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ISOMORPHIC DIGRAPHS FROM POWERS MODULO p
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Abstract. Let p be a prime. We assign to each positive number k a digraph Gk
p whose

set of vertices is {1, 2, . . . , p − 1} and there exists a directed edge from a vertex a to a

vertex b if ak ≡ b (mod p). In this paper we obtain a necessary and sufficient condition for

G
k1
p ≃ G

k2
p .
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1. Introduction

This paper solves a problem asked in [1]. Let p be a prime and k a positive integer.

In [1] the authors constructed a digraph whose set of vertices is {1, 2, . . . , p− 1} and

there exists a directed edge from a vertex a to a vertex b if ak ≡ b (mod p). It is

easy to see that Gk1
p = Gk2

p if and only if k1 ≡ k2 (mod (p − 1)). And in [1] the

authors noted that Gk1
p and Gk2

p can be isomorphic without the above condition. For

example, G2
11 ≃ G8

11. In this paper we obtain a necessary and sufficient condition

for Gk1
p ≃ Gk2

p .

First, we introduce some concepts and notation. The indegree of a vertex a ∈ Gk
p,

denoted by indegk
p(a), is the number of directed edges coming to a, and the outdegree

of a is the number of edges leaving a. It is easy to see that the indegree of a vertex

in Gk
p is gcd(p− 1, k) or 0. Cycles of length t are called t-cycles. It is clear that each

component of Gk
p contains a unique cycle. Let A (Gk

p) denote the set of integers such

that m ∈ A (Gk
p) if and only if Gk

p contains an m-cycle. And for any positive integer

t, let At(G
k
p) denote the number of t-cycles in Gk

p .
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2. Results on cycles and heights

Consider a digraph Gk
p, where p is a prime, and express the factor p − 1 as

(2.1) p − 1 = uv,

where u is the largest divisor of p − 1 relatively prime to k. Then we need the

following definitions and results.

Definition 2.1. First we define the height function on the vertices and compo-

nents of Gk
p. Let c be a vertex of Gk

p, we define h(c) to be the minimal nonnegative

integer i such that cki

is congruent modulo p to a cycle vertex in Gk
p. And if C is a

component of Gk
p, we set h(C) = sup

c∈C

h(c). Finally, we define h(Gk
p) = sup

c∈Gk
p

h(c).

Definition 2.2. For any nonnegative integer i > 0, if C is a component of Gk
p,

we define

F
i(C) = {c ∈ C | h(c) = i},

and

F
i(Gk

p) = {c ∈ Gk
p | h(c) = i}.

Theorem 2.1. There exists a t-cycle in Gk
p if and only if

(2.2) t = ordd k

for some divisor d of u, where ordd k denotes the multiplicative order of k modulo d.

Corollary 2.1. Let p − 1 = uv, where u is the largest divisor of p − 1 relatively

prime to k. Then

(2.3) A (Gk
p) = {ordd k | d is a divisor of u}.

Theorem 2.2. Let c be a cycle vertex and let T (c) denote the tree whose root is

c and whose additional vertices are the noncycle vertices b for which bki

≡ c (mod p)

for some i ∈ N, but bki−1

is not congruent to a cycle vertex modulo p. Then for any

two cycle vertices c1, c2 we have T (c1) ≃ T (c2).

Corollary 2.2. For any component C of Gk
p, h(C) = h(Gk

p).
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Theorem 2.3. Let c be a vertex of Gk
p. If i is the minimal nonnegative integer

such that ordp c | kiu, then h(c) = i.

Theorem 2.4. Let p − 1 = uv, where u, v are as above. Then the number of all

cycle points contained in Gk
p is equal to u.

Corollary 2.3. Let t > 1 be a fixed integer. Then any two components in Gk
p

containing t-cycles are isomorphic. And if C is the component of Gk
p containing 1,

then for any i > 0 we have

(2.4) |F i(C)| =
|F i(Gk

p)|

u
.

Theorems 2.1, 2.2, 2.3 and 2.4 were proved in [1].

Theorem 2.5. Let t ∈ A (Gk
p). Then

(2.5) At(G
k
p) =

1

t

[

gcd(p − 1, kt − 1) −
∑

d|t,d 6=t

dAd(G
k
p)

]

.

This was proved in [2].

3. The main results

Our main theorem, Theorem 3.2, gives a characterization for Gk1
p to be isomorphic

to Gk2
p for any two positive integers k1, k2 and a prime p.

The following theorem is easy to prove.

Theorem 3.1. Let p be a fixed prime and k1, k2 two positive integers. Let Ci be

the component of Gki
p containing the vertex 1. Then Gk1

p ≃ Gk2
p if and only if

(i)

(3.1) A (Gk1

p ) = A (Gk2

p );

(ii) for any positive integer t,

(3.2) At(G
k1

p ) = At(G
k2

p );

(iii)

(3.3) C1 ≃ C2.
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Theorem 3.2 (Main Theorem). Let p be a fixed prime and k1, k2 two positive

integers. Then Gk1
p ≃ Gk2

p if and only if the following two conditions are satisfied.

(i)

(3.4) gcd(p − 1, k1) = gcd(p − 1, k2);

(ii) there exists a factorization of p− 1 = uv, where u is the largest divisor of p− 1

relatively prime to k1 as well as the largest divisor of p − 1 relatively prime to

k2. Moreover, for any d such that d | u we have

(3.5) ordd k1 = ordd k2.

P r o o f. We only prove the necessity of the theorem here and leave the rest of

proof to Section 4. Now assume that ϕ : Gk1
p −→ Gk2

p is an isomorphism of digraphs.

Then ϕ must preserve indgeree of vertices. Hence, gcd(p − 1, k1) = gcd(p − 1, k2).

(i) holds. The first part of (ii) follows from (i). For the other part by Theorem 3.1

we have A = A (Gk1
p ) = A (Gk2

p ), and At(G
k1
p ) = At(G

k2
p ) for any positive integer t.

By Corollary 2.1 and Theorem 2.5 we have

(3.6) {ordd k1 | d is a divisor of u} = {ordd k2 | d is a divisor of u},

and for any t ∈ A

(3.7)
1

t

[

gcd(p − 1, kt
1 − 1) −

∑

d|t,d 6=t

dAd(G
k1

p )

]

=
1

t

[

gcd(p − 1, kt
2 − 1) −

∑

d|t,d 6=t

dAd(G
k2

p )

]

.

Hence, gcd(p − 1, k1 − 1) = gcd(p − 1, k2 − 1); since 1 ∈ A , by induction on the

length of cycles we see that gcd(p − 1, kt
1 − 1) = gcd(p − 1, kt

2 − 1) for any t ∈ A .

Now if d | u, t1 = ordd k1, t2 = ordd k2, then t1 ∈ A , t2 ∈ A . We have

gcd(uv, kt1
1 − 1) = gcd(uv, kt1

2 − 1),

but d | u, d | kt1
1 − 1, hence d | kt1

2 − 1, i.e. t2 | t1. Similarly we get t1 | t2. Hence,

t1 = t2. �
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4. Proof of some lemmas and of the main theorem

Our main theorem follows directly from Lemma 4.1 and Lemma 4.6.

Lemma 4.1. For any fixed prime p and two positive integers k1, k2, the conditions

(3.4), (3.5) in Theorem 3.2 imply (3.1) and (3.2).

P r o o f. From Corollary 2.1 we get A (Gk1
p ) = A (Gk2

p ), and by the proof of

Theorem 3.2 it is sufficient to show that gcd(uv, kt
1 − 1) = gcd(uv, kt

2 − 1) for any

t ∈ A (Gk1
p ). But gcd(v, kt

1 − 1) = gcd(v, kt
2 − 1) = 1, hence if c | gcd(uv, kt

1 − 1)

then c | u. Let t1 = ordc k1 = ordc k2, then t1 | t, hence c | kt
2 − 1. We have

c | gcd(uv, kt
2 − 1). Similarly if d | gcd(uv, kt

2 − 1), then d | gcd(uv, kt
1 − 1). We get

gcd(uv, kt
1 − 1) = gcd(uv, kt

2 − 1). �

Lemma 4.2. For any fixed prime p and two positive integers k1, k2, let Ci be the

component of Gki
p containing the vertex 1. If (3.4) holds, then |F j(C1)| = |F j(C2)|

for any integer j > 0.

P r o o f. By hypothesis there exists a factorization of p− 1 = uv, where u is the

largest divisor of p − 1 relatively prime to k1 as well as the largest divisor of p − 1

relatively prime to k2. Hence, if q is a prime divisor of v, then q is also a prime

divisor of ki (i = 1, 2). Then we have the following factorization of v, k1 and k2:

v =

r
∏

i=1

pei

i , k1 = m

r
∏

i=1

pxi

i , k2 = n

r
∏

i=1

p
yi

i ,

where pi are primes and ei > 1, xi > 1, yi > 1, and gcd(m, uv) = gcd(n, uv) = 1. If

ei > min{xi, yi}, then xi = yi since

gcd(uv, k1) = gcd(uv, k2) =
r

∏

i=1

p
min{ei,xi}
i =

r
∏

i=1

p
min{ei,yi}
i .

Then after a permutation of indices there is an s such that xi = yi and xi < ei if

1 6 i 6 s, and xi > ei, yi > ei if s + 1 6 i 6 r.

Now let c be a nonzero vertex. If c ∈ F j(Gk1
p ) we have

ordp c ∤ k
j−1
1 u and ordp c | k

j
1u.

But by the above discussion we also have

ordp c ∤ k
j−1
2 u and ordp c | k

j
2u.
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Hence, c ∈ F j(Gk2
p ). Consequently, F j(Gk1

p ) ⊆ F j(Gk2
p ), similarly F j(Gk2

p ) ⊆

F j(Gk1
p ), i.e. F j(Gk1

p ) = F j(Gk2
p ). Then by Corollary 2.3

|F j(C1)| =
|F j(Gk1

p )|

u
=

|F j(Gk2
p )|

u
= |F j(C2)|.

�

Now we consider the structure of the tree attached to the cycle point in Gk
p. Let

G be any digraph and S a nonempty subset of vertices of G. We recall that the

subdigraph K of G induced by S is a digraph whose vertices are those of S, and for

any two vertices a ∈ S and b ∈ S, the number of directed edges from a to b in K is

equal to the number of directed edges from a to b in G.

The following notation is useful in the proof of our key lemma.

Definition 4.1. Given a prime p and a positive integer k, let a be a vertex in

Gk
p. Then for any nonnegative integers i, j, we define

F
0(a) = {a},

F
i(a) = {b ∈ Gk

p | bki

≡ a (mod p), bki−1

is not congruent modulo p

to a cycle vertex, and b is not a cycle point.} if i > 0.

Now define a(j) to be the subdigraph of Gk
p induced by the vertices set

j
⋃

i=0

F i(a),

and define the height of a(j) as

h(a(j)) = max{i | i 6 j and F
i(a) 6= ∅}.

Remark 4.1. Note that if h(a) > 0, then F i(a) = F j(a) if and only if i = j or

they are both empty, and in this case F 1(a) is just the set of vertices coming into a.

Lemma 4.3. Let C be the component of Gk
p containing 1. Then for any i,

1 6 i 6 h(C) and any a ∈ Gk
p with h(a) > 0, we have

(4.1) |F i(a)| =

i
∑

j=0

|F j(C)| or 0.

P r o o f. Note that
i

∑

j=0

|F j(C)| = indegki

p (1) > 0 for any i, 1 6 i 6 h(C). And

|F i(a)| = indegki

p (a) since h(a) > 0. �
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Lemma 4.4. Let a be a vertex with positive height in Gk
p and let F 1(a) 6= ∅.

Then

(4.2) F
i+1(a) =

⊎

b∈F1(a)

F
i(b),

where
⊎

means disjoint union.

P r o o f. It is immediate from Definition 4.1. �

Lemma 4.5. Let p be a prime and k1, k2 two positive integers, and let Ci be the

component of Gki
p which contains the vertex 1 (i = 1, 2). Let a ∈ C1, b ∈ C2 be two

vertices of positive heights. If a(i) ≃ b(j) for some i, j, then h(a(i)) = h(b(j)), and

for any nonnegative integer t 6 h(a(i)), we have

(4.3) |F t(a)| = |F t(b)|.

P r o o f. Let h1 = h(a(i)) and h2 = h(b(j)). By symmetry we only need to prove

|F t(a)| 6 |F t(b)| and h1 6 h2. Let ϕ : a(i) → b(j) be an isomorphism of digraphs.

Then it is sufficient to show that ϕ maps F t(a) into F t(b).

We prove it by induction on t. If t = 0, then F 0(a) = {a} and F 0(b) = {b}. It is

clear that a is the only point with outdegree 0 in a(i) and b is the only point with

outdegree 0 in b(j). And ϕ must preserve outdegree, thus ϕ(a) = b.

Now assume that for any l < t, ϕ maps F l(a) into F l(b). If F t(a) = ∅, the

proof is completed. If there exists a vertex c ∈ F t(a), then there exists a vertex

d ∈ F t−1(a) and ck1 ≡ d (mod p), i.e. there is a directed edge from c to d. Thus,

there is also a directed edge from ϕ(c) to ϕ(d). But by induction ϕ(d) ∈ F t−1(b),

so we get ϕ(c) ∈ F t(b). �

The following lemma is the key to our main result.

Lemma 4.6. Let p be a prime and k1, k2 two positive integers, and let Ci be

the component of Gki
p which contains the vertex 1 (i = 1, 2). If (3.4) holds, then

C1 ≃ C2.

P r o o f. We first show that for any two vertices a ∈ C1 and b ∈ C2 both with

positive heights and any integer i > 0, if h(a(i)) = h(b(i)), then a(i) ≃ b(i). We prove

it by induction on m = h(a(i)) = h(b(i)). The assertion is obvious when m = 0, 1.

Now assume that m = h(a(i)) = h(b(i)). Then a(i) = a(m), b(i) = b(m). Let

l = gcd(p−1, k1) = gcd(p−1, k2) and assume that we haveF 1(a) = {a1, a2, . . . , al},

F 1(b) = {b1, b2, . . . , bl}.
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For 1 6 i 6 m − 1, let Ai = {aj | j ∈ {1, 2, . . . , l} and h(aj(m − 1)) = i},

Bi = {bj | j ∈ {1, 2, . . . , l} and h(bj(m − 1)) = i}. We have

(4.4) F
1(a) =

m−1
⊎

i=1

Ai, F
1(b) =

m−1
⊎

i=1

Bi.

Now we claim that |Ai| = |Bi| for i = 1, 2, . . . , m − 1. Otherwise there exists an

integer t, |At| 6= |Bt| and for any j such that t < j 6 m − 1, |Aj | = |Bj |. By (4.2)

and (4.4)

|F t+1(a)| = Σaj∈A1
|F t(aj)| + Σaj∈A2

|F t(aj)| + . . . + Σaj∈Am−1
|F t(aj)|

= Σaj∈At
|F t(aj)| + Σaj∈At+1

|F t(aj)| + . . . + Σaj∈Am−1
|F t(aj)|

since F t(aj) = ∅ for any aj ∈ As(s < t). Similarly we have

|F t+1(b)| = Σbj∈B1
|F t(bj)| + Σbj∈B2

|F t(bj)| + . . . + Σbj∈Bm−1
|F t(bj)|

= Σbj∈Bt
|F t(bj)| + Σbj∈Bt+1

|F t(bj)| + . . . + Σbj∈Bm−1
|F t(bj)|.

By induction ai(m − 1) ≃ bj(m − 1) if ai ∈ As, bj ∈ Bs. By Lemma 4.5

(4.5) |F t(ai)| = |F t(bj)|.

Choose an ais
∈ As and a bis

∈ Bs for any t 6 s 6 m − 1 if As 6= ∅. Then

|F t+1(a)| =
m−1
∑

s=t

|As| · |F
t(ais

)|,(4.6)

|F t+1(b)| =

m−1
∑

s=t

|Bs| · |F
t(bis

)|.(4.7)

By Lemma 4.3 and Lemma 4.2,

(4.8) |F t+1(a)| =

t+1
∑

i=0

|F i(C1)| =

t+1
∑

i=0

|F i(C2)| = |F t+1(b)|.

Combine (4.5), (4.6), (4.7), (4.8) with |Aj | = |Bj | (t < j 6 m − 1). We get

|At| = |Bt|,

which is a contradiction. Thus our claim is true.

Then after a permutation of indices we can assume that h(ai(m−1)) = h(bi(m−1))

for any i (1 6 i 6 l), by induction ai(m − 1) ≃ bi(m − 1), hence a(m) ≃ b(m).

Now we come to proving C1 ≃ C2. Let F 1(C1) = {c1, c2, . . . , cl−1}, F 1(C2) =

{d1, d2, . . . , dl−1}. Using the same arguments we can show that after a permutation

of indices we have h(ci(h − 1)) = h(di(h − 1)) for any i (1 6 i 6 l − 1), where

h = h(C1) = h(C2). Hence, we have ci(h − 1) ≃ di(h − 1), C1 ≃ C2. �
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P r o o f of Theorem 3.2. It follows from Lemma 4.1 and Lemma 4.6. �
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