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Generalized Birkhoffian realization of nonholonomic
systems

Yong-Xin Guo, Chang Liu and Shi-Xing Liu

Abstract. Based on the Cauchy-Kowalevski theorem for a system of par-
tial differential equations to be integrable, a kind of generalized Birkhoffian
systems (GBSs) with local, analytic properties are put forward, whose man-
ifold admits a presymplectic structure described by a closed 2-form which
is equivalent to the self-adjointness of the GBSs. Their relations with Birk-
hoffian systems, generalized Hamiltonian systems are investigated in detail.
Analytic, algebraic and geometric properties of GBSs are formulated, to-
gether with their integration methods induced from the Birkhoffian systems.
As an important example, nonholonomic systems are reduced into GBSs,
which gives a new approach to some open problems of nonholonomic me-
chanics.

1 Introduction
As it is well known, making use of the calculus of variations, any analytic, regu-
lar, holonomic, conservative mechanical systems can be formulated by Lagrange’s
equations or Hamilton’s equations, which are basis of establishing, simplifying and
integrating the equations of motion. Thus it is important to find out the solutions
of inverse problems of the calculus of variations for different dynamical systems so
as to make the most of the Lagrange’s equations and Hamilton’s equations. How-
ever, the Lagrangian or Hamiltonian formulation for a dynamical system, limited
by the conditions of self-adjointness, such as the Helmholtz’s conditions [10], [13],
[15], [18], is not directly universal if the physical variables remain without use of
Darboux transformations. Based on the Cauchy-Kowalevski theorem of the integra-
bility conditions for partial differential equations and the converse of the Poincaré
lemma, it can be proved that there exists a direct universality of Birkhoff’s equa-
tions for local Newtonian systems by means of reduction of Newton’s equations
to a first-order form, which means all local, analytic, regular, finite-dimensional,
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unconstrained or holonomic, conservative or non-conservative, and self-adjoint or
non-self-adjoint systems always admit, in a star-shaped neighborhood of a regular
point of their variables, a representation in terms of first-order Birkhoff’s equations
in the coordinate and time variables of the experimenter [11], [14]. The systems
whose equations of motion are represented by the first-order Birkhoff’s equations
on a symplectic or a contact manifold spanned by the physical variables are called
Birkhoffian systems, which are self-adjoint. The self-adjointness of local, analytic,
regular, holonomic mechanical systems means the existence of symplectic or con-
tact structure of the manifold. The Lie algebraic structure only exists for the
autonomous Birkhoffian systems.

The inverse problem of the calculus of variations for nonholonomic systems is
very complicated [7], [12]. Only some special nonholonomic systems, such as some
Chaplygin’s systems, can admit a homogenous Lagrangian or Hamiltonian formu-
lation. Since the Chaplygin’s systems can be reduced into a kind of holonomic
nonconservative systems, it is suitable to formulate such nonholonomic systems
in Birkhoffian mechanics [9], [11]. For a general nonholonomic system, i.e. a
n-dimensional mechanical system constrained by l nonlinear nonholonomic con-
straints which is a coupled dynamical system, whose equations of motion are n+ l
fixed first- and second-order ordinary differential equations, their inverse problem of
the calculus of variations can be geometrically analyzed in a singular Lagrangian [6]
or represented in Birkhoffian framework on an 2n-dimensional phase space [4], [11].
For the latter case, the nonholonomic systems are reduced into the conditional holo-
nomic systems on a 2n-dimensional phase space, whose initial conditions are not
arbitrary but confined by the nonholonomic constraints. Because the conditional
holonomic systems are of symmetry determined by the constraints, it is necessary
to reduce the Birkhoff’s equations on the 2n-dimensional phase space to those on
its constraint submanifold of minimal dimension 2n − l. Such a symmetry reduc-
tion strongly relies on the dimension 2n − l of the constraint submanifold or the
number l of the constraints acted upon the system. Therefore, in order to directly
universally analyze the inverse problem of the calculus of variations for general non-
holonomic systems, we need to generalize the Birkhoffian mechanics. This problem
can arise in other coupled dynamical systems, such as control theory for systems,
supermechanics, etc.

In section 2, we will review Birkhoffian formulation of Newtonian Systems,
emphasizing its analytic, algebraic and geometric properties. Its relation with gen-
eralized Hamiltonian mechanics is pointed out. In section 3, generalized Birkhoff’s
equations for all analytic, regular first-order dynamical systems are constructed
based on the Cauchy-Kowalevski theorem for existence theory of partial differen-
tial equations. The integration methods induced from Birkhoffian mechanics are
listed in section 4. In section 5, general nonholonomic systems are reduced into
generalized Birkhoffian systems(GBSs), whose equations of motion are represented
by the generalized Birkhoff’s equations.

2 Review of Birkhoffian formulation of Newtonian systems
Consider a holonomic dynamical system on a contact manifold R × TQ with lo-
cal coordinates {qi, q̇i} (i = 1, 2, . . . , n) where Q is a n-dimensional configuration
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manifold. Let a regular Lagrangian be denoted by L(t, q, q̇). Suppose the system
is subject to non-conservative forces fi(t, q, q̇) which are analytic. The equations
of motion for the system can be represented by non-homogeneous Euler-Lagrange
equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= fi (1)

The regularity condition Lij = det( ∂2L
∂qi∂q̇j ) 6= 0 guarantees that these n second-

order differential equations for qi on the contact manifold R× TQ can be reduced
into 2n first-order non-homogeneous Hamilton’s equations on the contact manifold
R× T ∗Q with local coordinates {t, aµ} (µ = 1, 2, . . . , 2n):

ωµν ȧ
ν − ∂H(t, a)

∂aµ
= Fµ(t, a) (2)

where {aµ} = {qi, pi}, pi = ∂L
∂q̇i , H = ∂L

∂q̇i q̇
i − L is the Hamiltonian for the system

and simple symplectic matrix is

ω = (ωµν)2n×2n =
(

0n×n −1n×n

+1n×n 0n×n

)
2n×2n

(3)

In general, equations (2) are non-self-adjoint. By means of the Cauchy-Kowalevski
theorem, it can be proved that there exist integrating factors {hµ

λ} for the equa-
tions (2) to become self-adjoint equations

Ωµν ȧ
ν −

[
∂B (t, a)
∂aµ

+
∂Rµ (t, a)

∂t

]
= 0 (4)

in a star-shaped region of a regular point (t, a), where B is a Birkhoffian usually
taken as the energy function of the system, Rµ are a set of Birkhoffian functions
usually related with the function Fµ and Ωµν is the covariant Birkhoff’s tensor
defined by

Ωµν (t, a) =
∂Rν (t, a)
∂aµ

− ∂Rµ (t, a)
∂aν

(5)

is symplectic. The regularity condition det (Ωµν) 6= 0 means that the 2n equations
(4) are independent and can be transformed into the contravariant form

ȧµ = Ωµν

[
∂B (t, a)
∂aν

+
∂Rν (t, a)

∂t

]
(6)

where Ωµν = Ω−1
µν .

The Birkhoff’s equations (4) are analytic in the sense that they are derivable
from the most general possible linear first-order action functional, the Pfaffian
action

A(Ẽ) =
∫ t2

t1

dt [Rν (t, a) ȧν −B (t, a)] (Ẽ) (7)

where Ẽ is a possible pass in the contact manifold. The discussion of gauge freedom
and some methods for integrating the Birkhoff’s equations can be found in [11], [14].
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The conditions of self-adjointness of Birkhoff’s Equations (4)

Ωµν + Ωνµ = 0 (8a)
∂Ωµν

∂aτ
+
∂Ωντ

∂aµ
+
∂Ωτµ

∂aν
= 0 (8b)

∂Ωµν

∂t
=

∂

∂aν

[
∂B (t, a)
∂aµ

+
∂Rµ (t, a)

∂t

]
− ∂

∂aµ

[
∂B (t, a)
∂aν

+
∂Rν (t, a)

∂t

]
(8c)

are equivalent to the the integrability conditions for the 2-form on the contact
manifold R× T ∗Q

Ω̂ =
1
2

Ω̂µν (â) dâµ ∧ dâν ; µ = 0, 1, 2, . . . , 2n (9)

to be closed, i.e.,
dΩ̂ = 0 (10)

where Ω̂µν = Ωµν , Ω̂0ν = −Ω̂ν0 = ∂B
∂aν + ∂Rν

∂t (µ, ν = 1, 2, . . . , 2n). The above
nonautonomous Birkhoff’s equations (4) can be globally represented by a general,
local, Birkhoffian vector field X̃ on R× T ∗Q verifying the properties

iX̃Ω̂ = 0, dt(X̃) = 1 (11)

Locally the vector field admits

X̃ =
∂

∂t
+ Ωµν

(
∂B

∂aν
+
∂Rν

∂t

)
∂

∂aµ
(12)

Evidently the universality of the Birkhoff’s equations is not only direct but also
global.

For the autonomous Birkhoffian systems where1 ∂Rµ

∂t = 0, the Birkhoff’s equa-
tions are equivalent to the generalized Hamilton’s equations [8] on an even-dimen-
sional Poisson manifold

ȧµ = Ωµν ∂B (t, a)
∂aν

(13)

In these cases the Poisson brackets can be defined by time evolution

Ȧ (a) =
∂A

∂aµ
ȧµ =

∂A

∂aµ
Ωµν ∂B

∂aν

def= [A,B] (14)

verifying the Lie algebra axioms

[A,B] + [B,A] = 0 (15a)
[[A,B] , C] + [[B,C] , A] + [[C,A] , B] = 0 (15b)

It should be pointed out that the Lie algebraic structure does not exist for a non-
autonomous Birkhoffian system for the dependence of R(t, a) on time t if we take
Birkhoffian B to be total energy of the system.

1As will be seen in section 3, the so-called semi-autonomous Birkhoffian systems mentioned
in [11], [14] are really autonomous ones. So the Birkhoffian systems can be classified into au-
tonomous ones and non-autonomous ones.
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3 Generalized Birkhoff’s equations
In order to generalize the theory of Birkhoffian systems, it is necessary to analyze
the fundamental conditions for the second-order dynamical systems to be capable
of reduction to first-order self-adjoint Birkhoffian formulation, especially their role
in the course of reduction to first-order systems.

(1) Locality. By locality we mean that the systems considered can be formu-
lated by ordinary or partial differential equations, in which the interactions are
independent of integro-differential type. This condition is necessary for the Lie
algebra and symplectic geometry to be suitable to analyze the theories of some
dynamical systems.

(2) Analyticity. Analyticity of a function means that it admits a convergent,
multiple, power series expansion in a neighborhood of a point. The analyticity can
be remained for a second-order dynamical system to be reduced into a first-order
system. Evidently analyticity is based on locality. Analyticity does not depend on
the self-adjointness of a dynamical system.

(3) Regularity. A system is called regular when it is of full rank or maximal
rank, i.e., its functional Jacobi determinant is everywhere non-null in the region of
a point, with the possible exception of finite number of isolated points. Regular-
ity means maximal independency and invertibility. Thus a regular system can be
recovered from its non-degenerately transformed form. Regularity is not an invari-
ant character with respect to symmetry reduction, e.g., the canonical and Eulerian
representations for the rotation of a rigid body with respect to a fixed point.

(4) Holonomicity. By a holonomic system we mean that constraints the sys-
tem is subject to are integrable in the sense of Frobenius theorem. A holonomically
constrained system can be reduced into a constraint-free system of lower dimen-
sions. Therefore, holonomicity ensures the phase space for the first-order systems
reduced from the second-order regular dynamical systems are even dimensional.

The universality of analytic/Lie/symplectic formulation in the most general
possible form, i.e., Birkhoffian realization, does not depend on whether or not the
original systems are conservative or self-adjoint. It should be pointed out that this
symbiosis among analytic, Lie and symplectic techniques is comparatively flimsy
because any one of the four legs under the symbiosis may be possibly broken.
For example, the nonlocal type of interactions often occurs in several branches of
physics, whose dynamical equations are integro-differential equations. Moreover,
nonholonomic systems largely exist in the fields of physics, mechanics and engineer-
ing. Therefore it should be encouraged to generalize the Birkhoffian formulation
to a new symbiosis among analytic, algebraic, geometric form in order to keep up
with the process of mathematical and physical advances.

In this section, we consider a kind of GBSs from which the nonholonomic sys-
tems may be recovered if the second-order dynamical systems are reconstructed.
Consider a dynamical system described by first-order differential equations

ȧI = ΞI(t, aJ), I, J = 1, 2, . . . ,m (16)

on an m-dimensional manifold M with local coordinates {t, a} where ΞI(t, a) are
analytic on the regular points. It can be proved that the equations (16) admit
an analytic and presymplectic structure whether they are self-adjoint or not. Two
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methods can be utilized to realize this goal. The first one is to find out an inte-
grating factor matrix with the help of Cauchy-Kowalevski theorem for the partial
differential equations to be integrable, so as to obtain a self-adjoint genotopic trans-
formed covariant form of the equations (16) or a presymplectic form on the manifold
M . Then the converse of Poincaré lemma is used to get the final result. The second
method is a direct use of the following Cauchy-Kowalevski theorem.

Theorem 1. Consider an initial problem consisting of n+ 1 first-order partial dif-
ferential equations of the Cauchy-Kowalevski form

∂Rα(t, a)
∂t

=
n∑

β=0

m∑
I=1

ΞIβ
α (t, a)

∂Rβ(t, a)
∂aI

+
n∑

β=0

Πβ
α(t, a)Rβ(t, a) + Θ(t, a) (17)

in n + 1 unknown functions Rα (α = 0, 1, 2, . . . , n) and in m + 1 independent
variables {t, aI} (I = 1, 2, . . . ,m), and the n+ 1 initial conditions

Rα(0, a1, a2, . . . , am) = Rα(a1, a2, . . . , am) (18)

If the functions ΞIβ
α (t, a), Πβ

α(t, a), Θ(t, a) and Rα(a) are real analytic functions at
the regular point A(a), then a unique analytic solution R0, R1, . . . , Rn of the initial
problem (17) and (18) exists in a neighborhood of the point A(a).

Considering the need of analytic and presymplectic structure, we set n = m,
Πβ

α = 0, Θ = 0, R0 = −B, a0 = t, ΞIβ
J = 2δ[IJ Ξβ] = δI

JΞβ − δβ
J ΞI (where Ξ0 = 1, so

ΞI0
J = δI

J). Then equations (17) become

∂RI(t, a)
∂t

=
[
∂RJ (t, a)

∂aI
− ∂RI (t, a)

∂aJ

]
ΞJ(t, a)− ∂B(t, a)

∂aI
(19a)

∂B(t, a)
∂t

= ΞI0
0

∂B(t, a)
∂aI

− ΞIJ
0

∂RJ(t, a)
∂aI

(19b)

The solution for {RI ,−B} is uniquely determined by known functions ΞJ ,ΞI0
0 ,Ξ

IJ
0

due to the Cauchy-Kowalevski theorem. However, for the definite functions ΞI ,
different choices of functions ΞI0

0 ,Ξ
IJ
0 can produce different solutions {RI ,−B},

which is not of physical meaning in general. Evidently there exist infinite solutions
for the equations (19a). If the quantity B in the equations (19a) is given, the
equations (19a) are complete and the theorem ensures unique existence of the
functions RI . In this case the equation (19b) for the functions ΞI0

0 ,Ξ
IJ
0 , which is

in fact algebraic, is not complete.
This analysis may be useful to easily find out the solution {RI ,−B} based

on a suitable choice of functions ΞI0
0 ,Ξ

IJ
0 . For example, we can suppose that

ΞI0
0 = 0,ΞIJ

0 = δIJ . Then the equation (19b) becomes

∂B(t, a)
∂t

+
∂RI(t, a)
∂aI

= 0 (20)

Now we will observe the analytic, algebraic and geometric characteristic of the
following generalized Birkhoff’s equations[

∂RJ

∂aI
− ∂RI

∂aJ

]
ȧJ −

(
∂B

∂aI
+
∂RI

∂t

)
= 0, I, J = 1, 2, . . . ,m (21)
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from which it is easy to infer that

dB

dt
=
∂B

∂t
− ∂RI

∂t
ȧI (22)

The equations (21) are analytic because they are derivable from the Pfaffian action

A(Ẽ) =
∫ t2

t1

dt [Rν (t, a) ȧν −B (t, a)] (Ẽ) (23)

with the end points condition,where Ẽ is a possible pass in the contact manifold M .
We can define 1-form Θ(t, a) = RI(t, a)daI − B(t, a)dt on the manifold M

subject to the condition that its exterior derivative

Ω = d(RI da
I−B dt) =

1
2

(
∂RJ

∂aI
− ∂RI

∂aJ

)
daI∧daJ +

(
∂B

∂aI
+
∂RI

∂t

)
dt∧daI (24)

is of maximal rank. Making use of the notation ΩIJ = ∂RJ

∂aI − ∂RI

∂aJ , ΓI = ∂B
∂aI + ∂RI

∂t ,
it is easy to verify the equivalence relation between the closure of the 2-form Ω and
self-adjointness of equations (21), i.e.,

dΩ = 0 ⇐⇒


ΩIJ + ΩJI = 0
∂ΩIJ

∂aK
+
∂ΩJK

∂aI
+
∂ΩKI

∂aJ
= 0

∂ΩIJ

∂t
=
∂ΓI

∂aI
− ∂ΓJ

∂aI

(25)

It inferred that the self-adjointness of the systems is independent of the non-
degeneracy of 2-form Ω.

Definition 1. A presymplectic structure on a manifold M can be defined by a
closed 2-form Ω, which may be degenerate in the sense that for all vector fields
V ∈ Γ(M), ∃X 6= 0, X ∈ Γ(M), such that Ω(X,V ) = 0. The pair (M,Ω) is called
a presymplectic manifold.

Because a 2-form on the manifold M with odd dimension is degenerate,2 such a
closed 2-form can not define a one-to-one and onto map between the tangent space
T{t,a}M and the cotangent space T ∗{t,a}M unless the dimension of the manifold
M is even, i.e., m = 2n and det(ΩIJ) 6= 0, which is the case of a Birkhoffian
system. Therefore, if we denote the set of smooth real-valued functions on M
by F(M), there does not, in general, exist the unique Hamiltonian vector field
Xf on M such that iXf

Ω = df , f ∈ F(M). Although the dynamical vector field

2Denote the transpose of the matrix (ΩIJ ) by (ΩIJ )T = (ΩJI), then det(ΩIJ )T =
det(ΩIJ ). Since the matrix (ΩIJ ) is antisymmetric, i.e., ΩIJ = −ΩJI , we have det(−ΩIJ ) =
det(ΩIJ ). It can be referred that det(−ΩIJ ) = (−1)m det(ΩIJ ) from the relation det(ΩIJ ) =
εIJ...KΩ1IΩ2J · · ·ΩmK where εIJ...K is the totally antisymmetric Levi-Civita symbol. Thus
det(ΩIj) = 0 if m is odd.
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X = ∂
∂t +ΞI(t, a) ∂

∂aI cannot locally represented by the Birkhoffian as equation (12),
we fortunately still have a global formulation of the equations (21), i.e.,

iXΩ = 0, iX dt = 1. (26)

which also include the time variation of the generalized Birkhoffian function B,
i.e, the equation (22). It is interesting that the global form (26) is not only suit-
able to formulate Hamiltonian or Birkhoffian systems with contact (symplectic)
structure but also enables to represent GBSs and other systems as nonholonomic
systems [2], [3] of non-symplectic structure.

If the closed 2-form Ω is regular, the system is reduced to the Birkhoffian system.
If the GBS is autonomous or semi-autonomous, the equation

ΩIJ ȧ
J − ∂B

∂aI
= 0, I, J = 1, 2, . . . ,m (27)

can be globally formulated by
iXΩ = −dB (28)

where Ω = 1
2ΩIJda

I ∧daJ . Combining the equation (22) with equation (28), yields
that ∂B

∂t = 0, i.e., the so-called semiautonomous Birkhoffian systems are really
autonomous ones. Furthermore, if the closed 2-form is regular, the Lie algebra can
be constructed by the Poisson bracket

{f, g} = Ω−1(df, dg) = Ω(Xf , Xg) (29)

in accordance with the time evolution law ȧI = ΩIJ ∂B
∂aJ = 0. It should pointed

out that Lie algebra structure does not generally exist for a GBS unless ∂RI

∂t = 0,
det(ΩIJ) 6= 0.

4 Integration of generalized Birkhoff’s equations
As Birkhoffian mechanics, the most important tasks to study the generalized Birk-
hoffian mechanics mainly focus on both constructing the Birkhoffian, Birkhoffian
functions and integrating the generalized Birkhoff’s equations. The first procedure
should be checking whether the methods utilized in Birkhoffian mechanics can be
generalized to GBSs or not. Fortunately, all the existing methods to construct
Birkhoffian functions can be used in GBSs because that the methods only rely
upon the locality, analyticity of the integrand, independent of the regularity of the
matrix ΩIJ mentioned above.

A given first-order system verifying the conditions of locality, analyticity and
regularity always admits infinite varieties of equivalent generalized Birkhoffian rep-
resentations characterized by the gauge transformations

RI(t, a) → R′
I(t, a) = RI(t, a) +

∂G(t, a)
∂aI

(30a)

B(t, a) → B′(t, a) = B(t, a)− ∂G(t, a)
∂t

(30b)
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All the Birkhoffian representations are equivalent in the sense that Birkhoff’s equa-
tions are the same for all possible functions (30), i.e.,(

∂R′
ν

∂aµ
−
∂R′

µ

∂aν

)
ȧν −

(
∂B′

∂aµ
+
∂R′

µ

∂t

)
=
(
∂Rν

∂aµ
− ∂Rµ

∂aν

)
ȧν −

(
∂B

∂aµ
+
∂Rµ

∂t

)
(31)

The practical meaning is that we can choose a gauge function G(t, a) to make the
Birkhoffian be the physical energy of the system.

Therefore, we can outline the three methods to construct Birkhoffian functions
as follows.

Method 1. Let B be the total energy of the system and then solve the Cauchy-
-Kowalevski equations (19a) in the functions RI .

Method 2. Via the method of the genotopic transformations starting from the
equation (16), construct a self-adjoint covariant form

[ΩIJ (t, a) ȧJ + ΓI(t, a)]SA = 0, I, J = 1, 2, . . . ,m (32)

The functions RI are then given by

RI(t, a) =
[∫ 1

0

dτ τΩIJ (t, τa)
]
aJ (33)

and the Birkhoffian is provided by the rule

B(t, a) = −
[∫ 1

0

dτ

(
ΓI +

∂RI

∂t

)
(t, τa)

]
aI (34)

This method is recommended when no physical condition is imposed on the
meaning of the Birkhoffian and on the prescriptions for the construction of the
first-order form. It is often preferable in practice, because of the greater freedom
in the Birkhoffian functions.

Method 3. Suppose that the m obtained first integrals IJ of the first-order
system (16) are independent in the sense that det(∂IJ/∂aI) 6= 0. Then

RI(t, a) = GJ
∂IJ

∂aI
, B(t, a) = −GJ

∂IJ

∂t
(35)

where GJ are functions of the integrals II , which are not constrained by the reg-
ularity condition det(∂GI/∂IJ − ∂GJ/∂II) 6= 0.

5 Application of generalized Birkhoffian formulation to nonholo-
nomic systems

As an important example of GBS, we consider a mechanical system on the contact
manifold R × TQ with local coordinates {t, qi, q̇i} (i = 1, 2, . . . , n). Denote the
Lagrangian of the system by L(t, q, q̇) and suppose the system is subject to the
nonholonomic constraints

q̇α = ϕα(t, qi, q̇µ), α = 1, 2, . . . , l; µ = 1, 2, . . . , k = n− l (36)
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The dynamics of the nonholonomic system is uniquely determined by the four
factors: (1) Lagrange-d’Alembert principle, (2) ideal constraints, (3) Chetaev’s
condition for the virtual displacement, and (4) the regularity of the Hessian matrix(

∂2L
∂q̇i∂q̇j

)
. Of course, the locality and analyticity are understood. The equations

of motion for the system form a set of mixed second- and first-order ordinary
differential equations [6], [16], [17], [19]

q̈µ = fµ(t, qν , q̇ν , qα), ν = 1, 2, . . . , k = n− l (37a)

q̇α = ϕα(t, qν , q̇ν , qβ), β = 1, 2, . . . , l (37b)

The Lagrangian and Hamiltonian inverse problem for such a coupled system is
not universal [1], [7], [12]. The nonholonomicity of the system makes the Birk-
hoffian realization for the system to be not universal. However, the universality
of self-adjointness for the nonholonomic system can be realized in the generalized
Birkhoffian framework based on the conditions of locality, analyticity and regularity
of the system.

Introduce l regular coordinates {xµ}

xµ = ξµ(t, qν , q̇ν , qα), det(∂ξµ/∂q̇ν) 6= 0 (38)

whose inverse transformation is

q̇µ = ζµ(t, qν , xν , qα) (39)

Substituting equation (39) into the equation (37) we get the following first-order
system

q̇µ = ζµ(t, qν , xν , qα) (40a)
ẋµ = ψµ(t, qν , xν , qα) (40b)

q̇α = ϕα(t, qν , xν , qβ) (40c)

Sometimes we directly choose xµ to be generalized velocity q̇µ or generalized mo-
mentum pµ. Denote the m = 2k + l local coordinates {qν , xν , qα} on constraint
manifold M by {aI} (I = 1, 2, . . . ,m = 2k + l). Then the equations (37) can be
reformulated by

ȧI = ΞI(t, aJ), I, J = 1, 2, . . . ,m = 2k + l (41)

The locality, analyticity and regularity of the functions ΞI(t, a) make the equa-
tions (41) admit a generalized Birkhoffian formulation[

∂RJ

∂aI
− ∂RI

∂aJ

]
ȧJ −

(
∂B

∂aI
+
∂RI

∂t

)
= 0, I, J = 1, 2, . . . ,m = 2k + l (42)

where the total energy of the system can be taken as the Birkhoffian B and the
functions RI are related with the nonholonomic constraint forces. It should be
remarked that the regularity of Hessian matrix for the original nonholonomic me-
chanical system does not assure the regularity of the matrix (ΩIJ) which is deter-
mined by the integrability of the constraints or the nonholomicity of odd number
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of constraints. If l is even the system is a Birkhoffian system. For the case of
odd l, no symplectic and Lie algebra structure exist on the constraint manifold M .
However, the self-adjointness for the equation (41) is independent of parity of the
number m of the nonholonomic constraints.

If the second-order equations are decoupled with the constraints, e.g., the Chap-
lygin’s system

q̈µ = fµ(t, qν , q̇ν), ν = 1, 2, . . . , k = n− l (43a)
q̇α = ϕα(t, qν , q̇ν), α = 1, 2, . . . , l (43b)

the Birkhoffian formulation can be realized on a 2k-dimensional subspace [9], [11].

Example 1. [9] Consider the motion of a simplified sleigh with unit mass and unit
moment of inertia in R2×T 1 with coordinates (x, y, ϕ) , subjected to the nonholo-
nomic constraint ẏ = ẋ tanϕ. The Lagrangian is L = 1

2

(
ẋ2 + ẏ2 + ϕ̇2

)
and the

Lagrangian embedded in the constraint is L = 1
2

(
ẋ2sec2ϕ+ ϕ̇2

)
. Obviously the

system is a Chaplygin’s system and thus reduced to a holonomic nonconservative
subsystem for x and ϕ on a submanifold hs

τ ⊂ T
(
R2 × T 1

)
, decouped with the

constraint. The Chaplygin’s equations of motion are

ẍ+ ẋϕ̇ tanϕ = 0, ϕ̈ = 0, ẏ − ẋ tanϕ = 0

Utilizing the Legendre transformation ẋ = px cos2 ϕ, ϕ̇ = pϕ, the Hamiltonian
embedded in the constraint is H = 1

2

(
p2

xcos2ϕ+ p2
ϕ

)
. The equations of motion are

given by the matrix form
0 px tanϕ −1 0

−px tanϕ 0 0 −1
1 0 0 0
0 1 0 0



ẋ
ϕ̇
ṗx

ṗϕ

 =


0

− 1
2p

2
x sin 2ϕ

px cos2 ϕ
pϕ


with four independent first integrals

I1 = pϕ, I2 = ϕ− pϕt, I3 = px cosϕ, I4 =
1
2
[
ω2x2 + p2

x cos4 ϕ
]

where ω = ϕ̇ is constant.
Taking the conventional notations aJ = {x, ϕ, px, pϕ} (J = 1, 2, 3, 4), we find

out a set of Birkhoffian functions by means of Hojman’s method [5], [14]

R1 = a1a3
(
a4
)2

cos a2

R2 =
1
2
a4 +

a3 cos a2

2a4
−
(
a3
)2

cos3a2 sin 2a2

R3 =
(
a3
)2

cos5a2

R4 = −a2 +
1
2
a4t− ta3 cos a2

2a4
+
(
a1
)2
a3a4 cos a2

B =
1
2

[(
a4
)2

+ a3 cos a2
]
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Thus the symplectic tensor ΩIJ = ∂RJ

∂aI − ∂RI

∂aJ is given by the matrix elements

Ω11 = Ω22 = Ω33 = Ω44 = 0

Ω12 = −Ω21 = a1a3
(
a4
)2

sin a2

Ω13 = −Ω31 = −a1
(
a4
)2

cos a2

Ω14 = −Ω41 = 0

Ω23 = −Ω32 =
(
a3
)2

cos4a2 sin a2 − cos a2

2a4

Ω24 = −Ω42 = −3
2
−
(
a1
)2
a3a4 sin a2 +

a3 cos a2 + ta3a4 sin a2

2(a4)2

Ω34 = −Ω43 =
(
a1
)2
a4 cos a2 − t cos a2

2a4

which satisfies the conditions of self-adjointness. It can be verified that the equa-
tions of motion can be represented by the nonautonomous Birkhoff’s equations

ΩIJ ȧ
J − ∂B

∂aI
− ∂RI

∂t
= 0

Example 2. Consider a nonholonomic system whose configuration is denoted by
{q1, q2}. The Lagrangian of the system is L = 1

2

(
(q̇1)2 + (q̇2)2

)
. Suppose the

system is constrained by a nonholonomic constraint

q̇1 + tq̇2 − q2 + t = 0.

Then the differential equations of motion for the system are

(1 + t2)q̈2 + 2tq̇2 + 2q̇1 − 2q2 + 3t = 0

q̇1 + tq̇2 − q2 + t = 0

Let a1 = q2, a2 = q̇2, a3 = q1, then the equations can be transformed into the
first-order differential equations

ȧ1 = a2,

ȧ2 =
−t

1 + t2
,

ȧ3 = a1 − ta2 − t

with three independent first integrals

I1 = a3 − t
(
a1 − ta2 − t

)
− 1

2
ln
(
1 + t2

)
,

I2 = a1 − ta2 − t+ arctan t,

I3 = a2 +
1
2

ln
(
1 + t2

)
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By using the Hojman’s method, we can get the Birkhoffian functions

R1 = G1
∂I1

∂a1
+G2

∂I2

∂a1
+G3

∂I3

∂a1
= −G1t+G2

R2 = G1
∂I1

∂a2
+G2

∂I2

∂a2
+G3

∂I3

∂a2
= G1t

2 −G2t+G3

R3 = G1
∂I1

∂a3
+G2

∂I2

∂a3
+G3

∂I3

∂a3
= G1

B = −
[
G1

∂I1

∂t
+G2

∂I2

∂t
+G3

∂I3

∂t

]
= −G1

(
2ta2 + 2t− a1 − t

1 + t2

)
−G2

(
1

1 + t2
− a1 − 1

)
−G3

t

1 + t2

Set G1 = I2, G2 = 0, G3 = I3. Then

R1 = −t
(
a1 − ta2 − t+ arctan t

)
R2 = t2

(
a1 − ta2 − t+ arctan t

)
+ a2 +

1
2

ln
(
1 + t2

)
R3 = a1 − ta2 − t+ arctan t

B =
(

2ta2 + 2t− a1 − t

1 + t2

)(
−a1 + ta2 + t− arctan t

)
− t

1 + t2

[
a2 +

1
2

ln
(
1 + t2

)]
Thus the presymplectic tensor ΩIJ = ∂RJ

∂aI − ∂RI

∂aJ is given by the matrix

(ΩIJ)3×3 =

 0 0 1
0 0 −t
−1 t 0


It can be verified that the equations of motion can be represented by the generalized
Birkhoff equations

ΩIJ ȧ
J − ∂B

∂aI
− ∂RI

∂t
= 0

Concluding remarks
As shown above the inverse problem of the calculus of variations for a dynamical
system is characterized essentially by the self-adjointness conditions of the equa-
tions of motion in first-order form, which is equivalent to a closed 2-form on the
manifold. Any local, analytic, regular, finite-dimensional, nonholonmic, self-adjoint
or non-self-adjoint dynamical systems in first-order form always admit a generalized
Birkhoffian formulation in a contractible region of regular point of variables. The
sequence from self-adjointness to symplecticity and to Lie algebra of the formula-
tion for the dynamics is a sequence for the conditions to become more and more
strict. The symbiosis of self-adjoint/symplectic/Lie algebraic/physical formulation
is only suitable to the local, analytic, regular, holonomic, autonomous dynamical
systems.
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