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KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 4 , PAGES 5 9 5 – 6 1 1

AN ADMISSIBLE ESTIMATOR OF A LOWER-BOUNDED
SCALE PARAMETER UNDER SQUARED-LOG ERROR
LOSS FUNCTION

Eisa Mahmoudi and Hojatollah Zakerzadeh

Estimation in truncated parameter space is one of the most important features in sta-
tistical inference, because the frequently used criterion of unbiasedness is useless, since no
unbiased estimator exists in general. So, other optimally criteria such as admissibility and
minimaxity have to be looked for among others. In this paper we consider a subclass of the
exponential families of distributions. Bayes estimator of a lower-bounded scale parameter,
under the squared-log error loss function with a sequence of boundary supported priors
is obtained. An admissible estimator of a lower-bounded scale parameter, which is the
limiting Bayes estimator, is given. Also another class of estimators of a lower-bounded
scale parameter, which is called the truncated linear estimators, is considered and several
interesting properties of the estimators in this class are studied. Some comparisons of the
estimators in this class with an admissible estimator of a lower-bounded scale parameter
are presented.

Keywords: admissibility, Bayes estimator, truncated parameter spaces, squared-log error
loss

Classification: 62C10, 62C15, 62C20

1. INTRODUCTION

The problems of inference in truncated parameter spaces occur e. g. in randomized
response models (Moors, [9]), in regression problems when the regression function is
assumed to be monotone without further assumptions on its shape (Robertson et al.,
[15]), in estimators for regression problems where the regression function is linear
with a slope of known sign (Moors and van Houwelingen, [10]), and in question of
robustness of Bayesian methods and in group-Bayes analysis (van Eeden and Zidek,
[21, 22]).

The study of truncated parameter spaces is of interest for the following reasons:
(i) They often occur in practice. In many cases certain parameter values can be ex-
cluded from the parameter space. Nearly all problems in practice have a truncated
parameter space and it is almost impossible to argue in practice that a parameter is
not bounded. (ii) In truncated parameter space, the commonly used estimators of
θ such as the maximum likelihood estimators are inadmissible. Even more charac-
teristic is the fact that boundary rules are mostly inadmissible, where a boundary
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estimator is an estimator which takes, with positive probability for some θ ∈ Θ,
values on or near the boundary of Θ. (iii) In truncated parameter space, the fre-
quently used criterion of unbiasedness is useless, since no unbiased estimator exists
in general. So, other optimality criteria have to be looked for, such as admissibility,
minimaxity and invariance among others.

Estimation in truncated parameter space is one of the most important features
in statistical inference. As mentioned above, most of the frequently used estimators
such as the MLE are inadmissible in truncated parameter space. One way to avoid
this difficulties is using other criteria of optimality, such as minimaxity. Minimaxity
of estimators is not only of own interest, but it serves also as a useful benchmark to
measure the performance of estimators.

Minimaxity and admissibility results for lower-bounded parameters can be found
in Katz [7], Berry [1] and van Eeden [19, 20]. Using squared error loss, Katz [7] gives
an admissible minimax estimator of a normal mean µ where µ ∈ [a,∞), and Berry [1]
obtains an admissible minimax estimator for the case of the exponential distribution
with support [θ,∞) , where θ ∈ (−∞, a], θ ∈ [b,∞) or θ ∈ [a, b] . Using scale-
invariant squared error loss, van Eeden [19] gives an admissible minimax estimator
of the scale parameter θ of a gamma distribution with known shape parameter where
θ ∈ [a,∞) , and van Eeden [20] find a minimax estimator of the scale parameter of
an F-distribution when the parameter is lower bounded.

Jafari Jozani et al. [6] extended the results of van Eeden [19]. They obtained
an admissible minimax estimator of a bounded scale parameter in a subclass of the
exponential family under scale-invariant squared error loss. Also, they studied the
admissibility and minimaxity in the family of transformed chi-square distributions
due to Rahman and Gupta [14].

Assume the asymmetric squared-log error loss of the form

L (θ, δ) = (ln δ − ln θ)2 =
(

ln
δ

θ

)2

, (1)

which was introduced by Brown [3].
The main reasons for choosing the squared-log error loss function in this study

is that (i) unlike the squared error loss function, the squared-log error loss is more
useful to bring statistical model nearer to practical situations. (ii) This is balanced
loss function in the sense that lim L (θ, δ) = ∞ as δ → 0 or δ → ∞, while the
squared error loss function is out of balance for scale parameter. (iii) The squared-
log error loss is not always convex, it is convex for δ/θ ≤ e and concave otherwise,
but its risk function has unique minimum with respect to δ. (iv) The squared-log
error loss penalizes over estimation more heavily than under estimation. (v) In
the problem of estimating an unknown scale parameter the best invariant estimator
for squared error loss is biased, see Pitman [12]. (vi) For each given value of the
scale parameter σ the squared error loss function gives equal importance to equal
differences between δ (estimator of σ) and σ while squared-log error loss function
weigh equal proportional errors equally. Although the squared error loss function is
relatively easy to handle analytically it seems somewhat inappropriate for a broad
range of applications because of the above disturbing features of this loss function
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in the scale parameter problems.
In this paper an admissible estimator of a lower-bounded scale parameter, under

the squared-log error loss function, is obtained. The rest of the paper is as follow:
In Section 2, under the squared-log error loss, we derive the Bayes estimator of the
lower-bounded scale parameter with respect to a sequence of boundary supported
priors in a subclass of the exponential families of distributions. Section 3 is con-
cerned with the admissible estimator of a lower-bounded scale parameter, which is
the limiting Bayes estimator. In the exponential family of distributions a class of rea-
sonable estimators of the scale parameter in the classical (untruncated) problem are
the linear estimators which arise as (proper or generalized) Bayes estimators. Hence
it is natural to consider a truncated version of such linear estimators. In Section
4, another class of estimators of a lower-bounded scale parameter, which is called
the truncated linear estimators, is considered and several interesting properties of
the estimators in this class is studied. Some comparisons of the estimators in this
class with an admissible estimator of a lower-bounded scale parameter, introduced
in Section 3, are presented in the end of this section.

2. BAYES ESTIMATION OF A LOWER-BOUNDED SCALE PARAMETER

Let X1, X2, . . . , Xm be a random sample of size m from distribution with density
(1/τ) g (x/τ), where g is known and τ is an unknown scale parameter. The joint
density of X1, X2, . . . , Xm is denoted by f (x; τ) = 1

τm f
(
x
τ

)
. In some cases this joint

density reduces to
f(x; η) = c(x,m)η−νe−T (x)/η, (2)

where c(x,m) is a function of x = (x1, . . . , xm) and m, η = τ r for some r, ν is
a function of m and T (x) is a complete sufficient statistic for η with gamma(ν, η)
distribution. Examples of such models are

(i) Gamma(α, β) distribution with α known,

η = β, ν = mα, T (X) =
∑m

i=1 Xi, c(x,m) =
∏m

i=1
xα−1

i

Γ(α) .

(ii) N(0, σ2) distribution with

η = σ2, ν = m/2, T (X) = 1
2

∑m
i=1 X2

i , c(x,m) = (2π)−m/2.

Some distributions belonging to this subclass of the exponential family are listed
by Jafari Jozani et al. [6]. This class contains many distributions such as Exponen-
tial, Gamma, Weibull, Pareto, Normal, Lognormal, Rayleigh, Maxwell and Inverse
Gaussian. Some properties of this family of distributions and an admissible linear
estimator of η = τ r in this family, under the entropy loss function, can be found in
Parsian and Nematollahi [11].

Sanjari Farsipour and Zakerzadeh [16] studied estimation of the scale parame-
ter in the family of distributions (2). They derived the explicit form of minimum
risk scale-equivariant estimator under the squared-log error loss function. Also, the
admissibility and inadmissibility of a class of linear estimators of T has been con-
sidered.
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In this section, the Bayes estimator of η and it’s admissibility, in the family of
distributions (2), w.r.t. a sequence of proper prior distributions, is given when η is
restricted to η ∈ [a,+∞).

The random variable T has gamma(ν, η) distribution (ν is a function of m) with
density function

fT (t|η) =
tν−1e−

t
η

Γ (ν) ην
t > 0, η ≥ a. (3)

According to van Eeden [19], a sequence of proper prior distributions for η has the
form

πn (η) =
a1/n

nη1+1/n
η ≥ a, a > 0. (4)

The estimator of η, δ say, considered in this paper is defined as

δ(x) = lim
n→∞

δn(x),

where, for n = 1, 2, . . . , δn is the Bayes estimator of η with respect to prior density
is given in (4), and δ satisfies

Pη(δ(X) ≥ a) = 1, for all η ≥ a.

It is easy to verify that the posterior distribution of η is given by

πn (η|T ) =
T ν+1/ne−T/η

ην+1/n+1ΓT/a (ν + 1/n)
η ≥ a,

where Γx (α) =
∫ x

0
yα−1e−ydy, is the incomplete gamma function. Consider the

incomplete digamma function Ψx (α) = d
dα ln Γx (α). Then we have the following

theorem.

Theorem 2.1. For the family of distributions (3), the loss function (1), and se-
quence of prior distributions (4), the Bayes estimator of η, is given by

δn(x) = T (x) exp
[
−ΨT (x)/a(ν + 1/n)

]
. (5)

Further,
rn(δn) < ∞ for all n = 1, 2, . . . .

P r o o f . We know that L(δ, η) =
[
ln

(
δ
η

)]2

and so

R(δn, η) = ET |η

[
ln

(
δn

η

)]2

= ET |η [ln δn − ln η]2 .

The Bayes estimator of η, which is the value of δn that minimizes∫ ∞

a

[ln δn − ln η]2 πn (η|T ) dη,
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is given by δn = exp
[
Eη|T [ln η|T ]

]
. Differentiating both sides of

ΓbT (α) =
∫ bT

0

yα−1e−ydy =
∫ b

0

Tαyα−1e−yT dy, (6)

w.r.t. α, and taking η−1 = y, α = ν + 1/n gives

E [ln η|T ] =
∫ b

0

ln y
yα−1Tαe−yT

ΓbT (α)
dy = ln T −ΨbT (ν + 1/n) ,

where ν as a function of m is free from n. Therefore

δn = T exp
[
−ΨT/a(ν + 1/n)

]
,

is the Bayes estimator of η under loss (1) and prior distributions (4).
The risk of δn, as an estimator of η, under the loss function (1) is given by

R(δn, η) =
∫ ∞

0

(
ln

t

ηeΨt/a(ν+1/n)

)2
tν−1e−t/η

ηνΓ (v)
dt.

By transforming λ = 1/η and b = 1/a, the Bayes risk of δn is given by

rn(δn) =
∫ b

0

∫ ∞

0

[
ln2 λt + Ψ2

bt (ν + 1/n)− 2Ψbt (ν + 1/n) ln λt
]

× tν−1e−λtλν

Γ(ν)
λ1/n−1

nb1/n dtdλ = A1 + A2 + A3, (7)

where

A1 =
∫ b

0

∫ ∞

0

[lnλt]2
tν−1e−λtλν

Γ (ν)
λ1/n−1

nb1/n
dtdλ

=
∫ ∞

0

1
nb1/nΓ (ν) t1/n+1

[∫ b

0

ln2(λt)tν+1/nλν+1/n−1e−λtdλ

]
dt

=
∫ ∞

0

1
nb1/nΓ (ν) t1/n+1

Γ
′′

bt (ν + 1/n) dt, (8)

A2 =
∫ b

0

∫ ∞

0

Ψ2
bt (ν + 1/n)

tν−1e−λtλν

Γ (ν)
λ1/n−1

nb1/n
dtdλ

=
∫ ∞

0

Ψ2
bt (ν + 1/n)

nb1/nΓ (ν) t1/n+1

[∫ b

0

tν+1/nλν+1/n−1e−λtdλ

]
dt

=
∫ ∞

0

Ψ2
bt (ν + 1/n)

nb1/nΓ (ν) t1/n+1
Γbt (ν + 1/n) dt

=
∫ ∞

0

1
nΓ (ν) b1/nt1/n+1

[
(Γ′bt (ν + 1/n))2

Γbt (ν + 1/n)

]
dt, (9)
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and

A3 =
∫ b

0

∫ ∞

0

−2Ψbt (ν + 1/n) ln λt
tν−1e−λtλν

Γ (ν)
λ1/n−1

nb1/n
dtdλ

= −2
∫ ∞

0

Ψbt (ν + 1/n)
nb1/nΓ (ν) t1/n+1

∫ b

0

ln(λt)tν+1/nλν+1/n−1e−λtdλdt

= −2
∫ ∞

0

Ψbt (ν + 1/n)
nb1/nΓ (ν) t1/n+1

Γ′bt (ν + 1/n) dt

= −2
∫ ∞

0

1
nb1/nΓ (ν) t1/n+1

[
(Γ′bt (ν + 1/n))
Γbt (ν + 1/n)

2
]

dt. (10)

Note that

Γbt (α) =
∫ b

0

tαyα−1e−ytdy,

Γ
′

bt (α) =
∫ b

0

(ln yt) tαyα−1e−ytdy,

Γ
′′

bt (α) =
∫ b

0

(ln yt)2 tαyα−1e−ytdy.

Substituting Equations (8) – (10) into (7) gives

rn(δn) =
∫ ∞

0

1
nb1/nΓ (ν) t1/n+1

{
Γ′′bt (ν + 1/n)

+ (Γ′bt(ν+1/n))2

Γbt(ν+1/n) − 2(Γ′bt(ν+1/n))
Γbt(ν+1/n)

2}
dt

=
∫ ∞

0

1
nb1/nΓ (ν) t1/n+1

[
Γ′′bt (ν + 1/n)− (Γ′bt (ν + 1/n))2

Γbt (ν + 1/n)

]
dt

≤
∫ ∞

0

1
nb1/nΓ (ν) t1/n+1

Γ′′bt (ν + 1/n) dt

=
∫ ∞

0

1
nb1/nΓ (ν) t1/n+1

∫ b

0

ln2(yt)tν+1/nyν+1/n−1e−ytdydt

=
∫ b

0

y1/n−1

nb1/nΓ (ν)

[∫ ∞

0

ln2(yt)tν−1yνe−ytdt

]
dy

=
∫ b

0

y1/n−1

nb1/nΓ (ν)
Γ′′ (ν) dy =

Γ′′ (ν)
Γ (ν)

,

which is finite for all positive ν and for all n = 1, 2, . . ., since ν as a function of m is
free from n. Thus the proof is completed. �

Remark 2.2. The Bayes estimator (5) is admissible.
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P r o o f . According to Theorem 2.1, 0 ≤ rn(δn) ≤ Γ′′(ν)
Γ(ν) . Thus the Bayes risk is

finite and independent of n and η, since ν as a function of m, is completely free
from n. Then the risk function R(δn, η) is finite. For proof the admissibility of δn,
suppose that δn is inadmissible then there exists an estimator d∗ such that

R(η, d∗) ≤ R(η, δn) for all η ≥ a,

R(η, d∗) < R(η, δn) for some η ≥ a.

Therefore there exists an ε > 0, and an interval (η′, η′′) ⊂ [a,∞) such that for
a ≤ η′ < η < η′′

R(η, δn)−R(η, d∗) > ε,

which implies

[rn(δn)− rn(d∗)] >

∫ η′′

η′
[R(η, δn)−R(η, d∗)]πn(η)dη

> ε

∫ η′′

η′
πn(η)dη > 0,

which contradicts the fact that δn is Bayes estimator with respect to πn(η). Hence
δn is an admissible and the proof is completed. �

The estimator δ(x), of η(≥ a) considered in the next section is the limit of the
Bayes estimators δn(x) of η(≥ a) in Equation (5), i. e.,

δ(x) = lim
n→∞

δn(x) = T (x) exp
[
−ΨT (x)/a(ν)

]
, (11)

where x = (x1, . . . , xm) and ν is only a function of m. Also in the next section
we show the admissibility of the limiting Bayes estimator δ(x) and prove that it
coincides with the Pitman estimator of η.

3. ADMISSIBILITY OF THE LIMITING BAYES ESTIMATOR

This section is devoted to the admissibility of the limiting Bayes estimator δ =
limn→∞ δn, under squared-log error loss function. Also we show that the limiting
Bayes estimator δ coincides with the Pitman estimator δP for η, where the Pitman
estimator can be found by transforming the distribution of T into a location pa-
rameter. For more details about the Pitman estimator, one can refer to Stein [18],
Hoaglin [5], Pitman [13] and Lehmann and Casella [8]. The foregoing problem is
identical to estimating a location parameter η′ = ln η, for the distribution T ′ = ln T
when the loss function is

L′(η′, δ′) = L(eη′ , eδ′) = L(eδ′−η′) = (δ′ − η′)2.

If we define L′(x) = L(ex), then L′(η′, δ′) = (δ′ − η′)2. Note that the risk of δ,
as an estimator of η, under squared-log error loss function L in (1) is R(δ, η) =
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E(ln δ − ln η)2, while the risk of δ′, as an estimator of η′, under squared error loss
function has the form R(δ′, η′) = E(δ′ − η′)2. Estimating η′ = ln η by δ′ = ln δ
under squared error loss is equivalent to estimate η by δ under squared-log error
loss function. Therefore if δ∗ is better than δ∗∗ under squared-log error loss L, then
δ′∗ = ln δ∗ is better than δ′∗∗ = ln δ∗∗ under squared error loss L′.

Remark 3.1. δ′ = ln δ is an admissible (inadmissible) estimator of η′ = ln η under
squared error loss function if and only if δ is an admissible (inadmissible) estimator
of η under squared-log error loss function.

Lemma 3.2. The Pitman estimator δP of η(≥ a) is the same as the limiting Bayes
estimator δ in (11).

P r o o f . Suppose that T ′ = ln T . Since T has gamma(ν, η) distribution, the distri-
bution of T ′ is given by

gT ′(t′) =
eν(t′−η′) exp(−et′−η′)

Γ (ν)
= g(t′ − η′) t′ ∈ R, η′ ≥ ln a = c,

and so, η′ is a location parameter. The Pitman estimator of η′ under the squared
error loss is

δ′P =

∫ ∞

−∞
η′g(t′ − η′)dη′∫ ∞

−∞
g(t′ − η′)dη′

=

∫ ∞

c

η′eν(t′−η′) exp(−et′−η′)dη′∫ ∞

c

eν(t′−η′) exp(−et′−η′)dη′
.

By transforming y = et′−η′ , we have

δ′P =

∫ et′−c

0

(x− ln y) yν−1 exp(−y)dy∫ et′−c

0

yν−1 exp(−y)dy

= t′ −
Γ
′

et′−c(ν)
Γet′−c(ν)

= t′ −Ψet′−c(ν),

therefore substituting t′ = ln t, c = ln a and δ′P = ln δP , gives

δP (T ) =
T

exp(ΨT
a
(ν))

.

Note that the Pitman estimator δP (T ) is the same as the limiting Bayes estimator
δ in (11). The proof is completed. �

For admissibility of the limiting Bayes estimator δ(T ) = T (x) exp
[
−ΨT (x)/a(ν)

]
,

using limiting Bayes argument, due to Blyth (1951), [see Lehmann and Casella, [8],
p. 265], we have the following theorem.

Theorem 3.3. The limiting Bayes estimator δ(T ) is admissible under squared-log
error loss function, for every η ≥ a and ν > 0.
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P r o o f . First note that R(η, δ) is continuous function in η, for each δ and each
η ≥ a for which R(η, δ) < ∞, [see, Ferguson, [4], Theorem 2, p. 139]. Now suppose
that the limiting Bayes estimator δ is inadmissible, then there exists an estimator
δ′′ such that

R(η, δ′′) ≤ R(η, δ) for all η ≥ a,

R(η, δ′′) < R(η, δ) for some η ≥ a.

One can find an ε > 0, and an interval (η1, η2) ⊂ [a,∞) such that for a ≤ η1 < η < η2

R(η, δ)−R(η, δ′′) > ε, (12)

which implies

n [rn(δ)− rn(δ′′)] > n

∫ η2

η1

[R(η, δ)−R(η, δ′′)]πn(η)dη

> εn

∫ η2

η1

a1/n

nη1+1/n
dη

= εna1/n(η−1/n
1 − η

−1/n
2 ). (13)

Therefore limn→∞ n [rn(δ)− rn(δ′′)] > 0, due to l’Hôpital’s rule. Now, if it can be
shown that

lim
n→∞

n [rn(δ)− rn(δn)] = 0, (14)

where δn is given in (5), then from (13)

rn(δ)− rn(δ′′)
rn(δ)− rn(δn)

→∞, as n →∞,

which implies that for sufficiently large n

rn(δ)− rn(δ′′) > rn(δ)− rn(δn). (15)

But (15) contradicts the fact that δn is the Bayes estimator of η with respect to the
prior πn in (4), for each n = 1, 2, . . . . Thus the limiting Bayes estimator δ(T ) is
admissible.
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For the proof of (14) we have

rn(δ)− rn(δn)

= Eη(R(δ, η))− Eη(R(δn, η))

= Eη[ET |η(L(δ, η))]− Eη[ET |η(L(δn, η))]

= Eη[ET |η(ln T

ηe
ΨT/a(ν) )2]− Eη

[
ET |η(ln T

ηe
ΨT/a(ν+1/n) )2

]
= Eη{ET |η[

(
ln T

η

)2

− 2
(
ln T

η

)
ΨT/a(ν) + Ψ2

T/a(ν)

−
(
ln T

η

)2

+ 2
(
ln T

η

)
ΨT/a(ν + 1/n) + Ψ2

T/a(ν + 1/n)]}

= ET

[
Eη|T

{(
ΨT/a(ν + 1/n)−ΨT/a(ν)

)
(2

(
ln T

η

)
−ΨT/a(ν + 1/n)−ΨT/a(ν))

}]
= ET

{(
ΨT/a(ν + 1/n)−ΨT/a(ν)

)
(2Eη|T

(
ln T

η

)
−ΨT/a(ν + 1/n)−ΨT/a(ν))

}
,

where

Eη|T

(
ln T

η

)
=

∞∫
0

(
ln

T

η

)
T ν+1/ne−T/n

ην+1/n+1ΓT/a(ν + 1/n)
dη

=

T/a∫
0

(ln y)
yν+1/n−1e−y

ΓT/a(ν + 1/n)
dy

=
Γ′T/a(ν+1/n)

ΓT/a(ν+1/n)

= ΨT/a(ν + 1/n).

So

rn(δ)− rn(δn) = ET

[(
ΨT/a(ν + 1/n)−ΨT/a(ν)

)2
]

=

∞∫
0

(
ΨT/a(ν + 1/n)−ΨT/a(ν)

)2 a1/nΓT/a(ν + 1/n)
nΓ(ν)t1/n+1

dt.

Then

n(rn(δ)− rn(δn)) =

∞∫
0

(
ΨT/a(ν + 1/n)−ΨT/a(ν)

)2 a1/nΓT/a(ν + 1/n)
Γ(ν)t1/n+1

dt.

Note that ΓT/a(ν+1/n) and Γ′T/a(ν+1/n) tends to ΓT/a(ν) and Γ′T/a(ν), respectively
as n →∞, since ν is only a function of m (sample size) and is completely free from
n. Therefore Lebesgue dominated convergence theorem implies that

lim
n→∞

[n(rn(δ)− rn(δn))] = 0,
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or

rn(δ)− rn(δn) = o(
1
n

).

The proof is completed. �

Minimaxity of the limiting Bayes estimator δ in (11) as an estimator of η(≥ a)
under squared-log error loss function is equivalent to the minimaxity of the estimator
δ′ = ln δ = −ΨT/a(ν) ln T, as an estimator of η′ = ln η(≥ ln a) under squared error
loss function.

In the next section, according to the linear estimation problem of the scale pa-
rameter in the classical (untruncated) case, we introduce the class of truncated linear
estimators of η ≥ a and compare the estimators in this class with the admissible
estimator of the lower-bounded scale parameter obtained in Section 3.

4. THE CLASS OF TRUNCATED LINEAR ESTIMATORS

It often happens in truncated problems that the most natural estimator to consider
first is a truncated version of a classical estimator in the original problem. The MLE
in the truncated normal problem is one such example. In exponential families a class
of reasonable estimators of the expectation parameter in the untruncated problem
are the linear estimators which arise as (proper or generalized) Bayes estimators for
conjugate families. Hence it is natural to consider a truncated version of such linear
estimators.

A theme which runs throughout much of the literature on such truncated proce-
dures is that while they improve on the untruncated estimator, they are themselves
inadmissible because they are not generalized Bayes. For example, in estimating the
lower bounded scale parameter in exponential and gamma distributions, van Eeden
and Zidek [22, 23], van Eeden [19] and Shao and Strawderman [17] consider the class
of truncated linear estimators and show the inadmissibility of the estimators in this
class. Also, they obtained the minimax estimators in this class.

In this section we consider the class of truncated linear estimators for η(≥ a),
which is given by

C = {η̂c|η̂c = max(cT, a), c > 0} . (16)

This class is studied by van Eeden and Zidek [21, 22] for the case when the random
variable T has an F distribution and by van Eeden [19] for gamma distribution,
under the scale-invariant squared error loss function. In this paper, under squared-
log error loss function, we establish several interesting properties of the estimators
in C. It is shown that each estimator η̂c in class C is inadmissible. Also it is shown
that the subclass C′ of C defined by

C′ = {η̂c ∈ C| 0 < c ≤ c∗} , (17)

where c∗ = exp(−Ψ(ν)), consists of all those estimators which are admissible with
respect to C. On the other hand each estimator in class C − C′ is dominated by the
estimators in class C′. In the end of this section we compare the admissible estimator
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of η(≥ a), introduced in Section 3, and the truncated linear estimators introduced
in this section.

The change of loss function in this paper helped us to find better estimators
with some optimal properties and can increase our subjective information about the
statistical problem.

In this section two lemmas, needed for the proof of Theorems 4.3 and 4.4, will be
given as well as the proofs of these theorems.

Lemma 4.1. For each c > 0 and η ≥ a we have

d
dc

R(η̂c, η)

 >
=
<

 0 ⇐⇒ c

 >
=
<

 exp

−
∫ ∞

a
cη

(ln y)yν−1e−ydy∫ ∞

a
cη

yν−1e−ydy

 .

P r o o f . The risk function of η̂c is given by

R(η̂c, η) = E
[
ln η̂c

η

]2

=
∫ a

c

0

(ln
a

η
)2f(t|η)dt +

∫ ∞

a
c

(ln
ct

η
)2f(t|η)dt

= (ln a
η )2 +

∫ ∞

a
c

[
(ln

ct

η
)2 − (ln

a

η
)2

]
f(t|η)dt. (18)

Differentiating both sides of (18) w.r.t. c gives

d
dcR(η̂c, η) = 2

c

∫ ∞

a
c

(ln
ct

η
)f(t|η)dt

= 2
cΓ(ν)

∫ ∞

a
cη

(ln cy)yν−1e−ydy, (19)

which implies

d
dc

R(η̂c, η)

 >
=
<

 0 ⇐⇒ c

 >
=
<

 exp

−
∫ ∞

a
cη

(ln y)yν−1e−ydy∫ ∞

a
cη

yν−1e−ydy

 .

The proof is completed. �

The next lemma involves H, defined by

H(x) = exp

−
∫ ∞

x

(ln y)yν−1e−ydy∫ ∞

x

yν−1e−ydy

 , x ≥ 0, (20)

gives some mathematical properties of H(x).



An admissible estimator of a lower-bounded scale parameter . . . 607

Lemma 4.2. The function H(x) in (20) satisfies the following properties:

(i) H(0) = exp{−Ψ(ν)} = c∗,

(ii) limx→∞ H(x) = 0 , limx→∞ xH(x) = 1,

(iii) H(x) is strictly decreasing and xH(x) is strictly increasing in x.

P r o o f . The results follow by straightforward calculation with the use of the
l’Hôpital’s rule. �

The next Theorem, which studies the risk function of the estimators in the class
C and gives some their properties as functions of c and η, is used in the proof of
Theorem 4.4 below.

Theorem 4.3. For every η > a, there exists a g(c, η) such that

d
dc

R(η̂c, η)

 >
=
<

 0 ⇐⇒ c

 >
=
<

 g(c, η). (21)

This g(c, η) satisfies the following properties:

(i) 0 < g(c, η) < c∗,

(ii) g(c, η) is strictly increasing in η, for each c > 0,

(iii) limη→a g(c, η) = 0 and limη→∞ g(c, η) = c∗,

(iv) R(η̂c, a) is strictly increasing in c,

(v) For each c ∈ (0, c∗), there exists η (c) > a such that

R(η̂c∗ , η(c)) < R(η̂c, η(c)).

P r o o f . Lemma 4.1 implies

d
dc

R(η̂c, η) >,=, < 0 according as c >, =, < H(
a

cη
), (22)

and Lemma 4.2 (part (ii))

H(
a

cη
) <

cη

a
= c for η = a, where H is defined in (20).

This proves (iv).Now let η > a, using Lemma 4.2 part (ii),

H(
a

cη
)/c → η/a as c → 0 for fixed η. (23)
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Further, by Lemma 4.1, H(x) < c∗ for x > 0, so

H(
a

cη
)/c < 1 for c = c∗. (24)

From (22), (23) and (24) and the fact that xH(x) is continuous as well as strictly
increasing, it then follows that there exists a g(c, η) satisfying (21) and (i).

To prove (ii) it is sufficient to show that, for each c ∈ (0, c∗) there exists a η(c) > a
such that

d
dc

R(η̂c, η) >,=, < 0 according as η <,=, > η(c), (25)

or, equivalently, such that

c >, =, < H(
a

cη
) according as η <,=, > η(c).

To establish the existence of such a η(c), fixed a c ∈ (0, c∗) and note that, using
Lemma 4.2 (part (iii)), H( a

cη ) is strictly increasing in η. Further part (ii) implies

H(
a

cη
) <

cη

a
= c for η = a,

and that H( a
cη ) → c∗ as η →∞. The result then follows from the fact that H(x) is

strictly decreasing and continuous.
For the prove of (iii), first note that the monotonicity and boundedness of g(c, η)

imply the existence of the required limits. That g(c, η) → 0 as η → a, then follows
from the existence, for each η > a, of a g(c, η) satisfying (21). That g(c, η) → c∗ as
η →∞, follows from the existence, for each c ∈ (0, c∗), of g(c, η) satisfying (25).

For the proof of (v), note that

R(η̂c, η) =
(

ln
a

η

)2

+
∫ ∞

a
cη

[
(ln cs)2 −

(
ln

a

η

)2
]

fT (s|1)ds.

So

R(η̂c∗ , η)−R(η̂c, η) =
∫ ∞

a
c∗η

[
(ln c∗s)2 − (ln

a

η
)2

]
fT (s|1)ds

−
∫ ∞

a
cη

[
(ln cs)2 − (ln

a

η
)2

]
fT (s|1)ds. (26)

It is now sufficient to prove that the limit, as η →∞, of the right hand side of (26)
is negative. But this limit is∫ ∞

0

[
(ln c∗s)2 − (ln cs)2

]
fT (s|1)ds < 0,

for all c 6= c∗. The proof is completed. �

The following theorem shows that the class C′ defined in (17) consists of all those
δc, c > 0, which are admissible in C. It also identifies the estimators in C which
dominate the ones in C − C′.
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Theorem 4.4. If η ≥ a > 0, then

(i) η̂c dominates η̂c′ for c∗ ≤ c < c′,

(ii) Each estimator in the class C′ is admissible in C.

P r o o f . Part (i) follows from the parts (i), (iv) and (21) of Theorem 4.3. For the
proof of part (ii) note that η̂c admissible in C′ implies η̂c admissible in C. This can
be seen as follows. Suppose this is not true, i. e., suppose there exists an estimator
η̂c which is admissible in C′ and an estimator η∗ ∈ C −C′ which dominates η̂c. Then
because η̂c∗ dominates η∗, η̂c∗ dominates η̂c. But this contradicts the admissibility
of η̂c in C′. So now it is sufficient to show that every estimator in C′ is admissible in
C′. To prove this, let 0 < c′ 6= c′′ ≤ c∗ and consider the following cases:

(i) 0 < c′, c′′ < c∗. By Theorem 4.3 parts (i)-(iii) and Equation (21), there exists
η0(c′) > a such that R(η̂c′ , η0(c′)) < R(η̂c′′ , η0(c′)), which shows that η̂c′′ does
not dominate η̂c′ .

(ii) 0 < c′ < c∗, c′′ = c∗. Then η̂c′′ does not dominate η̂c′ because, by Theorem 4.3
part (iv), R(η̂c′ , a) < R(η̂c∗ , a). Nor does η̂c′ dominate η̂c′′ because, by Theo-
rem 4.3, part (v), there exists η(c′) > a such that R(η̂c∗ , η(c′)) < R(η̂c′ , η(c′)).

Proof of this theorem is completed. �

In this part, some other properties and comparisons of the truncated linear esti-
mators in class C and the admissible estimator of the lower-bounded scale parameter
in (11) are presented.

Proposition 4.5. For each c > 0, η̂c(x) = max(cT (x), a) is nondecreasing in T (x).
Further, the estimator δ(x) in (11) is strictly increasing in T (x). Further,

(i) limT (x)→∞ δ(x) = ∞,

(ii) limT (x)→0 δ(x) ≥ a.

P r o o f . The proof is easy using some mathematical calculations with the use of
the l’Hôpital’s rule. �

The class C of truncated linear estimators is the class of inadmissible estimators.
By choosing c = c∗, the inadmissible estimator η̂c∗(x) in class C dominates all the
estimators in the class C − C′ (Theorem 4.4). For values η/a close to 1 and c < c′,
η̂c dominates η̂c′ because by Theorem 4.3, R(η̂c, a) is strictly increasing in c. δ(x)
in (11) as an estimator of a lower-bounded scale parameter under squared-log error
loss function, is admissible.

Using the above contents, as for choice between the estimators in class C and the
admissible estimator δ(x), considering the following points are essential:
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1. δ(x) has the advantage of being admissible, the disadvantages of poor perfor-
mance for values of η close to a and the complexity of computations.

2. The other estimators η̂c(x) in class C have the disadvantage of being inadmis-
sible. They have the advantage of good performance for values of η close to a.
Another plus of these estimators is their simplicity for compute.

5. CONCLUSION

All problems in practice have a truncated parameter space and it is most impossible
to argue in practice that a parameter is not bounded. In such problems the fre-
quently used criterion of unbiasedness is useless. So, other optimality criteria such
as admissibility and minimaxity are useful to resolving this captivity. In this arti-
cle, under the squared-log error loss function, we derive the Bayes estimator of the
lower-bounded scale parameter. Also the admissibility of the limiting Bayes estima-
tor is proved. In the end, a class of truncated linear estimation is considered and its
properties are given. It is shown that each estimator in this class is an inadmissible.
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