have the following lemma:

Lemma 3.10. Let s1, . . . , sr be positive integers such that s1 = . . . = sl1 <

sl1+1 = . . . = sl1+l2 < sl1+l2+1 = . . . = sl1+l2+l3 < . . . < sl1+...+lt−1+1 = . . . =

sl1+...+lt = sr and s1 + . . . + sr = i, then |F (s1, . . . , sr, n)| = n(r − 1)!(l1! . . . lt!)
−1 ×(

n−i−1
r−1

)
.

P r o o f. Let E1, . . . , Esr
∈ E(Cd,α

n ). The number of subgraphs of Cd,α
n , which

are comprised of r line hypergraphs Q1, . . . , Qr of lengths s1, . . . , sr and E(Qr) =

{E1, . . . , Esr
} is equal to the number of subhypergraphs of Ld,α

n−sr−2, which are com-

prised of r−1 line hypergraphs of lengths s1, . . . , sr−1. Therefore |F (s1, . . . , sr, n)| =

n|E(s1, . . . , sr−1, n− sr − 2)|, since the line hypergraph Qr can start from any of the

n edges. By Lemma 3.6, |E(s1, . . . , sr−1, n − sr − 2)| = ((r − 1)!/l1! . . . lt!)
(

n−i−1
r−1

)
,

which completes the proof. �

We now give the Betti numbers of Cd,α
n in the case when d > 2α.

Theorem 3.11. Let i < n be an integer and let Cd,α
n be a hypercycle such that

d > 2α. Then βi,id−α(i−r)(R/I(Cd,α
n )) = n

r

(
i−1
r−1

)(
n−i−1

r−1

)
for any r, 0 6 r 6 i and

βi,j(R/I(Cd,α
n )) = 0 for other j’s.

P r o o f. Since d > 2α, each edge has a free vertex. Therefore as was shown

in Theorem 3.4, βi,j(R/I(Cd,α
n )) =

∣∣∣
{ i⋃

t=1
Elt ;

∣∣∣
i⋃

t=1
Elt | = j

}∣∣∣. Let El1 , . . . , Eli be

some edges of Cd,α
n such that

∣∣∣
i⋃

t=1
Elt

∣∣∣ = j. Let H be a subhypergraph of Cd,α
n with

edges {El1 , . . . , Eli} and assume that H is comprised of r line hypergraphs which are

of lengths s1, . . . , sr. Then s1 + . . . + sr = i. Let Ld,α
t ⊆ H be a line hypergraph

of length st, then, as in the proof of Theorem 3.7, |X (Ld,α
t )| = std − α(st − 1) and

therefore |X (H)| =
r∑

t=1
(std − α(st − 1)) = id − α(i − r). Thus j = id − α(i − r) and

we see that

βi,id−α(i−r)(R/I(Cd,α
n )) =

∑

16s16...6sr,s1+...+sr=i

|F (s1, . . . , sr, n)|

and βi,j(R/I(Cd,α
n )) = 0 for all j that can not be written in the form id − α(i − r)

for some r.
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Construct the numbers P(l1,...,lm) and P(l1,...,lm)l1! . . . lm!/r! in the same way as in

the proof of Theorem 3.7. Thus using Lemma 3.10 we see that

βi,id−α(i−r)(R/I(Cd,α
n )) =

∑

m>1,li>1

P(l1,...,lm)
l1! . . . lm!

r!

n(r − 1)!

l1! . . . lm!

(
n − i − 1

r − 1

)
=

=
n

r

(
i − 1

r − 1

)(
n − i − 1

r − 1

)
,

and the proof is complete. �

Now consider the case when d = 2α.

Theorem 3.12. Let Cd,α
n be a hypercycle such that d = 2α. Then the non zero

Betti numbers of R/I(Cd,α
n ) are all in degree αj, where j 6 n and are as follows:

(i) If j < n and 2i > j, then βi,αj(R/I(Cd,α
n )) = n(n − 2(j − i))−1

(
j−i

2i−j

)(
n−2(j−i)

j−i

)
.

(ii) If n ≡ 1 mod 3 , β 2n+1

3
,αn(R/I(Cd,α

n )) = 1.

(iii) If n ≡ 2 mod 3, β 2n−1

3
,αn(R/I(Cd,α

n )) = 1.

(iv) If n ≡ 0 mod 3, β 2n
3

,αn(R/I(Cd,α
n )) = 2.

P r o o f. Let E(Cd,α
n ) = {E1, . . . , En}, where Ei = {x1,i, . . . , xd,i}. Set Xi =

x1,i . . . xα,i and Xi+1 = xα+1,i . . . xd,i for any i, 1 6 i 6 n − 1, where Xi and Xi+1

denote the same things as they did in the proof of Theorem 3.8. Then

I(Cd,α
n ) = (X1X2, . . . , Xn−1Xn, XnX1).

Since Xi are independent variables and deg(Xi) = α, we have βi,jα(R/I(Cd,α
n )) =

βi,j(X1X2, . . . , Xn−1Xn, XnX1). Using Theorem 7.6.28 of [19], the result follows.

�

We recall from [19] that a star graph is a complete bipartite graph K1,n for some

n. One generalization of this graph is the d-complete bipartite hypergraph Kd
1,n.

This kind of hypergraphs are considered in [7]. Another way of generalizing the star

graph is to focus more on its appearance. Considering the following picture of K1,4

(here on vertex set {y} ⊔ {x1, x2, x3, x4}):

x1

AA
AA

x2

}}
}}

y

x3

}}}}
x4

AAAA

it is motivated to say that the hypergraphs H considered in the next theorem also

are natural generalizations of the star graph.
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Theorem 3.13. Let H be a d-uniform hypergraph with edges E1, . . . , En such

that for any i 6= j, |Ei ∩ Ej | =
∣∣∣

n⋂
l=1

El

∣∣∣ = α and each edge has a free vertex. Then

βi,j(R/I(H)) 6= 0 if and only if j = id − α(i − 1) and βi,id−α(i−1)(R/I(H)) =
(

n
i

)
.

P r o o f. For any i and any edgesEl1 , . . . , Eli , we have
∣∣∣

i⋃
t=1

Elt

∣∣∣ = id−α(i−1) and

the number of elements of the form
i⋃

t=1
Elt is

(
n

i

)
. Therefore using Theorem 3.4, we

have βi,j(R/I(H)) 6= 0 if and only if j = id−α(i−1) and βi,id−α(i−1)(R/I(H)) =
(
n

i

)
.

�

4. Chordal hypergraphs

Chordal graphs have been considered more or less extensively for some time now.

A core result in this area is the following theorem by R. Fröberg, [14]:

Theorem 4.1. A graph G is chordal if and only if R/I(Gc) has linear resolution.

From this result Fröberg easily concluded that the complexes ∆(G), G chordal,

that are also Cohen-Macaulay, are the ones in which G is a generalized d-tree. See

[14] for details. More nice results associated to chordal graphs are given in [18] and

[11]. In [8] a notion of chordal hypergraph is given. We will use this to generalize

some previously known results on chordal graphs.

The following definition is from [8]:

Definition 4.2. A chordal hypergraph is a d-uniform hypergraph, obtained in-

ductively as follows:

• Kd
n is a chordal hypergraph, n, d ∈ N.

• If G is chordal, then so is H = G ∪Kd
j

Kd
i , for 0 6 j < i. (We attach Kd

i to G in

a common (under identification) Kd
j .)

In connection to this definition we mention two facts: First, it is easy to see that

every line hypergraph Ld,α
n is a chordal hypergraph. Indeed, it may be written as

Ld,α
n = Kd

d ∪Kd
α

Kd
d ∪Kd

α
Kd

d ∪Kd
α

. . . ∪Kd
α

Kd
d ∪Kd

α
Kd

d .

Also, as in chordal graphs, a chordal hypergraph does not contain any induced hy-

percycle Cd,α
n . This is because an induced hypergraph of a chordal hypergraph is

again chordal (see [8]). However, a hypercycle is not chordal.
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In the following theorem we will use the well known fact that the Alexander dual

notion of shellability, is the concept of linear quotients (see [18, Theorem 1.4]). This

also follows from Theorem 6.8.

Theorem 4.3. If H is chordal hypergraph, then I∆(H) has linear quotients.

P r o o f. Assume that H is chordal and ∆ = ∆(H), then inductively according

to the definition of chordal hypergraph we show that ∆∗ is shellable. We have

∆∗ = 〈X (H) \ E, |E| = d, E /∈ E(H)〉. If H = Kd
n, then ∆∗ = ∅ and the result holds.

Assume that H = L ∪Kd
j

Kd
i , where L is chordal. By induction hypothesis we have

∆∗
L = 〈X (L) \ E, |E| = d, E /∈ E(L)〉 is shellable. Assume that H1 < . . . < Hn is a

shelling for ∆∗
L. Let S1 = X (L) \ X (Kd

j ) and S2 = X (Kd
i ) \ X (Kd

j ), then for any

subset E ⊆ X (H) such that |E| = d and E /∈ E(H), one has |E ∩ S1| > 1. Let

S1 = {x1, . . . , xr}, S2 = {y1, . . . , ys} and S3 = X (Kd
j ) = {z1, . . . , zj}. For integers

1 6 l 6 d − 1 and 1 6 t 6 l, consider the simplicial complex

Al,t = 〈Ec; E ⊆ X (H), |E| = d, |E ∩ S2| = d − l, |E ∩ S1| = t, |E ∩ S3| = l − t〉.

It is easy to see that F is a facet of ∆∗ if and only if F is a facet of Al,t for some

1 6 l 6 d − 1 and 1 6 t 6 l or F = Hi ∪ S2 for some facet Hi of ∆∗
L. For

any 1 6 l 6 d − 1 and 1 6 t 6 l the facets of Al,t are all the sets of the form

{yi1 , . . . , yid−l
}c ∩ {xj1 , . . . , xjt

}c ∩ {zk1
, . . . , zkl−t

}c. First we give a shelling for Al,t

for any 1 6 l 6 d − 1 and 1 6 t 6 l. From [??, Theorem 2.9], it is known that

any skeleton of a shellable simplicial complex is again shellable. Thus 〈F c, |F | =

d−l, F ⊆ {y1, . . . , ys}〉 and 〈F c, |F | = t, F ⊆ {x1, . . . , xr}〉 and 〈F c, |F | = l−t, F ⊆

{z1, . . . , zj}〉 are shellable simplicial complexes. Let A1, . . . , Am be a shelling for the

simplicial complex 〈F c, |F | = d − l, F ⊆ {y1, . . . , ys}〉, B1, . . . , Bn be a shelling for

the simplicial complex 〈F c, |F | = t, F ⊆ {x1, . . . , xr}〉 and C1, . . . , Ck be a shelling

for the simplicial complex 〈F c, |F | = l− t, F ⊆ {z1, . . . , zj}〉. Consider the ordering

on the facets of Al,t for which Ai ∩ Bj ∩ Ck < Ai′ ∩ Bj′ ∩ Ck′ if

(i) k < k′ or

(ii) k = k′ and j < j′ or

(iii) k = k′ and j = j′ and i < i′.

Let Ai ∩ Bj ∩ Ck < Ai′ ∩ Bj′ ∩ Ck′ be two facets of Al,t. If k < k′, then there

exists v ∈ Ck′ \ Ck and k′′ < k′ such that Ck′ \ Ck′′ = {v}. So v = zn for some n

and v ∈ Ai′ ∩ Bj′ ∩ Ck′ \ Ai ∩ Bj ∩ Ck and Ai′ ∩ Bj′ ∩ Ck′ \ Ai′ ∩ Bj′ ∩ Ck′′ = {v}.

Since k′′ < k′, we have Ai′ ∩ Bj′ ∩ Ck′′ < Ai′ ∩ Bj′ ∩ Ck′ . If k = k′ and j < j′, then

by the same way there exists v ∈ Ai′ ∩Bj′ ∩Ck \Ai ∩Bj ∩Ck and j′′ < j′ such that

Ai′ ∩Bj′ ∩Ck \Ai′ ∩Bj′′ ∩Ck = {v}. Now let k = k′, j = j′ and i < i′. Then there

exists v ∈ Ai′ \ Ai and i′′ < i′ such that Ai′ \ Ai′′ = {v}. Therefore v = yn for some
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n and v ∈ Ai′ ∩ Bj ∩ Ck \ Ai ∩ Bj ∩ Ck and Ai′ ∩ Bj ∩ Ck \ Ai′′ ∩ Bj ∩ Ck = {v}

and Ai′′ ∩Bj ∩Ck < Ai′ ∩Bj ∩Ck. So the above ordering is a shelling for Al,t. Now

consider an ordering for ∆∗ as follows:

(i) For F ∈ Al,t and G ∈ Al′,t′ , set F < G if l < l′ or l = l′ and t > t′ or

(l, t) = (l′, t′) and in the ordering for Al,t discussed above, one has F < G.

(ii) For any F ∈ Al,t and G = Hj ∪ S2, set F < G.

(iii) Set H1 ∪ S2 < . . . < Hn ∪ S2.

We claim that this ordering is a shelling for ∆∗. Let F and G be two facets of ∆∗

such that F < G and let F be a facet of Ai,t and G be a facet of Aj,s. Then i 6 j.

The case (i, t) = (j, s) is discussed above. Assume that (i, t) 6= (j, s) and i = j. Then

t > s.

Let F = {yk1
, . . . , ykd−i

}c ∩ {xk′
1
, . . . , xk′

t
}c ∩ {zk′′

1
, . . . , zk′′

i−t
}c and G = {yl1, . . . ,

yld−i
}c∩{xl′

1
, . . . , xl′s

}c∩{zl′′
1
, . . . , zl′′

i−s
}c. Since t > s, i− t < i−s. Also there exists

xk′
λ

/∈ {xl′
1
, . . . , xl′s

} for some 1 6 λ 6 t. So xk′
λ
∈ G \ F and G \ ({yl1 , . . . , yld−i

}c ∩

{xl′
1
, . . . , xl′s

, xk′
λ
}c ∩ {zl′′

1
, . . . , zl′′

i−s−1
}c) = {yl1 , . . . , yld−i

, xl′
1
, . . . , xl′s

, xk′
λ
, zl′′

1
, . . . ,

zl′′
i−s−1

} \ {yl1 , . . . , yld−i
, xl′

1
, . . . , xl′s

, zl′′
1
, . . . , zl′′

i−s
} = {xk′

λ
}. Also {yl1 , . . . , yld−i

}c ∩

{xl′
1
, . . . , xl′s

, xk′
λ
}c ∩ {zl′′

1
, . . . , zl′′

i−s−1
}c < G.

Now let i < j and G = {yl1 , . . . , yld−j
}c ∩ {xl′

1
, . . . , xl′s

}c ∩ {zl′′
1
, . . . , zl′′

j−s
}c. Then

there exists ykλ
∈ G \ F . Since j > 2, we have s > 2 or j − s > 1. If s > 2,

then G \ {yl1 , . . . , yld−j
, ykλ

}c ∩ {xl′
1
, . . . , xl′

s−1
}c ∩ {zl′′

1
, . . . , zl′′

j−s
}c = {ykλ

}. Since

{yl1 , . . . , yld−j
, ykλ

}c ∩{xl′
1
, . . . , xl′

s−1
}c ∩{zl′′

1
, . . . , zl′′

j−s
}c ∈ Aj−1,s−1, then in the or-

dering it appears beforeG. If j−s > 1, thenG\{yl1 , . . . , yld−j
, ykλ

}c∩{xl′
1
, . . . , xl′s

}c∩

{zl′′
1
, . . . , zl′′

j−s−1
}c = {ykλ

} and {yl1 , . . . , yld−j
, ykλ

}c ∩ {xl′
1
, . . . , xl′s

}c ∩ {zl′′
1
, . . . ,

zl′′
j−s−1

}c ∈ Aj−1,s.

Now let F < G, where F = {yk1
, . . . , ykd−i

}c ∩ {xk′
1
, . . . , xk′

t
}c ∩ {zk′′

1
, . . . , zk′′

i−t
}c

and G = Hj ∪ S2 = {xl1 , . . . , xlλ , zl′
1
, . . . , zl′

d−λ
}c. Then there exists ym ∈ G \ F . If

λ > 1, then G \ {ym, xl1 , . . . , xlλ−1
, zl′

1
, . . . , zl′

d−λ
}c = {ym}. Otherwise λ = 1 and

d − λ > 1. Then G \ {ym, xl1 , . . . , xlλ , zl′
1
, . . . , zl′

d−λ−1
}c = {ym}. For two facets

Hi ∪ S2 < Hj ∪ S2, the result is clear. �

Corollary 4.4. The graph G is chordal if and only if I∆(G) has linear quotients.

P r o o f. The fact that the edge ideal of a chordal graph has linear quotients,

follows from the theorem. Assume R/I(∆(G)) has linear quotients. Then it has

linear resolution and thus, G is chordal. �

In [14] Fröberg considers a class of chordal graphs called n-trees.

Definition 4.5. A n-tree is a chordal graph defined inductively as follows:

• Kn+1 is a n-tree.
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• If G is a n-tree, then so is H = G∪Kn
Kn+1. (We attach Kn+1 to G in a common

(under identification) Kn).

Now, consider the corresponding subclass Td of the class of chordal hypergraphs.

That is, Td is the class of chordal hypergraphs described as follows:

• Kd
n+1 belongs to Td.

• If G belongs to Td, then so does H = G ∪Kd
n

Kd
n+1. (We attach Kd

n+1 to G in a

common (under identification) Kd
n.)

We get the following results:

Theorem 4.6. For any hypergraph H in Td, the clique complex ∆(H) is pure

shellable and hence Cohen-Macaulay.

P r o o f. The proof is by induction. If H = Kd
n+1, then ∆(H) is a simplex and

pure shellable. Let H = G∪Kd
n
Kd

n+1 and F1 < . . . < Fr be a shelling for ∆(G). Then

∆(H) = 〈F1, . . . , Fr, Fr+1〉, where Fr+1 = X (Kd
n+1). Let X (Kd

n) = L. Then L ⊆ Fi

for some 1 6 i 6 r. We claim that F1 < . . . < Fr < Fr+1 is a shelling for ∆(H). Let

Fr+1 = L∪ {v}. Then for any j 6 r, one has v ∈ Fr+1 \Fj and Fr+1 \Fi = {v}. �

Corollary 4.7. For any d-tree G, the clique complex ∆(G) is pure shellable and

hence Cohen-Macaulay.

In the proof of the following proposition, we will use the fact that the Stanley-

Reisner ideal of the complex ∆∗
I(Kd

n) is shellable. One may in fact use a lexicographic

shelling, so, by symmetry, one may start the shelling with any facet of the complex.

Proposition 4.8. Let H = Kd
m ∪Kd

j
Kd

i , m > d be given. Then I(H) has linear

quotients precisely when

(i) i, j < d, or

(ii) i > d, and j = m − 1 or j = i − 1.

P r o o f. Put A = X (H) \ X (Kd
m) and B = X (H) \ X (Kd

i ). We will show that

the Alexander dual complex of H is shellable precisely in the cases mentioned above.

Assume that F ′
1 < . . . < F ′

t is a shelling of ∆I∗(Kd
m). Set Fi = F ′

i ∪A for i = 1, . . . , t.

In the case (i) the sequence F1 < . . . < Ft is a shelling of ∆I∗(H).

In the case (ii) we find a shelling when i > d and j = m − 1. The case j = i − 1

is similar. Let i > d, j = m − 1 and X (Kd
m) \ X (Kd

j ) = {v}. Let G′
1 < . . . < G′

s

be a shelling of ∆I∗(Kd
i ). Set Gi = G′

i ∪ B for i = 1, . . . , s. It is easy to see

that the set of facets of ∆I∗(H) is {Fi}t
i=1 ∪ {Gj}s

j=1. We claim that the ordering

G1 < . . . < Gs < F1 < . . . < Ft is a shelling of ∆I∗(H). Let Gi < Fj , where
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Gi = X (H) \ E1 and Fj = X (H) \ E2 for some edges E1 of K
d
i and E2 of K

d
m. Let

E1 = {w1, . . . , wd} and E2 = {v, v1, . . . , vd−1}, where v1, . . . , vd−1 ∈ X (Kd
j ). Then

there exists 1 6 l 6 d such that wl ∈ Fj \ Gi. Set E3 = {wl, v1, . . . , vd−1}, then

X (H) \ E3 = Gk for some k and Fj \ Gk = {wl}.

Now, assume (i) and (ii) do not hold. Then i > d, m−j > 2 and i−j > 2. We first

claim that if j 6 d− 2, there is no shelling: Consider the intersection Gj ∩ Fi (same

notation as above). The two facets here correspond to two edges in H, one from Kd
m

and one from Kd
i . These two edges can at most have j elements in common. Hence,

by considering the set complements of these edges we realize that the two facets can

at most have |X (H)| − d− 2 vertices in common. This shows that no ordering of the

Fi’s and the Gj ’s can be a shelling, since dim(Fi) = dim(Gj) = X (H) − d − 1 for

every i = 1, . . . , t, j = 1, . . . , s.

So, we assume j > d − 2. Let v1, v2 ∈ X (Kd
m) \ X (Kd

j ), w1, w2 ∈ X (Kd
i ) \

X (Kd
j ) and u1, . . . , ud−2 ∈ X (Kd

j ). To finish the proof by contradiction, we as-

sume ∆I∗(H) is shellable. Consider two edges E1 = {u1, . . . , ud−2, v1, v2} and E2 =

{u1, . . . , ud−2, w1, w2}. Then Fi = X (H) \Ei for i = 1, 2 are facets of ∆I∗(H). With-

out loss of generality may assume F1 < F2. Hence there exists vertex v ∈ F2 \ F1

and facet F3 such that F2 \ F3 = {v}. Let F3 = X (H) \ E3 for some edge E3.

Since F2 \ F1 = {v1, v2}, we have v = v1 or v = v2. Therefore E3 ⊆ X (Kd
m). Also

E3 \ {v} ⊆ E2. Thus w1 ∈ E3 or w2 ∈ E3, which is a contradiction. �

We end this section with a result on the diameter of the complement of a chordal

graph. Recall that the diameter of a connected graph G is defined as

diam(G) = max{dist(u, v) ; u, v ∈ X (G)},

where dist(u, v) is the number of edges in a shortest path between u to v. If G is not

connected we set the diameter to be ∞.

Proposition 4.9. Let G be a connected chordal graph. Then the diameter of the

complementary graph Gc is at most 3.

P r o o f. If diam(Gc) > 3 we find vertices u and v with dist(u, v) = 4. Then the

induced graph of Gc on {u, v1, v2, v3, v} is the path uv1, v1v2, v2v3, v3v. The graph

complement of Gc
{u,v1,v2,v3,v} contains a 4-cycle without any chord. This contradiction

gives our result. �

4.1. d-uniform hypergraphs and quasi forests. It is known that a certain

class of simplicial complexes, called quasi-trees (see below), and chordal graphs, in

some sense contain the same information.
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Remark 4.10. Recall that a flag complex is a simplicial complex in which every

minimal non face consists of precisely 2 elements. As one easily sees, such complex

is determined by its 1-skeleton.

The following is the content of Lemma 3.1 in [18].

Lemma 4.11. Let ∆ be a simplicial complex. Then ∆ is a quasi-forest precisely

when ∆ = ∆(G) for some chordal graph G. In particular, a quasi-forest is a flag

complex.

In this section we will see that there is also a close connection between quasi-trees

and the class of chordal hypergraphs.

Definition 4.12 [Faridi, [9], Zheng, [23]]. Let ∆ be a simplicial complex. A

subcollection Γ, of ∆, is a subcomplex of ∆ such that F(Γ) ⊆ F(∆). A facet F of

∆ is called a leaf if either F is the only facet of ∆, or there exists a facet G in ∆,

G 6= F , such that F ∩ H ⊆ F ∩ G for any facet H in ∆, H 6= F .

Assume ∆ is connected. Then ∆ is called a tree if every subcollection of ∆ has a

leaf, and ∆ is called a quasi-tree if there exists an order F1, . . . , Ft of the facets of

∆ such that for each i = 1, . . . , t, Fi is a leaf of the simplicial complex 〈F1, . . . , Fi〉,

whose facets are F1, . . . , Fi. The order F1, . . . , Ft is called a leaf order. A simplicial

complex with the property that every connected component is a (quasi-)tree is called

a (quasi-)forest.

Remark 4.13. A tree is a quasi-tree, but the converse need not hold.

Let ∆ be a simplicial complex. Denote by Rd(∆) the simplicial complex obtained

from ∆ by removing every facet F with 1 6 dimF 6 d−2, and all faces G ⊆ F , with

1 6 dimG 6 dim F , that are not faces of some facet of dimension greater than d−2.

Conversely, denote by Ad(∆) the simplicial complex obtained from ∆ by adding, as

a facet, every face of dimension d − 2 that is not already in the complex.

Lemma 4.14. Let ∆(H) and ∆(G) be the clique complexes of a d-uniform hy-

pergraph H, and a graph G, respectively. Then the following holds:

• Ad(Rd(∆(H))) = ∆(H);

• Rd′(Ad′(∆(G))) = ∆(G) for all d′ < min{dimF ; F facet in ∆(G)}.

P r o o f. This follows immediately from the definition of ∆(H). �
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Lemma 4.15. Let H = G ∪Kd
j

Kd
i be a chordal hypergraph. If i < d (that is Kd

i

consists of i isolated vertices), we may exchange the attaching of Kd
i to Kd

j , with

i − j attachings of the form

H′ = G′ ∪Kd
0

Kd
1 .

P r o o f. This is clear, since either way, we are just adding a number of isolated

vertices. �

Proposition 4.16. Let H be chordal hypergraph, and let G be a chordal graph.

Then the following holds:

(i) Rd(∆(H)) is the clique complex of a chordal graph.

(ii) Ad′(∆(G)) is, for any d′, the clique complex of a d′-uniform chordal hypergraph.

P r o o f. (i) A chordal hypergraphHmay, according to its inductive construction,

be represented by a sequence of pairs of d-complete hypergraphs

(Kd
0 , Kd

i1
), . . . , (Kd

jt
, Kd

it
),

where in each step of the construction of H, Kd
is
is attached to Kd

js
. We assume

that in the construction of H, Lemma 4.15 has been used if necessary. Then every

d-complete hypergraph in the sequence (Kd
0 , Kd

i1
), . . . , (Kd

jt
, Kd

it
) yields a complete

graph, and, by considering the facets, it is clear that Rd(∆(H)) is the complex of the

chordal graph that is represented by the sequence of pairs (K0, Ki1), . . . , (Kjt
, Kit

).

This proves (i).

Now, let (K0, Kj1), . . . , (Kjt
, Kit

) denote a chordal graph G. If d′−2 > dim∆(G),

then the claim (ii) is trivial, so we assume d′ − 2 < dim∆(G). It is obvious that

Ad′(∆(G)) will be the complex of a d′-uniform hypergraph H, since every minimal

nonface has dimension d′ − 1. We now show that H is chordal. We do this by

constructing a sequence of pairs (Kd
0 , Kd

i1
), . . . , (Kd

jr
, Kd

ir
), r > t, from the sequence

(K0, Ki1), . . . , (Kjt
, Kit

), and showing that this sequence actually defines H.

First note that if is > d′, a complete graph Kis
immediately yields a d′-complete

hypergraph Kd′

is
. For such is, we get a pair (Kd′

js
, Kd′

is
), corresponding to the pair

(Kjs
, Kis

) in the sequence representing G. If is < d′, we may instead associate to

the pair (Kjs
, Kis

) a sequence of “trivial pairs”, as in Lemma 4.15. Continuing in

this way, we obtain a sequence (Kd
j1

, Kd
ii
), . . . , (Kd

jr
, Kd

ir
), representing a d′-uniform

chordal hypergraph H′.

The d′-uniform chordal hypergraph that corresponds to the constructed sequence

yields the same complex as H, and hence we conclude that they must be the same.

�
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Corollary 4.17. To every chordal hypergraph H we may associate a quasi-forest

∆, and vice versa.

P r o o f. If ∆ is a quasi-forest, then ∆ = ∆(G) for some chordal graph ([18],

Lemma 3.1). Then, according to the proposition, we may associate to ∆ the chordal

hypergraph H whose clique complex is the complex Ad′(∆(G)) in the proposition.

Conversely, given a chordal hypergraph H we may associate to it the quasi-forest

Rd(∆(H)) from the proposition. �

5. Homologically connected hypergraphs, connectivity, and depth

For graphs and simplicial complexes there is a natural notion of being connected.

This property may be described purely in terms of 0-homologies of certain chain

complexes. Furthermore, the notion of being connected is very well behaved in the

sense that if we choose the coefficients in the associated chain complex from a field

k, it does not depend on the characteristic of k. This is one reason that arguments

involving connectedness sometimes are very useful if one is trying to prove something

about a graph or a simplicial complex. In [19], S. Jacques deduces some lower bounds

on Betti numbers of graph algebras. The arguments used there are based on the

connectedness property of graphs. In this section we define in a homological fashion

a concept of connected hypergraph.

Definition 5.1. Let H be a d-uniform hypergraph and k be a field. The con-

nectivity of H over k, con(H), is defined as

con(H) = min{|V |; V ⊆ [n], dim H̃d−2((∆(H))[n]\V ; k) 6= 0}.

Definition 5.2. Let k be a field. If H is a d-uniform hypergraph with non

zero connectivity over k, we say that H is homologically connected over k. If H is

homologically connected over every field, we say that H is homologically connected.

Note that in the case of graphs, this is the usual notion of connectedness. Also,

in terms of homological connectedness, the connectivity of a d-uniform hypergraph

H, is the cardinality of a minimal disconnecting set of vertices.

Proposition 5.3. If H is homologically connected over Q, it is homologically

connected over every field k.

P r o o f. By the Universal Coefficient Theorem we have

H̃i(∆(H); k) ∼= H̃i(∆(H);Q) ⊗ k ⊕ TorZ1 (H̃i−1(∆(H)), k).

One should note that when we consider a complex ∆H of a non empty d-uniform

hypergraph, H̃l(∆(H); k) = 0 for every l 6 d − 3 over every field k. �
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Recall Hochster’s formula.

Theorem 5.4 [Hochster’s formula]. Let R/I∆ be the Stanley-Reisner ring of a

simplicial complex ∆. The non zero Betti numbers, βi,j(R/I∆) = dimTorR
i (R/I∆,

k)j, of R/I∆, are only in squarefree degrees j and may be expressed as

βi,j(R/I∆) = dimk H̃|j|−i−1(∆j; k).

Hence the total i’th Betti number may be expressed as

βi(R/I∆) =
∑

V ⊆[n]

dim H̃|V |−i−1(∆V ; k).

P r o o f. See [2], Theorem 5.5.1. �

From this it follows that

βi,j(R/I∆) =
∑

V ⊆[n]
|V |=j

dim H̃|V |−i−1(∆V ; k).

Proposition 5.5. If G is an induced hypergraph of a d-uniform hypergraph H,

such that G is not homologically connected over k, then

β|X (G)|−d+1(H) 6= 0.

P r o o f. We will use the fact that (∆(H))V = ∆(HV ). Consider Hochster’s

formula with i = |X (G)| − d + 1;

β|X (G)|−d+1(R/I∆(H)) =
∑

V ⊆X (H)

dimk H̃|V |−|X (G)|+d−2(∆(HV ); k)

> dimk H̃d−2(∆X (G); k) > 0.

�

Recall the Auslander-Buchsbaum formula: If M is a finitely generated R-module

with pdR(M) < ∞, then pdR(M) + depthR(M) = depthR(R). For a proof, see [2],

Theorem 1.3.3.
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Corollary 5.6. If G is an induced hypergraph of a d-uniform hypergraph H, such

that G is not homologically connected over k, then

|X (G)| − d + 1 6 pdR(R/I∆(H)) 6 n,

0 6 depthR(R/I∆(H)) 6 n − |X (G)| + d − 1,

where n = |X (H)|.

P r o o f. It is well know that (Hilbert’s Syzygy Theorem) n > pdR(R/I∆(H)).

Furthermore, according to the lemma, β|X (G)|−d+1(H) > 0. This gives the first

assertion. The second follows from the first using the Auslander-Buchsbaum formula.

�

Corollary 5.7. If H is a d-uniform hypergraph that is not homologically con-

nected over k, then

n − d + 1 6 pdR(R/I∆(H)) 6 n,

0 6 depthR(R/I∆(H)) 6 d − 1,

where n = |X (H)|.

If H is a d-uniform hypergraph that is not homologically connected, we will see

in Theorem 5.11 below, that the two inequalities in the above corollary may in fact

be replaced by two equalities. First, we prove the following theorem, which connects

the depth of the Stanley-Reisner ring R/I∆(H), with the connectivity of H.

Theorem 5.8. Let ∆(H) be the complex of a d-uniform hypergraph H and put

g = depthR(R/I∆(H)). Then,

con(H) = g − d + r + 1,

where r is the minimal number such that βn−g−r,n−g−r+d−1(R/I∆(H), k) 6= 0. That

is, r is the minimal number such that there exists a V ⊆ [n], |V | = n− (g−d+ r+1)

with H̃d−2(∆V ; k) 6= 0.

Remark 5.9. If H is a d-uniform hypergraph, recall that the linear strand of a

resolution of R/I∆(H) (or for short, the linear strand of R/I∆(H)) is the part of the

resolution that is of degrees (i, i + d − 1). Note that r = pdR(R/I∆(H)) − max{i ;

βi,i+d−1(R/I∆(H)) 6= 0}.
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P r o o f. We know that TorR
n−g(R/I∆(H), k) 6= 0, but TorR

n−i(R/I∆(H); k) = 0 for

every i < g. In particular, TorR
n−i(R/I∆(H); k)j = 0 in every degree j if i < g. This

gives, via Hochster’s formula, that H̃|V |−(n−i+1)(∆V ; k) = 0 for every V ⊆ [n], i < g,

and that there exists a V ⊆ [n] such that H̃|V |−(n−g+1)(∆V ; k) 6= 0. Let r > 0 be the

minimal number such that TorR
n−(g+r)(R/I∆(H); k)j 6= 0 for j = n−(g−d+r+1). This

is the same thing as saying that there exists a V ⊆ [n], |V | = n− (g−d+ r+1), such

that H̃d−2(∆V ; k) 6= 0 but at the same time, for any V ⊆ [n], |V | > n−(g−d+r+1),

the homology of ∆V in degree d − 2 is zero. This means precisely that con(H) =

g − d + r + 1. �

If H is 2-uniform (that is, if H is an ordinary simple graph) and we have linear

resolution, the following is Lemma 3 in [14].

Corollary 5.10. Let H be a d-uniform hypergraph and suppose the length of the

linear strand of R/I∆(H) is maximal. Then

depthR(R/I∆(H)) = con(H) + d − 1.

Theorem 5.11. Let H be a d-uniform hypergraph. Then H is not homologically

connected over k precisely when

pdR(R/I∆(H)) = n − d + 1,

depthR(R/I∆(H)) = d − 1,

where n = |X (H)|, and the length of the linear strand of R/I∆(H) is maximal.

P r o o f. We know that n − d + 1 6 pdR(R/I∆(H)) 6 n. Put pdR(R/I∆(H)) =

n − r, 0 6 r 6 d − 1. Hochster’s formula gives

βn−r(R/I∆(H)) =
∑

V ⊆X (H)

dimk H̃|V |−(n−r)−1(∆(HV ); k).

If r 6 d−2 we get that |V |−(n−r)−1 6 |V |−n+d−3 6 d−3. But H̃l(∆(HV ); k) = 0

for all l 6 d − 3 and for all V ⊆ X (H).

The last claim follows from Corollary 5.10, since being not homologically con-

nected, is the same thing as having connectivity 0. �

Example 5.12. Since homologically connected and connected are the same

things for an ordinary simple graph G, we have pdR(R/I∆(G)) = n − 1 and

depthR(R/I∆(G)) = 1 for any simple graph G that is not connected. Further-

more, the length of the linear strand of R/I∆G
is maximal. This special case of

Theorem 5.11 is Theorem 4.2.6 in [19].
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Corollary 5.13. Let H be a d-uniform hypergraph. If R/I∆(H) is Cohen-

Macaulay of dimension at least d, then H has non zero connectivity. Put another

way, the only d-uniform hypergraph H with connectivity 0 such that R/I∆(H) is

Cohen-Macaulay, is the discrete hypergraph.

Example 5.14. In [7] we considered several kinds of complete hypergraphs. For

example the d-complete multipartite hypergraph Kd
n1,...,nt

. This is the hypergraph

on vertex set X = [n1] ⊔ . . . ⊔ [nt], where ⊔ denotes disjoint union, and with edge

set consisting of every d-set of X (that is, every subset of X of cardinality d) that

does not lie entirely inside one of the [ni]’s. This is a natural generalization of the

usual complete multipartite graph Kn1,...,nt
. Precisely as (Kn1,...,nt

)c, the comple-

ment (Kd
n1,...,nt

)c of the d-complete multipartite hypergraph is not homologically

connected.

In Propositions 3.9 and 3.20 in [7], we determined when a couple of such complete

hypergraphs in addition to having linear resolutions also has the Cohen-Macaulay

property. The conclusion there is that the only case in which this happens, is in the

extremal case when the considered hypergraph in fact is isomorphic to a d-complete

hypergraph. This fact now follows immediately from the above corollary, since it is

easily seen (by computing the Betti numbers) that the considered hypergraphs are

not homologically connected.

Proposition 5.15. Let H be a d-uniform hypergraph on vertex set [n]. Then the

Betti number βn−d+1(R/I∆(H)) can be non zero only in degree n. Furthermore, it

determines whether H has non zero connectivity or not.

P r o o f. This follows from Hochster’s formula and the fact that βi,j(R/I∆(H)) =

0 if j < i + d − 1. �

Remark 5.16. In case of ordinary simple graphs, by the above proposition, the

number βn−1(R/I∆(G)) + 1 is the number of connected components of G.

Example 5.17. Let H be the 3-uniform hypergraph on vertex set {a, b, c, d} and

with edge set E(H) = {abc, bcd} (we let xyz denote the edge {x, y, z}). We may

visualize H as follows:

b

��
�� <<

<

a
>>

>>
d

��
�

c

By computing the Betti numbers of R/I∆(H) using some suitable computer program,

one sees that β2(R/I∆(H)) = 1. If we add to the edge set the edge abd, the resulting

hypergraph has non zero connectivity.
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Example 5.18. Let H be the 3-uniform hypergraph on vertex set {a, b, c, d, e}

and with edge set E(H) = {abc, cde}. H is illustrated below:

a
>>

>>
d

��
�

c

b

����
e

>>>>

The Betti number β3(R/I∆(H)) = 4 shows that H has 0 connectivity. If we add to

the edge set the edge acd, the resulting hypergraph has 4 homologically connected

components. If we continue and add the edge bce, the resulting hypergraph still has

0 connectivity. Adding the edge abd does not create a hypergraph with non zero

connectivity, but, finally, by adding the edge abe we arrive at a hypergraph with

edge set {abc, cde, acd, bce, abd, abe}, that has non zero connectivity.

Example 5.19. Let H = (Kd
n)c. Then we know that (Theorem 3.1, [7])

βi,j(R/I∆(H)) =
(
n

j

)(
j−1
d−1

)
. Hence H certainly does not have non zero connec-

tivity. This is quite natural since it generalizes the fact that the discrete graph on n

vertices has n =
(
n−1
2−1

)
+ 1 (homologically) connected components.

Example 5.20. One of the complete hypergraphs considered in [7] is the

d(a1, . . . , at)-complete hypergraph K
d(a1,...,at)
n1,...,nt . This hypergraph has vertex set

the disjoint union X = [n1]⊔ . . .⊔ [nt] and edge set consisting of all d-sets of X such

that precisely ai elements come from [ni]. In [7] it is shown that R/I(K
d(a1,...,at)
n1,...,nt )

has linear resolution and projective dimension n − d + 1. Hence (K
d(a1,...,at)
n1,...,nt )c has

connectivity 0.

Remark 5.21. The above examples show that the connectivity of an arbitrary

d-uniform hypergraph is often is. This together with Corollary 5.13 shows that

d-uniform hypergraphs H such that R/I∆(H) is Cohen-Macualay, indeed are very

special.

In Example 5.17 and Example 5.18, we have dim ∆(H) = 2. It is easy to see that

if H is a d-uniform hypergraph such that dim∆(H) = d − 1 > 1, then the converse

of Corollary 5.13 holds. That is, if dim∆(H) = d − 1 > 1, then R/I∆(H is Cohen-

Macaulay over k precisely when H has non zero connectivity over k. This will follow

from the following result (Lemma 7 in [13]) of Fröberg.

Lemma 5.22. Let R/I be a Stanley-Reisner ring with dimR/I = e and embed-

ding dimension n. Then R/I is Cohen-Macaulay if and only if H̃i(∆V ; k) = 0 for

every i and V ⊆ [n] such that |V | = n − e + i + 2.
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Remark 5.23. An easy way to think of this lemma is as follows: First note that

|V | = n−e+ i+2 gives i = 0, . . . , e−2. The claim in the lemma is now “symmetric”

relative to this sequence of indexes. H̃0(∆V ; k) should be zero for |V | = n− (e − 2),

H̃1(∆V ; k) should be zero whenever |V | = n− (e− 2)− 1, H̃2(∆V ; k) should be zero

whenever |V | = n − (e − 2) − 2, a.s.o.

If ∆ = ∆(H), the lemma of Fröberg gives us the following, which is completely

analogous to that considered right after Lemma 7 in [13]. If dim ∆(H) = d − 2,

the complex is always Cohen-Macaulay. This follows since the claim in the lemma

in this case is that reduced homology in degree −1 is zero (we consider non empty

complexes). The claim could also be easily verified by noting that ∆(H) in this case

is the independence complex ∆Kd
n
of some d-complete hypergraph, see [7], Corol-

lary 3.2. Assume dim∆(H) = d − 1. In this case the condition in the lemma is that

H be homologically connected (i.e. that H̃d−2(∆(H); k) = 0). If dim∆(H) = d the

condition in the lemma says that H̃d−1(∆(H); k) = 0 and that H̃d−2(∆(HV ); k) = 0

for every V ⊆ [n] with |V | = n − 1.

Consider Lemma 5.22 for a complex ∆(H) with linear resolution. Since induced

complexes (∆(H))V = ∆(HV ) can only have homology in degree d − 2, one gets:

Corollary 5.24. Let H be a d-uniform hypergraph such that dim(R/I∆(H)) = e

and R/I∆(H) has linear resolution. Then it is also Cohen-Macaulay if and only if

H̃d−2(∆(HV ); k) = 0 for every V ⊆ [n] with |V | = n − (e − d). Furthermore, in this

case we have

e = con(H) + d − 1.

6. d-shellability

Pure shellable simplicial complexes are somewhat of a cornerstone of combinatorial

commutative algebra. This is perhaps mostly since in some situations they provide a

nice non-technical (not always an easy though) way of showing that a complex ∆ is

Cohen-Macaulay. Also, the concept has many times been successfully used to prove,

via Alexander duality, that certain rings have linear resolutions, indeed, even linear

quotients.

We start by recalling the definition of shellability, pure and non-pure. We use the

following notation: Given a finite collection {F1, . . . , Ft} of non empty subsets of [n],

we denote by 〈F1, . . . , Ft〉 the simplicial complex with F(∆) = {F1, . . . , Ft}.

Definition 6.1. Let ∆ be a simplicial complex on [n] with F(∆) = {F1, . . . , Ft}.

∆ is called pure shellable if
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(i) |Fi| = |Fj | for every pair of indices 1 6 i < j 6 t.

(ii) There exists an ordering F1, . . . , Ft of the facets such that 〈Fj〉 ∩ 〈F1, . . . Fj−1〉

is generated by a non-empty set of proper maximal faces of 〈Fj〉 for every

j = 2, . . . , t.

A simplicial complex ∆ is by definition called non-pure shellable if (ii) but not

necessarily (i), holds in the above definition.

Henceforth unless otherwise stated, by shellable we mean shellable in the non-pure

sense.

Remark 6.2. It is well known (see for example [2], Theorem 5.1.13) that pure

shellability implies Cohen-Macaulayness. This follows from Corollary 6.19 below and

the Eagon-Reiner Theorem ([4], Theorem 3).

In the following two definitions we introduce the concepts of d-shellability and

d-quotients.

Definition 6.3. Let ∆ be a simplicial complex on [n]. ∆ is called d-shellable if

its facets can be ordered F1, . . . , Ft, such that 〈Fj〉∩〈F1, . . . , Fj−1〉 is generated by a

non-empty set of proper faces of 〈Fj〉 of dimension |Fj |− d− 1 for every j = 2, . . . , t.

Remark 6.4. The concepts of being 1-shellable and shellable coincide. If ∆ is

a simplicial complex, a linear ordering of F(∆) satisfying the conditions of Defini-

tion 6.3 is called a d-shelling of ∆.

Definition 6.5. Let I be a monomial ideal. We say that I has d-quotients if

there exists an ordering xm1 6 . . . 6 xmt of the minimal generators of I, such that

if we for s = 1, . . . , t, put Is = (xm1 , . . . , xms), then for every s there are monomials

xbsi , i = 1, . . . , rs, deg xbsi = d for all i, such that

Is−1 : xms = (xbs1 , . . . , xbsrs ).

The motivation behind these definitions is the following well known theorem, which

we generalize below.

Theorem 6.8. Let I = (xm1 , . . . , xmt) be a squarefree monomial ideal. Then I

has linear quotients (that is, 1-quotients) precisely when the Alexander dual ideal,

I∗, is shellable. In particular, if I∗ is shellable and deg xmi = deg xmj for every pair

i, j of indices, then I∗ is Cohen-Macaulay.

Example 6.7. The clique complexes of line hypergraphs Ld,α
n and of hypercycles

Cd,α
n are both (d − α)-shellable.
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Theorem 6.8. Let I be a squarefree monomial ideal. Then I has d-quotients

precisely when the Alexander dual ideal, I∗, is d-shellable.

P r o o f. Let I = (xm1 , . . . , xmt), where the xmi are the minimal generators. By

definition, it is clear that the set of facets of ∆∗, the Stanley-Reisner complex of I∗,

is F(∆∗) = {F1, . . . , Ft}, where Fi = [n] \ mi for i = 1, . . . , t. With the notation

clear, the proof is almost tautological.

Assume I has d-quotients. If for every 1 6 i < j 6 t, xaji denotes the minimal

generator of (xmi) : xmj , then (possibly after re-indexing) Ij−1 : xmj is minimally

generated by the set xaj1 , . . . , xajr , for some r 6 j − 1. This is equivalent to saying

that the sets ajα
, α = 1, . . . , jr, that all have cardinality d by assumption, are

precisely the minimal subsets of [n] such that Fj \ ajα
⊆ Fi for some 1 6 i < j, and

that 〈Fj〉 ∩ 〈F1, . . . , Fj−1〉 is pure of dimension |Fj | − d− 1 and equals 〈Fj \ aj1 , . . . ,

Fj \ ajr
〉.

The converse is proved by a similar argument: Assume ∆∗ is d-shellable, and let

F(∆∗) = {F1, . . . , Ft}. Put mi = [n] \ Fi. Then the Alexander dual ideal I of I∗,

is minimally generated by the monomials xmi , i = 1, . . . , t. For every j = 2, . . . , t,

we let ajα
, α = 1, . . . , jr denote the subsets of Fj that one has to remove in order

for Fj \ ajα
to be a generator of 〈Fj〉 ∩ 〈F1, . . . , Fj−1〉. Then the monomials xajα are

precisely the minimal generators of Ij−1 : xmj . �

The following theorem occurs frequently in the literature. It shows that simplicial

complexes that are 1-shellable may be defined in (at least) three equivalent ways:

Theorem 6.9. Let ∆ be a simplicial complex on vertex set [n], with F(∆) =

{F1, . . . , Ft}. Then the following conditions are equivalent:

(i) ∆ is shellable and F1, . . . , Ft is a shelling.

(ii) For all i, j, 1 6 i < j 6 t, there exist a vertex v and an integer k with 1 6 k < j,

such that v ∈ Fj \ Fi and Fj \ Fk = {v}.

(iii) The set {F ∈ [n] ; F ∈ 〈F1, . . . , Fj〉, F 6∈ 〈F1, . . . , Fj−1〉} has a unique minimal

element for all 2 6 i 6 t.

Two of these statements, slightly modified, remain equivalent in the case of d-

shellable complexes also for d > 1.

Theorem 6.10. Let ∆ be a simplicial complex on vertex set [n], with F(∆) =

{F1, . . . , Ft}. Then the following conditions are equivalent:

(i) ∆ is d-shellable and F1, . . . , Ft a d-shelling.

(ii) For all i, j, 1 6 i < j 6 t, there exist some set aj ⊆ [n], |aj | = d, and a k with

1 6 k < j, such that aj ⊆ Fj , aj ∩ Fi = ∅ and Fj \ Fk = aj .
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P r o o f. The implication (i) ⇒ (ii) follows by considering the proof of Theorem

6.8. For the converse let F be a face of 〈Fj〉 ∩ 〈F1, . . . , Fj−1〉. Then F lies in some

〈Fi〉, i < j. Let aj be a set that fits the description in (ii). Then F is also a face of

〈Fj \ aj〉 so 〈Fj〉 ∩ 〈F1, . . . , Fj−1〉 is pure of dimension |Fj | − d − 1. �

As for shellable complexes, links of faces of d-shellable complexes stay d-shellable:

Proposition 6.11. Let ∆ be a d-shellable complex and F a face of ∆. Then

lk∆(F ) is again d-shellable.

P r o o f. Assume F1, . . . , Ft is a d-shelling of ∆ and that the face F lies is

the facets Fi1 , . . . , Fir
, where i1 < . . . < ir. Put Gij

= Fij
\ F . Then lk∆(F ) =

{Gi1 , . . . , Gir
}. If j 6 r and G is a face of Gij

∩ 〈Gi1 , . . . , Gij−1
〉, then F ∪ G is a

face of Fij
∩〈F1, . . . , Fij−1

〉. Hence, if G is maximal we see that |G| = |Fji
|− |F |−d,

which is our result. �

We now investigate the behavior of the Betti numbers of ideals with d-quotients.

The following two results are more or less obvious. We record them just since they

show that the notion of d-quotients is not empty.

Lemma 6.12. Let y = y1, . . . , yr be a sequence of monomials in R = k[x1, . . . ,

xn]. Then y is an R-sequence precisely when gcd(yi, yj) = 1 for every i 6= j.

Proposition 6.13. For every pair of integers 1 6 d 6 d′ there exist a squarefree

monomial ideal I = (xm1 , . . . , xmt) ⊆ k[x1, . . . , xn], n sufficiently large, deg xmi = d′

for every i = 1, . . . , t, such that: if we put Is = (xm1 , . . . , xms), s = 1, . . . , t, then

every colon ideal Is : xms+1 is generated by an R-sequence xs = xbs1 , . . . , xbsrs of

squarefree monomials of degree d.

P r o o f. Let M ⊆ [n] be a set such that |M | = d′ − d. Choose the generators

xmi such that |mi| = d′ for every i = 1, . . . , t and mi ∩ mj = M for every i 6= j. �

Splittable monomial ideals, introduced by Eliahou and Kervaire in [6], have been

studied for example in [12], [15], [16]. This class of ideals is well behaved in the sense

that their Betti numbers satisfy the Eliahou-Kervaire formula, see [6] Proposition

3.1. The following definition (that is Definition 1.1 in [12]), captures the content of

the Eliahou-Kervaire formula in an axiomatic way.

Definition 6.14. Let I, J and K be monomial ideals such that G(I) is the

disjoint union of G(J) and G(K). Then I = J + K is a Betti splitting if

βi,j(I) = βi.j(J) + βi,j(K) + βi−1,j(J ∩ K)

for all i ∈ N and (multi)degrees j.
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It is easy to see that a monomial ideal I with linear quotients has a very natural

Betti splitting. This is the core of the fact that the minimal free resolution of I is

a mapping cone. The connection between “being a mapping cone” and “having a

Betti splitting”, is described in [12] Proposition 2.1.

Theorem 6.15. Let I = (xm1 , . . . , xmt), deg xmi = d′ for every i = 1, . . . , t, be

a squarefree monomial ideal with d-quotients, d 6 d′, and put Is = (xm1 , . . . , xms),

s = 1, . . . , t. Then

(i) βi,j(R/(Is−1 : xms)(−d′)) and βi,j(R/Is−1) are not non zero in any common

degree j for any i > 2, s = 2, . . . , t. Hence Is = Is−1 +(xms) is a Betti splitting.

(ii) For all i, 2 6 i 6 pdR(R/I), we have

βi(R/I) =

t∑

s=2

βi−1(R/(Is−1 : xms)(−d′)).

P r o o f. (ii) is a consequence of (i) since if we assume that (i) holds, then for

every s = 2, . . . , t we have an exact sequence

0 → R/(Is−1 : xms)(−d′)
xms

−→R/Is−1 → R/Is → 0,

where the first map the is multiplication by xms . It follows from the long exact

Tor-sequence that βi(R/It) = βi(R/It−1) + βi−1(R/(It−1 : xmt)(−d′)). Noting that

β2(R/I1) = 0, (ii) now follows by induction.

To prove (i), let 2 6 r 6 t and consider the following exact sequence

(6.1) 0 → Ir−1 ∩ (xmr ) → Ir−1 ⊕ (xmr ) → Ir → 0.

The non trivial maps are x 7→ (x,−x) and (x, y) 7→ x + y. Let F ′. and G′. be the

minimal free resolutions of Ir−1 ∩ (xmr ) and Ir−1 ⊕ (xmr ) respectively. It follows

from Proposition 2.1 in [12] that Ir = Ir−1 +(xmr ) is a Betti splitting precisely when

the mapping cone, cone(α), of the lifting α′ : F ′. → G′. of the left map in the above

exact sequence is the minimal free resolution of Ir . By looking at the generators

of the ideals Ir−1 : xmr and Ir−1 ∩ (xmr ), it is clear that we have a homogeneous

R-module isomorphism

(Ir−1 : xmr )(−d′) → Ir−1 ∩ (xmr ),

the map being the multiplication by xmr . Hence we wish to show that the mapping

cone of the lifting of the inclusion

(Ir−1 : xmr )(−d′) → Ir−1 ⊕ (xmr )
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gives a minimal free resolution of Ir. Note that the minimal free resolutions of

Ir−1 and Ir−1 ⊕ (xmr ) only differ in a simple way at the bottom degrees. Hence

the mapping cone of the lifting of the map (Ir−1 : xmr )(−d′) → Ir−1 ⊕ (xmr ) is

essentially the same (except possibly in the bottom degrees) as the mapping cone of

the lifting of the injection (Ir−1 : xmr )(−d′) → Ir−1.

Let F. and G. be the minimal free resolutions of R/(Ir−1 : xmr )(−d′) and R/Ir−1

respectively, and α : F. → G. a lifting of the map R/(Ir−1 : xmr )(−d′) → R/Ir−1.

Hence cone(α) and cone(α′) are the same except possibly in the bottom degrees

after shifting the homological degrees one step. It is well known that, see Exercise

A 3.30 in [5], if we have an ideal J/I in a quotient ring R/I, the mapping cone

of the lifting of the inclusion J/I → R/I provides a free resolution of R/J . Since

R/(Ir−1 : xmr ) ∼= Ir/Ir−1, the result now follows after separately considering the

bottom degrees. �

Example 6.16. I = (abc, cde, bef, adf) ⊆ k[a, b, c, d, e, f ] is an ideal with 2-

quotients. The Betti numbers of R/I, in homological degrees 1, 2, and 3, are 4, 6

and 3. The corresponding Betti numbers for R(−3)/(I1 : cde), R(−3)/(I2 : bef),

and R(−3)/(I3 : adf), are 1, 0 and 0; 2, 1 and 0; and 3, 2 and 0 respectively. It is

easily verified that these sum up, according to the proposition, to the Betti numbers

of R/I.

Corollary 6.17. Let I = (xm1 , . . . , xmt), deg xmi = d′ for every i = 1, . . . , t,

be a squarefree monomial ideal with d-quotients, d 6 d′, and assume the minimal

generators of Is−1 : xms form an R-sequence for every s = 1, . . . , t. Then βi,j(R/I)

is non zero only for j = i + d′ − 1 + (i− 1)(d− 1), and for all i, 2 6 i 6 pd(R/I), we

have

βi,j(R/I) =

t∑

s=2

(
rs

i − 1

)
,

where rs is the cardinality of the minimal generating set of Is−1 : xms .

P r o o f. Let Is−1 : xms = (xbs1 , . . . , xbsrs ). It is then easy to see that

βi(R/(Is−1 : xms)(−d′)) =
(
rs

i

)
in degree j = id + d′ and equals zero in all other

degrees. By induction, βi(R/Is−1) is non zero only in degree j = i + d′ − 1 +

(i − 1)(d − 1) = d′ + id − d. This shows that βi(R/Is) may be non zero only

in degree j = i + d′ − 1 + (i − 1)(d − 1) and that βi(R/Is) = βi(R/Is−1) +

βi−1(R/(Is−1 : xms)(−d′)). The result now follows by induction and Theorem 6.15.

�

Example 6.18. An example of such ideal is I = (abc, cde, cfg, chi) in the poly-

nomial ring k[a, b, c, d, e, f, g, h, i]. The Betti numbers in homological degrees 1, 2, 3
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and 4 are 4, 6, 4 and 1, and they lie in the degrees described in the corollary. It is

easily seen that these are constructed from the Betti numbers of the colon ideals.

Corollary 6.19. Let I = (xm1 , . . . , xmt), deg xmi = d′ for every i = 1, . . . , t, be

a squarefree monomial ideal with linear quotients. If Is−1 : xms = (xs1
, . . . , xsrs

),

s = 2, . . . , t, then for all 2 6 i 6 pdR(R/I), βi,j(R/I) is non zero only in degree

j = i + d′ − 1 and we have

βi,j(R/I) =

t∑

s=2

(
rs

i − 1

)
.

Acknowledgement. The paper was written during the visit of the second and

the third authors to Department of Mathematics, Stockholm University, Sweden.

They would like to express their deep gratitude to Professors Jörgen Backelin and

Ralf Fröberg for their warm hospitality, support and guidance.

References

[1] C.Berge: Hypergraphs: Combinatorics of finite sets. North-Holland, 1989.
[2] W.Bruns, J.Herzog: Cohen-Macaulay rings, revised ed. Cambridge University Press,
1998.

[3] A.Dochstermann, A. Engström: Algebraic properties of edge ideals via combinatorial
topology. arXiv:0810.4120 (2008).

[4] J.A. Eagon, V.Reiner: Resolutions of Stanley-Reisner rings and Alexander Duality. J.
Pure Appl. Algebra 130 (1998), 265–275.

[5] D.Eisenbud: Commutative algebra with a view toward algebraic geometry. Graduate
Texts in Mathematics 150, Springer, 1995.

[6] S.Eliahou, M.Kervaire: Minimal resolutions of some monomial ideals. J. Algebra 129
(1990), 1–25.

[7] E.Emtander: Betti numbers of hypergraphs. Communications in algebra 37 (2009),
1545–1571.

[8] E.Emtander: A class of hypergraphs that generalizes chordal graphs. arXiv:0803.2150
(2008).

[9] S.Faridi: The facet ideal of a simplicial complex. Manuscripta Math. 242 (2002), 92–108.
[10] S.Faridi: Cohen-Macaulay Properties of Square-Free Monomial Ideals. J. Combin. The-

ory Ser. A 109 (2005), 299–329.
[11] C.A. Francisco, A.Van Tuyl: Sequentially cohen-macaulay edge ideals. Proc. Amer.

Math. Soc. (2007), 2327–2337.
[12] Christopher A.Francisco, H.T.Hà, A.Van Tuyl: Splittings of monomial ideals.

arXiv:0807.2185 (2008).
[13] R.Fröberg: Rings with monomial relations having linear resolutions. J. Pure Appl. Al-

gebra 38 (1985), 235–241.
[14] R.Fröberg: On Stanley-Reisner rings. Topics in Algebra 26 (1990).
[15] H.T.Hà, A.Van Tuyl: Monomial ideals, edge ideals of hypergraphs, and their graded

Betti numbers. arXiv:math/0606539 (2006).

606



[16] H.T.Hà, A.Van Tuyl: Splittable ideals and resolutions of monomial ideals. J. Algebra
309 (2007), 405–425.

[17] J.Herzog, T.Hibi, X. Zheng: Cohen-Macaulay chordal graphs. arXiv:math/0407375v1
(2004).

[18] J.Herzog, T.Hibi, X. Zheng: Dirac’s theorem on chordal graphs and Alexander duality.
European Journal of Combinatorics 25 (2004).

[19] S. Jacques: Betti Numbers of Graph Ideals. Ph.D. thesis, University of Sheffield, 2004,
arXiv:math/0410107.

[20] E.Miller, B. Sturmfels: Combinatorial Commutative Algebra. Springer, 2005.
[21] S.Morey, E.Reyes, R.H.Villarreal: Cohen-Macaulay, Shellable and unmixed clutters

with a perfect matching of König type. arXiv:0708.3111v3 (2007).
[22] R.H.Villarreal: Cohen-Macaulay graphs. Manuscripta Math. 66 (1990), 277–293.
[23] X.Zheng: Resolutions of facet ideals. Comm. Algebra 32 (2004), 2301–2324.

Authors’ addresses: E r i c Emt a n d e r, Department of Mathematics, Stockholm Uni-
versity, SE–106 91 Stockholm, Sweden, e-mail: erice@math.su.se; Fa t em e h Mo h am -
m a d i, Department of Pure Mathematics, Faculty of Mathematics and Computer Science,
Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran 15914,
Iran, e-mail: fatemeh.mohammadi716@gmail.com; S om ay e h Mo r a d i, Amirkabir Univer-
sity of Technology, Tehran, Iran, e-mail: somayeh.moradi1@gmail.com.

607


		webmaster@dml.cz
	2020-07-03T19:23:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




