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Several examples of nonholonomic mechanical systems

Martin Swaczyna

Abstract. A unified geometric approach to nonholonomic constrained me-
chanical systems is applied to several concrete problems from the classical
mechanics of particles and rigid bodies. In every of these examples the given
constraint conditions are analysed, a corresponding constraint submanifold
in the phase space is considered, the corresponding constrained mechanical
system is modelled on the constraint submanifold, the reduced equations
of motion of this system (i.e. equations of motion defined on the constraint
submanifold) are presented. Finally, solvability of these equations is dis-
cussed and general solutions in explicit form are found.

1 Introduction
In some mechanical and engineering problems one encounters different kinds of
additional conditions, constraining and restricting motions of mechanical systems.
Such conditions are called constraints. Constraints may be given by algebraic equa-
tions connecting coordinates (holonomic or geometric constraints), or by differen-
tial equations, which restrict coordinates and components of velocities (kinematic
constraints). Nonintegrable kinematic constraints, which cannot be reduced to
holonomic ones, are called nonholonomic constraints.

Classical theoretical mechanics deals with nonholonomic constraints only mar-
ginally, mostly in a form of short remarks about the existence of such constraints,
or mentioning some problems where simple nonholonomic constraints occur. Only
rarely, for example, in textbook [2] one can find sections where nonholonomic con-
straints are discussed in more detail and a few examples of simple mechanical
systems subjected to a nonholonomic constraint are solved. However, these books
deal only with semiholonomic or linear nonholonomic constraints (constraints lin-
ear in components of velocities), arising for example in the connection with rolling
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of rigid bodies. Discussion is usually concluded by a remark that more compli-
cated nonholonomic constraints (when the dependence on velocities is nonlinear)
are not mastered by means of classical methods and motion equations of mechanical
systems subjected to such constraints are not known.

A significant contribution to the study of problems of nonholonomic mechanics
represents an extensive monograph [22] which contains various application prob-
lems, mostly problems concerning rolling of rigid bodies on a horizontal plane or
on an absolutely rough surface where typically nonholonomic constraints linear in
velocities occur. This monograph serves as a classical collection of solved prob-
lems of nonholonomic dynamics. However, it does not give a unified and consistent
approach applicable to arbitrary nonholonomic mechanical systems. Equations of
motion of the considered nonholonomic systems are mostly derived on the basis
of a heuristic analogy with holonomic systems. On the other hand their solutions
agree with experience and experiments.

During the last 20 years the problems of nonholonomic mechanics have been
intensively studied in many papers, e.g. [3], [4], [5], [7], [8], [9], [10], [13], [14], [20],
[21], [23] and there have been proposed several alternative geometric concepts,
appropriate in different situations, applicable to Lagrangian systems in tangent
bundles or in jet bundles. Equations of motion of nonholonomic systems are in-
vestigated also in the monographs [1], [6], where a number of concrete application
problems is discussed and numerical aspects of solutions are presented. However, it
should be stressed, that almost all the work on nonholonomic systems is concerned
with the case of constraints linear in components of velocities.

A geometric theory covering general nonholonomic systems has been proposed
and developed by Krupková in [14], [15], [16], [17] (see also [18] for review).
Her approach is suitable for study of all kinds of mechanical systems – with-
out restricting to Lagrangian, time-independent, or regular ones, and is appli-
cable to arbitrary constraints (holonomic, semiholonomic, linear, nonlinear or gen-
eral nonholonomic). The theory gives motion equations for constrained mechan-
ical systems in a form of reduced equations defined on the constraint submani-
fold (without Lagrange multipliers), provides a nonholonomic variational principle
[17], [24] from which one can obtain reduced equations as corresponding “non-
holonomic Euler-Lagrange equations”, enables one to study constraint symmetries
and the corresponding conservation laws, etc. In particular, a new treatment of
concrete examples of nonholonomic systems is at hand, suitable for either sys-
tems with linear constraints [11], [12], [25], [26], [27], or even with nonlinear
constraints [19], [25] and providing new methods for explicit studies and solu-
tions.

The aim of this paper is to apply Krupková’s geometric theory of nonholonomic
mechanical systems to study concrete problems in both linear and nonlinear non-
holonomic dynamics. In all the cases we analyse the given constraint conditions,
consider the corresponding constraint submanifold in the phase space, we construct
the corresponding constrained mechanical system on the constraint submanifold,
present the reduced equations of motion of this system, and finally discuss the solv-
ability of these equations. In most cases we are able to obtain general solutions in
an explicit form. It turns out that reduced equations indeed represent an effective
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method for solving concrete mechanical and engineering problems of nonholonomic
mechanics.

The paper contains complete and comprehensive solutions of seven problems
from the classical mechanics of particles and rigid bodies where nonholonomic con-
straints appear. Three of them (5.1, 5.4 and 5.5) concern dynamics of a free particle
or a particle in a homogeneous gravitational field subject to a nonlinear nonholo-
nomic constraint. We find general solutions in an explicit form, with respect to
appropriate initial conditions. Problem 5.2 (a dog pursues a man) is formulated
in [2]; we study it as a mechanical system modelled on a nonholonomic subman-
ifold and provide the reduced equation of motion. A solution in an explicit form
is found by eliminating the time parameter from Chetaev equations. The next
problem (5.3) is then a generalization of the previous one. The last two problems
belong to the mechanics of rigid bodies (a disc rolling without sliding on a horizon-
tal plane and a ball rolling without sliding on a horizontal plane) and as examples
of nonholonomic systems are discussed in the monograph [22]. We study them in
a different way, again using the geometric model leading to reduced equations. In
particular, compared with [22] where a solution of the last problem 5.7 for the case
of constant angular velocity of rotation of the horizontal plane is given, dealing
with reduced equations we provide a procedure of solution applicable in the case
of constant angular velocity as well as of nonconstant angular velocity.

2 Lagrangian systems on fibered manifolds
Throughout the paper we consider a fibered manifold π : Y → X with a one-
dimensional base space X and (m+ 1)-dimensional total space Y. We use jet pro-
longations π1 : J1Y → X and π2 : J2Y → X and jet projections π1,0 : J1Y → Y
and π2,1 : J2Y → J1Y. Configuration space at a fixed time is represented by a
fiber of the fibered manifold π and a corresponding phase space is then a fiber of
the fibered manifold π1. Local fibered coordinates on Y are denoted by (t, qσ),
where 1 ≤ σ ≤ m. The associated coordinates on J1Y and J2Y are denoted by
(t, qσ, q̇σ) and (t, qσ, q̇σ, q̈σ), respectively. In calculations we use either a canon-
ical basis of one forms on J1Y , (dt, dqσ, dq̇σ), or a basis adapted to the contact
structure, (dt, ωσ, dq̇σ), where

ωσ = dqσ − q̇σ dt, 1 ≤ σ ≤ m.

Whenever possible, the summation convention is used. If f(t, qσ, q̇σ) is a function
defined on an open set of J1Y we write

df

dt
=
∂f

∂t
+

∂f

∂qσ
q̇σ +

∂f

∂q̇σ
q̈σ,

d̄f

d̄t
=
∂f

∂t
+

∂f

∂qσ
q̇σ.

A (local) section δ of π1 is called holonomic if δ = J1γ for a section γ of π.
A vector field ξ defined on J1Y is called π1-vertical (or simply vertical) if

Tπ1 · ξ = 0, where T is the tangent functor. Similarly, a vector field ξ is called
π1,0-vertical if Tπ1,0 · ξ = 0.

A differential form ρ is called contact if J1γ∗ρ = 0 for every section γ of π. A
differential form ρ is called horizontal if iξρ = 0 for every vertical vector field ξ. We
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denote by h the operator assigning to ρ its horizontal part. Every 2-form on J1Y is
contact and admits a unique decomposition π∗2,1ρ = ρ1 +ρ2, where ρ1 is a 1-contact
form on J2Y (i.e. for every vertical vector field ξ, iξρ1 is a horizontal form), and ρ2

is a 2-contact form (i.e. for every vertical vector field ξ, iξρ2 is a 1-contact form).
We denote by p1, and p2 operators assigning to ρ its 1-contact and 2-contact part,
respectively.

By a distribution on J1Y we shall mean a mapping D assigning to every point
z ∈ J1Y a vector subspace D(z) of the vector space TzJ

1Y . A distribution can
be spanned by a system of (local) vector fields. If D is a distribution, we denote
by D0 its annihilator, i.e. the set of all 1-forms ηκ on J1Y such that iξιηκ = 0
for every vector field ξι belonging to D. In this sense, every distribution can be
defined by a system of (local) 1-forms. For a distributions of a constant rank,
i.e. that dimD(z) does not depend on z, the description by means of vector fields
is completely equivalent with that by means of 1-forms. Recall that a section δ of
π1 is called an integral section of D if δ∗η = 0 for every 1-form η belonging to D0.

If λ is a Lagrangian on J1Y , we denote by θλ its Lepage equivalent or Cartan
form and Eλ its Euler-Lagrange form, respectively. Recall that Eλ = p1 dθλ. In
fibered coordinates where λ = L(t, qσ, q̇σ) dt, we have

θλ = Ldt+
∂L

∂q̇σ
ωσ, (1)

and Eλ = Eσ(L)ωσ ∧ dt, where the components

Eσ(L) =
∂L

∂qσ
− d

dt

∂L

∂q̇σ
(2)

are the Euler-Lagrange expressions. Since the functions Eσ are affine in the second
derivatives we write

Eσ = Aσ +Bσν q̈
ν ,

where

Aσ =
∂L

∂qσ
− ∂2L

∂t∂q̇σ
− ∂2L

∂qν∂q̇σ
q̇ν , Bσν = − ∂2L

∂q̇σ∂q̇ν
. (3)

A section γ of π is called a path of the Euler-Lagrange form Eλ if

Eλ ◦ J2γ = 0. (4)

In fibered coordinates this equation represents a system of m second-order ordinary
differential equations

Aσ

(
t, γν ,

dγν

dt

)
+Bσρ

(
t, γν ,

dγν

dt

)d2γρ

dt2
= 0 (5)

for components γν(t) of a section γ, where 1 ≤ ν ≤ m. These equations are called
Euler-Lagrange equations or motion equations and their solutions are called paths.

Euler-Lagrange equations (4) or (5) can be written either in an intrinsic form
as follows

J1γ∗iξdθλ = 0,
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where ξ runs over all π1-vertical vector fields on J1Y , or equivalently in the form

J1γ∗iξα = 0,

where α is any 2-form defined on an open subset W ⊂ J1Y, such that p1α = Eλ.
Apparently α = dθλ + F , where F runs over π1,0-horizontal 2-contact 2-forms. In
fibered coordinates we have F = Fσν ω

σ ∧ ων , where Fσν(t, qρ, q̇ρ) are arbitrary
functions. Recall from [14] that the family of all such (local) 2-forms:

α = dθλ + F = Aσω
σ ∧ dt+Bσνω

σ ∧ dq̇ν + F

is called a first order Lagrangian system, and is denoted by [α].
It is important to note that motion equations (5) of a Lagrangian system [α]

need not be affine with respect to the second derivatives. If they posses this prop-
erty, i.e. if

det(Bσρ) = det

(
∂2L

∂q̇σ∂q̇ν

)
6= 0,

then the Lagrangian system [α] is called regular.

3 Constraints
From the physical point of view, constraints on a mechanical system are conditions
restricting possible geometrical positions of the mechanical system or limiting its
motion. We distinguish between geometric and kinematic constraints.

Constraints are called geometric or holonomic if they are expressed by equations
of the form

f i(t, q1, . . . , qm) = 0, 1 ≤ i ≤ k,

where m is a dimension of the configuration space and k is a given number (the
number of constraint equations). Functions f i are defined on the configuration
space. Holonomic constraints are called skleronomic if they do not depend explicitly
on time

f i(q1, . . . , qm) = 0, 1 ≤ i ≤ k.

From the geometric point of view holonomic constraints represent submanifolds in
the configuration space-time Y .

Constraints are called kinematic if they are expressed by

f i(t, q1, . . . , qm, q̇1, . . . , q̇m) = 0, 1 ≤ i ≤ k. (6)

Now f i are functions on the “phase space” J1Y . Kinematic constraints are said to
be integrable if the corresponding system of differential equations (6) is integrable.
Integrable kinematic constraints are geometric constraints, since after integration
they represent a restriction in the configuration space. Nonintegrable kinematic
constraints (6), which cannot be reduced to geometric ones are called nonholonomic
constraints.

Holonomic or nonholonomic constraints which depend explicitly on time are
called rheonomic.
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Nonholonomic constraints (6) are called affine or linear in velocities if they can
be expressed by

Ai(t, qν) + Biσ(t, qν) q̇σ = 0, 1 ≤ σ, ν ≤ m, 1 ≤ i ≤ k. (7)

In particular, if the left-hand sides of (7) can be written in the form of total time

derivatives of some functions defined on the configuration space, say dψi(t,qν)
dt = 0,

then instead of equations (7) we write

ψi(t, qν)− Ci = 0, 1 ≤ i ≤ k,

where Ci are constants determined by initial conditions. In this case constraints (7)
are called linear integrable or semiholonomic and the following identities hold

Ai =
∂ψi

∂t
, Biσ =

∂ψi

∂qσ
.

Nonholonomic constraints (6) are called affine of degree n in velocities if they
can be expressed by

f i ≡ Ai(t, qν) + Biσ(t, qν) (q̇σ)n = 0, 1 ≤ σ, ν ≤ m, 1 ≤ i ≤ k.

For example, a relativistic particle in space-time R4 with Minkowski metric can be
considered as mechanical system subjected to one nonholonomic constraint

−(q̇1)2 − (q̇2)2 − (q̇3)2 + (q̇4)2 − 1 = 0,

see [19], which is simple affine of degree 2 in velocities.
A geometric meaning of nonholonomic constraints is such that they represent

submanifolds in the jet space J1Y .

4 Nonholonomic Lagrangian systems
Following [14] we introduce general nonholonomic constraints (6) as submanifolds
of J1Y canonically endowed with a distribution.

Let k < m be an integer. By a constraint submanifold in J1Y we mean a fibered
submanifold π1,0|Q : Q → Y of the fibered manifold π1,0 : J1Y → Y . We denote
by ι the canonical embedding of Q into J1Y , and suppose codimQ = k < m (cf.
for example [14], [15], [21], [23]). Locally, Q can be given by equations

f i(t, q1, . . . , qm, q̇1, . . . , q̇m) = 0, 1 ≤ i ≤ k,

where

rank

(
∂f i

∂q̇σ

)
= k, (8)

or, equivalently in an explicit form

q̇m−k+i = gi(t, qσ, q̇1, q̇2, . . . , q̇m−k), 1 ≤ i ≤ k. (9)

Equations (9) are called a system of k nonholonomic constraints in normal form.
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The presence of a constraint submanifold in J1Y gives rise to a concept of
a constrained section as a local section δ̄ of the fibered manifold π1 such that
δ̄(x) ∈ Q for every x ∈ dom δ̄ and a Q-admissible section as a section γ̄ of the
fibered manifold π such that J1γ̄(x) ∈ Q for every x ∈ dom γ̄.

The submanifold Q is naturally endowed with a distribution, called the canon-
ical distribution [14], or Chetaev bundle [21], and denoted by C. It is annihilated
by a system of k linearly independent (local) 1-forms

ϕi = ι∗φi, where φi = f idt+
∂f i

∂q̇σ
ωσ, 1 ≤ i ≤ k,

called canonical constraint 1-forms. More frequently we shall use equations of a
constraint submanifold Q in the form (9), i.e. f i = q̇m−k+i − gi. In this case
canonical contact 1-forms ω̄σ = ι∗ωσ, 1 ≤ σ ≤ m, restricted on Q split into two
kinds of forms ω̄l = dql − q̇ldt, 1 ≤ l ≤ m − k, and ω̄m−k+i = dqm−k+i − gidt,
1 ≤ i ≤ k, and we obtain the following local coordinate representation of canonical
constraint 1-forms

ϕi = −
m−k∑
l=1

∂gi

∂q̇l
ω̄l + ω̄m−k+i, 1 ≤ i ≤ k. (10)

The ideal in the exterior algebra of forms on Q generated by canonical constraint
1-forms is called the constraint ideal, and denoted by I; its elements are called con-
straint forms. The pair (Q,C) is then called a (nonholonomic) constraint structure
on the fibered manifold π [14], [15].

Remark 1. From the point of view of physics, the rank of the canonical distribu-
tion C has the meaning of the number of (generalized, or “phase space”) degrees
of freedom of systems constrained to Q, and the canonical distribution itself repre-
sents possible (generalized) displacements. Its π1-vertical and π1,0-vertical subdis-
tribution then has the meaning of virtual (generalized) displacements and virtual
velocities, respectively.

Now we will recall the concept of a nonholonomic Lagrangian system. Consider
on J1Y an unconstrained Lagrangian system [α] = [dθλ]. With help of the non-
holonomic constraint structure (Q,C) one can construct a new mechanical system
directly on the constraint submanifold Q of J1Y . In keeping with [14], [15], by a
related (nonholonomic) constrained system we shall mean an equivalence class of
2-forms on Q elements of which are of the form

αQ = ι∗dθλ + F̄ + ϕ(2),

where F̄ and ϕ(2) run over all 2-contact π1,0-horizontal 2-forms and constraint
2-forms defined on Q, respectively. For the constrained system we use notation
[αQ]. Equations of motion of the constrained system [αQ], then have the following
intrinsic form:

J1γ̄∗iξι
∗dθλ = 0 for every vertical vector field ξ ∈ C, (11)
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where γ̄ is a Q-admissible section of π. These equations are sometimes called re-
duced equations of motion of the constrained system [αQ], since they are restricted
to the constraint submanifold Q.

Let us find a coordinate expression of a representative of the class [αQ] and an
explicit expression of reduced equations of motion of the constrained system [αQ]
arising from the Lagrangian system [α] and a nonholonomic constraint structure
(Q,C). Let λ = L(t, qσ, q̇σ) dt be a (local) Lagrangian for an unconstrained La-
grangian system [α] = [dθλ], where θλ is its Cartan form coordinate representation
of which is given by (1), and consider the constraint submanifold Q locally given by
equations (9) in normal form. We introduce Lagrange function L̄ on the constraint
submanifold Q as the restriction of the original unconstrained Lagrange function L
on Q, i.e. L̄ = L ◦ ι, thus L̄(t, qσ, q̇l) = L

(
t, qσ, q̇l, gi(t, qσ, q̇l)

)
. Computing the

coordinate expression of ι∗dθλ we get that a representative of the class [αQ] takes
the form

αQ =

m−k∑
l=1

A′lω
l ∧ dt+

m−k∑
l,s=1

B′lsω
l ∧ dq̇s + F̄ + ϕ(2),

where the components A′l are given by

A′l =
∂L̄

∂ql
+

∂L̄

∂qm−k+i

∂gi

∂q̇l
− d̄c
dt

∂L̄

∂q̇l
+

+

(
∂L

∂q̇m−k+j

)
ι

[
d̄c
dt

(
∂gj

∂q̇l

)
− ∂gj

∂ql
− ∂gj

∂qm−k+i

∂gi

∂q̇l

]
, (12)

where
d̄c
dt

=
∂

∂t
+ q̇s

∂

∂qs
+ gi

∂

∂qm−k+i
.

Components B′l,s are of the form

B′ls = − ∂2L̄

∂q̇l∂q̇s
+

(
∂L

∂q̇m−k+i

)
ι

∂2gi

∂q̇l∂q̇s
. (13)

Finally, reduced equations of motion of the constrained system [αQ] (11) in fibered
coordinates take the form

∂L̄

∂ql
+

∂L̄

∂qm−k+i

∂gi

∂q̇l
− dc
dt

(
∂L̄

∂q̇l

)
+

+

(
∂L

∂q̇m−k+j

)
ι

[
dc
dt

(
∂gj

∂q̇l

)
− ∂gj

∂ql
− ∂gj

∂qm−k+i

∂gi

∂q̇l

]
= 0 ,

where
dc
dt

=
d̄c
dt

+ q̈s
∂

∂q̇s
.

Notice that the above system of equations can be viewed as 2nd order equations(
A′l +

m−k∑
s=1

B′lsq̈
s

)
◦ J2γ̄ = 0, (14)
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for components γ1(t), γ2(t), . . . , γm−k(t) of a Q-admissible section γ̄ dependent on
time t and parameters qm−k+1, qm−k+2, . . . , qm, which have to be determined as
functions γm−k+1(t), γm−k+2(t), . . . , γm(t) from the equations (9) of the constraint

dqm−k+i

dt
= gi

(
t, qσ,

dq1

dt
,
dq2

dt
, . . . ,

dqm−k

dt

)
, 1 ≤ i ≤ k.

A nonholonomic constraint system [αQ] is called regular if the matrix (B′l,s) is
regular, i.e.

det

(
∂L̄

∂q̇l∂q̇s
−
(

∂L

∂q̇m−k+i

)
ι

∂2gi

∂q̇l∂q̇s

)
6= 0.

For more details on concepts and results in this section the reader is referred
e.g. to the survey article [18].

5 Examples of nonholonomic mechanical systems
5.1 Decelerated motion of a free particle

Consider a “free particle” in R3 moving in such a way, that the square of its speed
decreases proportionally to the reciprocal value of time passed from the beginning
of the motion. (See [14], p. 5123, Example 1.)

We denote by (t) the coordinate on X = R, by (t, q1, q2, q3) fibered coordinates
on Y = R × R3, and (t, q1, q2, q3, q̇1, q̇2, q̇3) the associated coordinates on J1Y =
R× R3 × R3.

Lagrangian of a free particle has the standard form

λ = Ldt =
1

2
m
(
(q̇1)2 + (q̇2)2 + (q̇3)2

)
dt,

where m is the mass of the particle. We consider a first order mechanical system [α]

α = dθλ + F = −m
(
ω1 ∧ dq̇1 + ω2 ∧ dq̇2 + ω3 ∧ dq̇3

)
+ F (15)

on the fibered manifold R× R3 → R, related with the Euler–Lagrange form

E =

3∑
σ=1

−mq̈σ dqσ ∧ dt.

The motion of the mechanical system [α] is for t > 0 subject to the following
nonholonomic constraint Q

f(t, qσ, q̇σ) ≡
[(
q̇1
)2

+
(
q̇2
)2

+
(
q̇3
)2]− 1/t = 0, (16)

meaning that the particle’s speed decreases proportionally to 1/
√
t. This nonholo-

nomic constraint is rheonomic and is affine of degree 2 in components of velocity.
In a neighbourhood of the submanifold Q

rank

(
∂f i

∂q̇σ

)
= 2t(q̇1, q̇2, q̇3) = 1,

i.e. condition (8) is satisfied.
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Let U ⊂ J1Y be the set of all points, where q̇3 > 0, and consider on U canonical
coordinates and the adapted coordinates (t, q1, q2, q3, q̇1, q̇2, f̄), where f̄ = q̇3 − g,
g =

√
1/t− (q̇1)2 − (q̇2)2 is the equation of the constraint (16) in normal form.

Notice that g > 0 on U .

The constrained system [αQ] related to the mechanical system [α] (15) and the
constraint Q (16) is the equivalence class of the 2-form

αQ =
∑
l=1,2

A′l ω
l ∧ dt+

∑
l,s=1,2

B′ls ω
l ∧ dq̇s + F̄ + ϕ(2)

on Q, where

A′l =

[
− mq̇l

2t(q̇3)2

((
q̇1
)2

+
(
q̇2
)2

+
(
q̇3
)2)]

ι

= − mq̇l

2t2g2
, 1 ≤ l ≤ 2,

B′ls =

[
−m

(
δls +

q̇lq̇s

(q̇3)2

)]
ι

= −m
(
δls +

q̇lq̇s

g2

)
, 1 ≤ l, s ≤ 2,

and F̄ is any 2-contact 2-form and ϕ(2) is any constraint 2-form defined on Q. The
matrix (−B′ls) is on Q ∩ U equivalent to the matrix(

g2 + (q̇1)2 q̇1q̇2

q̇1q̇2 g2 + (q̇2)2

)
,

hence (
g2 + (q̇1)2 q̇1q̇2

0 g2

t

)
,

which is obviously regular at each point of Q∩U . This means that the constrained
system [αQ] is regular on Q ∩ U .

Reduced equations of motion of the constrained system are as follows[
mq̇1

2t2g2
+m

(
1 +

(q̇1)2

g2

)
q̈1 +m

q̇1q̇2

g2
q̈2

]
◦ J2γ̄ = 0 ,[

mq̇2

2t2g2
+m

(
1 +

(q̇2)2

g2

)
q̈2 +m

q̇1q̇2

g2
q̈1

]
◦ J2γ̄ = 0 ,

where γ̄ = (t, q1(t), q2(t), q3(t)) is a Q-admissible section, i.e. a section satisfying
the constraint equation f ◦ J1γ = 0. After arrangements we obtain equations of
motion of the constrained system in the following simple form:

q̈1(t) = − 1

2t
q̇1(t) ,

q̈2(t) = − 1

2t
q̇2(t) ,

q̇3(t) =

√
1

t
− (q̇1)

2 − (q̇2)
2
.
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Solution of these equations is

q1(t) = C1
1

√
t+ C1

2 ,

q2(t) = C2
1

√
t+ C2

2 ,

q3(t) = C3
1

√
t+ C3

2 ,

where Cij are constants connected by the relation C3
1 =

√
4− (C1

1 )2 + (C2
1 )2. Anal-

ogous results are obtained if one considers the other adapted charts belonging to
an atlas covering Q.

5.2 A dog pursuing a man

Consider a man and a dog moving in the plane. The man starts from the origin O of
the coordinate system Oxy and moves along the y-axis with a constant velocity c.
His dog starts at the same moment from the point [x0, y0], x0 ≥ 0, y0 6= 0 and runs
in such a way, that its velocity at each moment is given by the line connecting its
instantaneous position and the instantaneous position of the man. We shall find
the trajectory of the dog. (See [2], pp. 236–239.)

Figure 1

We denote by (t) the coordinate on X = R, by (t, x, y) the canonical coordinates
on Y = R×R2 and by (t, x, y, ẋ, ẏ) the associated coordinates on J1Y = R×R2×R2.

The Lagrangian of this problem is

λ = Ldt =
1

2
m(ẋ2 + ẏ2) dt

and defines a first order mechanical system [α] on the fibered manifold R×R2 → R
represented by the Lepage 2-form

α = dθλ + F = −mω1 ∧ dẋ−mω2 ∧ dẏ + F, (17)

where m denotes the mass of the dog, ω1 = dx − ẋ dt, ω2 = dy − ẏ dt are corre-
sponding contact 1-forms and F is any 2-contact 2-form. This mechanical system
is related to the dynamical form

E = −mẍ dx ∧ dt−mÿ dy ∧ dt.
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The constraint is given by the requirement that at each moment the direction of
the motion of the dog is known. For the angular coefficient of the dog’s trajectory
it holds

dy

dx
= G(t, x, y). (18)

This equation can be written in the equivalent form

G(t, x, y) ẋ− ẏ = 0 (19)

which is a rheonomic nonholonomic constraint affine in components of velocity. On
the other hand, the instantaneous direction of the motion of the dog at a time t
and at a point [x, y] is given by the line connecting this point with the point [0, c t]
where the man is at this moment. Hence the angular coefficient of the trajectory
at a time t and at a point [x, y] is given by

G(t, x, y) =
y − c t
x

, x 6= 0. (20)

Consequently, the nonholonomic constraint (19) has the form

ẏ =
y − c t
x

ẋ. (21)

This equation defines a constraint submanifold Q ⊂ J1Y, since the rank condition
(8)

rank

(
y − c t
x

, −1

)
= 1

is satisfied. The canonical constraint 1-form (10) reads

ϕ = −(y − c t) dx+ x dy.

The constrained system [αQ] related to the mechanical system [α] (17) and the
constraint Q given by (21) is the equivalence class of the 2-form

αQ = A′1 ω
1 ∧ dt+B′11 ω

1 ∧ dẋ+ F̄ + ϕ(2),

where

A′1 =
mcẋ (y − c t)

x2
, B′11 = −m

(
1 +

(y − c t)2

x2

)
,

and F̄ is any 2-contact 2-form and ϕ(2) is any constraint 2-form defined on this
constraint submanifold Q. Since

det B′11 = −m
(
x2 + (y − c t)2

x2

)
6= 0,

the constrained system [αQ] is regular.
The reduced equation of motion of the constrained system is[

mc (y − c t)
x2

ẋ−m
(
x2 + (y − c t)2

x2

)
ẍ

]
◦ J2γ̄ = 0, (22)
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where γ̄ = (t, x(t), y(t)) is a Q-admissible section satisfying the constraint equation
(21).

In [2] the dynamics is obtained by solving Chetaev equations of motion (equa-
tions with Lagrange multipliers), which take a very simple form

ẍ = µ∗G(x, y, t) ,

ÿ = −µ∗ .

The symbol µ∗ = µ/m denotes a (reduced) Lagrange multiplier and G is the
function given by (20). Now, multiplying the first equation by ẋ and the second
one by ẏ and adding these equations we get

d

dt

[
1

2
m(ẋ2 + ẏ2)

]
= µ∗[G(x, y, t) ẋ− ẏ].

Since the constraint equation (19) holds we obtain a first integral

ẋ2 + ẏ2 = v2 = const. (23)

This means that the dog moves with a constant speed. This fact together with
equation (18) enables us to determine the trajectory of the dog in an explicit form,
i.e. y = y(x). To this end we eliminate time parameter from the equations. First
we notice that one can write

ẏ =
dy

dt
=
dy

dx

dx

dt
≡ ẋ y′. (24)

Substituting (20) into (18) we obtain

dy

dx
≡ y′ =

y − c t
x

resp. x y′ = y − c t,

and after differentiating this equation with respect to x,

x y′′ = −c dt
dx
.

Hence, under appropriate conditions,

ẋ = − c

x y′′
. (25)

Since the motion takes place in the first quadrant, relations x > 0, ẋ < 0 hold, and
subsequently y′′ > 0. Substituting identity (24) to the first integral (23) we get

ẋ2
(
1 + (y′)2

)
= v2,

and after extracting the square root we can write

−ẋ =
v√

1 + (y′)2
.
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Finally we compare the last equation with equation (25) and after separation of
variables we gain the desired differential equation for the curve of pursuit

y′′√
1 + (y′)2

=
c

v

1

x
. (26)

The fact that both sides of this equation can be written by means of total derivative
with respect to x in the following way

d

dx

[
ln
(
y′ +

√
1 + (y′)2

)]
=

d

dx

( c
v

lnx
)
,

enables one a reduction of equation (26) to the following first order implicit differ-
ential equation

ln
(
y′ +

√
1 + (y′)2

)
=
c

v
lnx+ lnA, (27)

where lnA is a constant which can be determined with help of initial conditions.
Equation (27) can be written in a simpler form

y′ +
√

1 + (y′)2 = Axα,

where α = c
v . Expressing y′

y′ =
1

2

(
Axα − 1

Axα

)
,

and after integration we obtain for α 6= 1 a general solution described by the
function

y =
1

2

[
A

1 + α
x1+α − 1

A(1− α)
x1−α

]
+ C,

where C is a constant to be determined with help of initial conditions. The final
explicit form of the desired curve of pursuit is

y = y0 +
1

2

[
A

1 + α
(x1+α − x1+α

0 )− 1

A(1− α)
(x1−α − x1−α

0 )

]
,

where

A =
y0 +

√
x2

0 + y2
0

x1+α
0

,

and x0, y0 are coordinates of the initial position of the dog.

5.3 Pursuit of a general motion in a plane

Consider an object moving in a plane along an a-priori given curve described by
parametric equations x = ξ(t), y = η(t), and consider a dog which starts from a
point [x0, y0], x0 ≥ 0, y0 6= 0, and pursues this object in the same way as above,
i.e. that its velocity at each moment is given by the line connecting its instantaneous



Several examples of nonholonomic mechanical systems 41

position and the instantaneous position of the object. We shall find equations of
motion of the dog.

Figure 2

The configuration space Y , the Lagrangian λ and the mechanical system [α]
are the same as above, however, restriction of the motion of the dog now is given
by the corresponding generalization of the constraint (21) to

ẏ = G(t, x, y) ẋ =
y − η(t)

x− ξ(t)
ẋ. (28)

This is again a rheonomic nonholonomic constraint affine in components of velocity,
which defines a constraint submanifold Q in the phase space J1Y. The canonical
constraint 1-form (10) now reads

ϕ = −(y − η(t)) dx+ (x− ξ(t)) dy.

The constrained system [αQ] related to the mechanical system [α] (17) and the
constraint Q given by (28) is again an equivalence class as follows,

αQ = A′1 ω
1 ∧ dt+B′11 ω

1 ∧ dẋ+ F̄ + ϕ(2),

where

A′1 = mẋ
η̇ (y − η)(x− ξ)− ξ̇ (y − η)2

(x− ξ)3
, B′11 = −m

(
1 +

(y − η)2

(x− ξ)2

)
,

and F̄ is any 2-contact 2-form and ϕ(2) is any constraint 2-form on Q. Since

det B′11 = −m (x− ξ)2 + (y − η)2

(x− ξ)2
6= 0,

the constrained system [αQ] is again regular.
The reduced equation of motion of the constrained system is

m

[
ẋ

(y − η)

(x− ξ)2
η̇ − ẋ (y − η)2

(x− ξ)3
ξ̇ − ẍ

(
1 +

(y − η)2

(x− ξ)2

)]
◦ J2γ̄ = 0,
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where γ̄ = (t, x(t), y(t)) is aQ-admissible section satisfying constraint equation (28).
In particular, if we put ξ(t) = 0, η(t) = c t, i.e. we consider the motion along the
y-axis with a constant speed c, we obtain motion equation (22).

In the same way as in the previous example we can write down Chetaev equa-
tions of motion, which have the same form as above,

ẍ = µ∗G(x, y, t) ,

ÿ = −µ∗,

but now the function G is given by formula

G(x, y, t) =
y − η(t)

x− ξ(t)
.

Repeating the same procedure we obtain a first integral

ẋ2 + ẏ2 = v2 = const.

However, now we cannot eliminate the time parameter from the equations because
of the fact that the pursuing object moves along a curve determined by parametric
equations x = ξ(t), y = η(t), which need not represent a straight motion with a
constant velocity as in the previous example.

5.4 Motion of a particle in a homogeneous gravitational field with constant
velocity

Consider a particle of mass m moving in a homogeneous gravitational field (the
gravitational acceleration is denoted by G) from a point (q1(0), q2(0), q3(0)),
q3(0) > 0, with the initial velocity given by a vector (p1(0), p2(0), p3(0)), where
all the components are non-zero and positive. The motion is restricted by the con-
dition that the speed of the particle remains constant. (See [9], pp. 991, Example
4.2.)

This is a problem originally formulated by Leibnitz in 1689 as follows: find a
curve along which a particle moves in a homogeneous gravitational field with a
constant speed. A solution of the problem was found by Jacob Bernoulli in 1694 as
a curve called the paracentric isochrone. However the problem was solved only from
the kinematic point of view in the framework of differential geometry of curves. For
a complete description of dynamics of the problem it is necessary to understand
the requirement of the constant speed as a nonholonomic, so called isotachystonic
constraint, which is nonlinear.

Our aim is to study the dynamics of the Leibnitz particle.
The configuration space is again Y = R × R3, (t, qσ), 1 ≤ σ ≤ 3, are fibered

coordinates on Y . The Lagrangian has the form

λ = Ldt =

[
1

2
m
(
(q̇1)2 + (q̇2)2 + (q̇3)2

)
−mGq3

]
dt.

The mechanical system [α] is represented by a Lepage 2-form

α = −mGω3 ∧ dt−m
(
ω1 ∧ dq̇1 + ω2 ∧ dq̇2 + ω3 ∧ dq̇3

)
+ F, (29)
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where F is a 2-contact 2-form. The corresponding dynamical form is then

E = −mGdq3 ∧ dt−
3∑

σ=1

mq̈σ dqσ ∧ dt .

The constraint on the motion is given by equation

f ≡ (q̇1)2 + (q̇2)2 + (q̇3)2 − C = 0, (30)

where C =
(
p1(0)

)2
+
(
p2(0)

)2
+
(
p3(0)

)2
is the square of the initial speed of

the particle. Equation (30) defines a constraint submanifold Q in J1Y . It is a
skleronomic nonholonomic constraint, affine of degree 2 in components of velocity.
Let U ⊂ J1Y be the set of all points where q̇3 > 0 and consider on U the adapted
coordinates (t, q1, q2, q3, q̇1, q̇2, f̄), where f̄ = q̇3 − g, g =

√
C − (q̇1)2 − (q̇2)2 is

equation of the constraint (30) in normal form.
The constrained system [αQ] related to the mechanical system [α] (29) and the

constraint Q (30) is the equivalence class of 2-forms

αQ =
∑
l=1,2

A′l ω
l ∧ dt+

∑
l,s=1,2

B′ls ω
l ∧ dq̇s + F̄ + ϕ(2) (31)

on Q, where

A′l =

[
−mG

q̇l

q̇3

]
ι

= −mG
q̇l

g
, 1 ≤ l ≤ 2,

B′ls =

[
−m

(
δls +

q̇lq̇s

(q̇3)2

)]
ι

= −m
(
δls +

q̇lq̇s

g2

)
, 1 ≤ l, s ≤ 2,

and F̄ is a 2-contact 2-form and ϕ(2) is a constraint 2-form defined on the constraint
submanifold Q. The constrained system [αQ] is regular since the matrix (−B′ls) is
the same in the second example above. The motion of this constrained system is
described by two reduced equations[

mG
q̇1

g
+m

(
1 +

(q̇1)2

g2

)
q̈1 +m

q̇1q̇2

g2
q̈2

]
◦ J2γ̄ = 0 ,[

mG
q̇2

g
+m

(
1 +

(q̇2)2

g2

)
q̈2 +m

q̇1q̇2

g2
q̈1

]
◦ J2γ̄ = 0 ,

where γ̄ = (t, x(t), y(t)) is a Q-admissible section satisfying the constraint equation

q̇3 =
√
C − (q̇1)2 − (q̇2)2.

After simple computations equations of motion of the constrained system take the
form

q̈1(t) =
G

C
q̇1
√
C − (q̇1)2 − (q̇2)2 ,

q̈2(t) =
G

C
q̇2
√
C − (q̇1)2 − (q̇2)2 ,

q̇3(t) =
√
C − (q̇1)2 − (q̇2)2 .
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The same equations were obtained in [9] by a different method.
The above system of differential equations can be reduced to the first order

system

ṗ1(t) = Dp1
√
C − (p1)2 − (p2)2 ,

ṗ2(t) = Dp2
√
C − (p1)2 − (p2)2 ,

q̇3(t) =
√
C − (p1)2 − (p2)2 ,

where we denoted D = G/C. Since ṗ1p2 − p1ṗ2 = 0, and if moreover p2 6= 0,
then p1/p2 = κ is a first integral of these equations, which has the positive value
κ = p1(0)/p2(0) determined by the given components of the initial velocity. If we
suppose that in a certain interval of time the components p1, p2 of the instantaneous
velocity are not zero, we can separate equations for p1 and p2 and integrate∫

dp1

p1
√
C −

(
1 + 1

κ2

)
(p1)2

=

∫
Ddt

∫
dp2

p2
√
C − (1 + κ2) (p2)2

=

∫
Ddt .

After integration we can write

√
C ln


√

C κ2

1+κ2 −
√

C κ2

1+κ2 − (p1)2

p1

 =
G

C
t+ b1 ,

√
C ln


√

C
1+κ2 −

√
C

1+κ2 − (p2)2

p2

 =
G

C
t+ b2 ,

where

κ2

1 + κ2
=

(
p1(0)

)2
(p1(0))

2
+ (p2(0))

2 ,
1

1 + κ2
=

(
p2(0)

)2
(p1(0))

2
+ (p2(0))

2 ,

and b1, b2 are some integration constants. Expressing variables p1, p2 we obtain

p1 =
dq1

dt
=

√
C κ2

1 + κ2

2B1e
G√
C
t

B2
1e

2G√
C
t

+ 1
,

p2 =
dq2

dt
=

√
C

1 + κ2

2B2e
G√
C
t

B2
2e

2G√
C
t

+ 1
,

(32)

where B1, B2 are constants determined by means of b1, b2 by the following relations

B1 = e
√
C b1 , B2 = e

√
C b2 . If we take into account given components of the initial

velocity p1(0), p2(0), p3(0) which are positive as we assumed, and with respect to
the value of the first integral κ = p1(0)/p2(0) we obtain that

B1 = B2 = B =

√
C − p3(0)√

(p1(0))
2

+ (p2(0))
2
.
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We find the primitive function∫
eα t

B2e2α t + 1
=

1

αB
arctan

(
B eα t

)
,

where α = G/
√
C. Hence the desired functions q1(t), q2(t) are

q1(t) =
2C

G

√
κ2

1 + κ2
arctan

(
B e

G√
C
t
)

+A1 ,

q2(t) =
2C

G

√
1

1 + κ2
arctan

(
B e

G√
C
t
)

+A2 ,

and A1, A2 are constants, which are determined by the initial position of the par-
ticle. After elimination of the parameter t from the last equations we can see, that
the particle moves in the plane q1 − κq2 − A1 + κA2 = 0, which is parallel to the
q3-axis.

Now we can substitute the functions p1(t), p2(t) given by (32) into the constraint
condition q̇3 =

√
C − (p1)2 − (p2)2:

q̇3 =
√
C
|B2 e

2G√
C
t − 1|

B2 e
2G√
C
t

+ 1
. (33)

Indeed, for t = 0 we obtain q̇3(0) = p3(0).
We notice the fact that

B2 = 1−
2 p3(0)

(√
C − p3(0)

)
(p1(0))

2
+ (p2(0))

2 < 1,

since all the components of the initial velocity are non-zero.
As a consequence of the above property and due to the physical reason that

potential energy of a homogeneous gravitational field increases proportionally to q3,

it turns out that in some time T = −
√
C
G lnB the motion in the vertical direction

stops, i.e. q̇3(T ) = 0, and then it proceeds with q̇3(t) < 0. Hence for the time t > T
one has to consider the constraint condition in the form q̇3 = −

√
C − (p1)2 − (p2)2.

Integrating equation (33) we get that in the time interval (0, T ) the solution
q3(t) is described by the function

q3(t) =
C

2G
ln

 B2 e
2G√
C
t(

B2 e
2G√
C
t

+ 1
)2

+A3 = −C
G

ln

[
2 cosh

(
Gt+ bC√

C

)]
+A3,

where the relationship between constants B and b is given by b = 1/
√
C lnB, and

A3 is a constant, which can be determined by means of q3(0).
It is worth notice properties of the “nonholonomic fall” in a homogeneous grav-

itational field: One could expect that the motion will turn to the vertical direction
and the particle will fall down with increasing acceleration. However, the con-
straint condition keeps the speed constant, therefore the components q̇1(t), q̇2(t) of
the instantaneous velocity have to decrease proportionally, and after some time the
motion will proceed in the vertical direction with a constant velocity determined
by the vector (0, 0,

√
C).
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5.5 Motion of a particle in a homogeneous gravitational field subject to a
nonlinear constraint

Consider a particle of mass m in a homogeneous gravitational field (the same as
in the previous example). The motion of the particle is now subjected to a non-
holonomic condition b2

(
(q̇1)2 + (q̇2)2

)
− (q̇3)2 = 0, where b is a constant. (See [9],

pp. 992, Example 4.3.)

This mechanical system is the same as above, i.e. it is represented by the Lepage
form (29). However the constraint condition

f ≡ b2
(
(q̇1)2 + (q̇2)2

)
− (q̇3)2 = 0, (34)

or equivalently in normal form

q̇3 = g = b
√

(q̇1)2 + (q̇2)2 (35)

is different. The constraint (34) is again a skleronomic nonholonomic constraint,
which is affine of degree 2 in components of velocity.

The corresponding constrained mechanical system is given by the equivalence
class [αQ] of 2-forms (31), where

A′l =

[
−mG

b2q̇l

q̇3

]
ι

= −mG
b q̇l√

(q̇1)2 + (q̇2)2
1 ≤ l ≤ 2,

B′ls =

[
−m

(
δls + b4

q̇lq̇s

(q̇3)2

)]
ι

= −m
(
δls + b2

q̇lq̇s

(q̇1)2 + (q̇2)2

)
1 ≤ l, s ≤ 2.

Reduced equations of motion become the following system of second order ODE’s[
Gb q̇1√

(q̇1)2 + (q̇2)2
+

(
1 + b2

(q̇1)2

(q̇1)2 + (q̇2)2

)
q̈1 + b2

q̇1q̇2

(q̇1)2 + (q̇2)2
q̈2

]
◦ J2γ̄ = 0 ,[

Gb q̇2√
(q̇1)2 + (q̇2)2

+

(
1 + b2

(q̇2)2

(q̇1)2 + (q̇2)2

)
q̈2 + b2

q̇1q̇2

(q̇1)2 + (q̇2)2
q̈1

]
◦ J2γ̄ = 0 ,

where γ̄ = (t, x(t), y(t)) is aQ-admissible section satisfying constraint equation (35).
Expressing the second derivatives we obtain

q̈1(t) = − bG q̇1

(1 + b2)
√

(q̇1)2 + (q̇2)2
,

q̈2(t) = − bG q̇2

(1 + b2)
√

(q̇1)2 + (q̇2)2
.

(36)

The same equations are derived in [9] by a different method.
We shall solve the reduced equations. First we differentiate constraint equa-

tion (35)

q̈3 =
b2

q̇3
(q̇1 q̈1 + q̇2 q̈2).
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Substituting reduced equations (36) we obtain the equality

q̈3 = − Gb2

1 + b2
,

which can be simply integrated

q̇3 ≡ b
√

(q̇1)2 + (q̇2)2 = − Gb2

1 + b2
t+K3

1 .

Finally we substitute the last equality back to (36), and we obtain simple differential
equations, which can be reduced to first order equations with separable variables.
A complete solution of the problem is obtained in the form

q1(t) = −1

2

Gb2

1 + b2
K1

1 t
2 +K1

1K
3
1 t+K1

2 ,

q2(t) = −1

2

Gb2

1 + b2
K2

1 t
2 +K2

1K
3
1 t+K2

2 ,

q3(t) = −1

2

Gb2

1 + b2
t2 +K3

1 t+K3
2 ,

where Ki
j are constants, and the identity (K1

1 )2 + (K2
1 )2 = 1/b2 holds true.

5.6 A rolling disc on a horizontal plane

Consider a disc of radius R rolling without sliding on a horizontal plane. Let Oxyz
be a fixed orthogonal system of coordinates with the x and y-axis in the horizontal
plane and the z-axis directed vertically upwards. Then the position of the disc on
the plane may be given by five generalized coordinates x, y, ψ, ϕ, ϑ, where x and y
are the coordinates of the point P of contact of the disc and the horizontal plane,
ψ is the angle of proper rotation of the disc, ϕ is the angle between the tangent to
the disc at the point P and the x-axis, and ϑ is the angle between the rotating axis
of the disc and the parallel line to the z-axis which is going through the point P
(i.e. π/2 − ϑ is the angle of inclination between the plane of the disc and the
horizontal plane). (See [22], pp. 55.)

x

y

z

P

Tϕ

ψϑ

O

Figure 3

So the base space X = R, the configuration space is Y = R×R2×S1×S1×S1

and phase space is J1Y = R×R2×S1×S1×S1×R2×S1×S1×S1. Hence fibered
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coordinates on Y are (t, x, y, ψ, ϕ, ϑ) and the associated coordinates on J1Y are
(t, x, y, ψ, ϕ, ϑ, ẋ, ẏ, ψ̇, ϕ̇, ϑ̇).

The Lagrange function of this mechanical system is given by relation L = T−V .
The kinetic energy T is given by the sum of the energy of translation and rotation
of the disc:

T =
1

2
m
(
ẋ2 + ẏ2 +R2ϑ̇2 +R2ϕ̇2 sin2 ϑ

)
−

−mR
(
ϑ̇ cosϑ (ẋ sinϕ− ẏ cosϕ) + ϕ̇ sinϑ (ẋ cosϕ+ ẏ sinϕ)

)
+

+
1

2
I1

(
ϑ̇2 + ϕ̇2 cos2 ϑ

)
+

1

2
I2

(
ψ̇ + ϕ̇ sinϑ

)2

,

(37)

where m is the mass, and I1, I2 are the principal moments of inertia of the disc.
The potential energy of the disc is V = mgR cosϑ. Formula (37) for kinetic energy
of this problem is presented in [22] and is derived in detail in [27].

If we compute motion equation (5) of this Lagrangian system according to (2)
and (3), where 1 ≤ σ, ρ ≤ 5 and coordinates (q1, q2, q3, q4, q5) are substituted
by corresponding coordinates (x, y, ψ, ϕ, ϑ), we obtain the following five Euler-
-Lagrange equations:

−mẍ+mR
(

(cosϕ sinϑ)ϕ̈+ (sinϕ cosϑ)ϑ̈
)
−

−mR
(

(sinϕ sinϑ)(ϕ̇2 + ϑ̇2)− (2 cosϕ cosϑ)ϕ̇ϑ̇
)

= 0 ,

−mÿ +mR
(

(sinϕ sinϑ)ϕ̈− (cosϕ cosϑ)ϑ̈
)

+

+mR
(

(cosϕ sinϑ)(ϕ̇2 + ϑ̇2) + (2 sinϕ cosϑ)ϕ̇ϑ̇
)

= 0 ,

I2(ψ̈ + sinϑϕ̈) + (I2 cosϑ)ϕ̇ϑ̇ = 0 ,

mR ((cosϕ sinϑ)ẍ+ (sinϕ sinϑ)ÿ)− (I2 sinϑ)ψ̈ −
−
(
(mR2 + I2) sin2 ϑ+ I1 cos2 ϑ

)
ϕ̈−

− (I2 cosϑ)ψ̇ϑ̇− 2(mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇ϑ̇ = 0 ,

mR ((sinϕ cosϑ)ẍ− (cosϕ cosϑ)ÿ)− (mR2 + I1)ϑ̈+

+ (mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇2 + (I2 cosϑ)ψ̇ϕ̇+mgR sinϑ = 0 .

The condition that the disc rolls without sliding on the horizontal plane means,
that the instantaneous velocity of the point of contact of the disc is equal to zero
at all times. This gives rise to the following nonholonomic constraints

f1 ≡ ẋ−R cosϕψ̇ = 0, f2 ≡ ẏ −R sinϕψ̇ = 0, (38)

or in normal form

ẋ = g1 ≡ R cosϕψ̇, ẏ = g2 ≡ R sinϕψ̇.

One can see that constraints above are linear, or more precisely affine in components
of velocities. Equations (38) define a constraint submanifold Q ⊂ J1Y , since the
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condition (8) is satisfied, i.e.

rank

(
∂f i

∂q̇σ

)
= rank

(
1 0 −R cosϕ 0 0
0 1 −R sinϕ 0 0

)
= 2.

Thus dimQ = dim J1Y − 2 = 9. Constraint 1-forms (10) are in this case the
following two forms

ϕ1 = dx−R cosϕdψ, ϕ2 = dy −R sinϕdψ.

Now one can construct the constrained system [αQ] related to the mechanical
system [α] and the constraint Q as the equivalence class of the 2-form

αQ = A′1 ω
1 ∧ dt+A′2 ω

2 ∧ dt+A′3 ω
3 ∧ dt+

+

3∑
l=1

B′l1 ω
l ∧ dψ̇ +B′l2 ω

l ∧ dφ̇+B′l3 ω
l ∧ dϑ̇+ F̄ + ϕ(2)

on Q, where ω1 = dψ − ψ̇dt, ω2 = dϕ− ϕ̇dt, ω3 = dϑ− ϑ̇dt are the corresponding
contact 1-forms, and where F̄ is a 2-contact 2-form and ϕ(2) is a constraint 2-form
defined on Q. Computing the coefficients A′l according to (12) we obtain the
following expressions:

A′1 = (2mR2 − I2)(cosϑ)ϕ̇ϑ̇ ,

A′2 = −I2 cosϑψ̇ϑ̇− 2(mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇ϑ̇ ,

A′3 = (I2 −mR2) cosϑψ̇ϕ̇+ (mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇2 +mgR sinϑ ,

and coefficients B′ls according to (13) are

B′11 = −(mR2 + I2) , B′12 = B′21 = (mR2 − I2) sinϑ ,

B′22 = −(mR2 + I2) sin2 ϑ− I1 cos2 ϑ , B′23 = B′32 = 0 ,

B′33 = −(mR2 + I1) , B′31 = B′13 = 0 .

Hence, reduced equations of motion (14) of the constrained system [αQ] take the
form (see also [26]):

(mR2 + I2)ψ̈ + (I2 −mR2)(sinϑ)ϕ̈+ (I2 − 2mR2)(cosϑ)ϕ̇ϑ̇ = 0 ,

(mR2 − I2)(sinϑ)ψ̈ −
(
(mR2 + I2) sin2 ϑ+ I1 cos2 ϑ

)
ϕ̈−

− I2(cosϑ)ψ̇ϑ̇− 2(mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇ϑ̇ = 0 ,

−(mR2 + I1)ϑ̈+ (mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇2 +

+ (I2 −mR2)(cosϑ)ψ̇ϕ̇+mgR sinϑ = 0 .

These equations can be solved numerically; it turns out that solutions are unstable
with respect to a small change of initial conditions.
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5.7 A homogeneous ball on a rotating table

Consider a homogeneous ball of radius R rolling without sliding on a horizontal
plane which rotates with a nonconstant angular velocity Ω(t) around the vertical
axis. We assume that except the constant gravitational force, no other external
forces act on the ball. (See [22], pp. 131, Example 3.)

Figure 4

Let the z-axis of the fixed system of coordinates Oxyz coincide with the axis
of rotation. Let (x, y) denote the position of contact of the ball with the plane
and ϑ, ϕ, ψ denote Euler angles of the rotating ball. The angle ϑ is the angle of
inclination, the ϕ is the rotating angle and ψ is the angle of precession. Hence
(t, x, y, ϑ, ϕ, ψ) are fibered coordinates on the configuration space Y = R × R2 ×
SO(3), where SO(3) is the special orthogonal group parametrized by Euler angles,
and (t, x, y, ϑ, ϕ, ψ, ẋ, ẏ, ϑ̇, ϕ̇, ψ̇) are associated coordinates on J1Y = R × R2 ×
SO(2)× R2 × SO(2).

The potential energy is constant, so without loss of generality we put V = 0. In
addition, since we do not consider external forces, the Lagrange function is given
by the kinetic energy of the rotating ball

L = T =
1

2

(
ẋ2 + ẏ2 + k2(ϑ̇2 + ϕ̇2 + ψ̇2 + 2ϕ̇ψ̇ cosϑ)

)
, (39)

where k is the radius of gyration and the mass of the ball is m = 1.
The motion equations of this Lagrangian system in coordinates (q1, . . . , q5) =

(x, y, ϑ, ϕ, ψ) become:

ẍ = 0 ,

ÿ = 0 ,

k2(ϑ̈+ sinϑ ϕ̇ψ̇) = 0 ,

k2(ϕ̈+ cosϑ ψ̈ − sinϑ ϑ̇ψ̇) = 0 ,

k2(cosϑ ϕ̈+ ψ̈ − sinϑ ϑ̇ϕ̇) = 0 .

Denoting by ω the instantaneous angular velocity of the ball, we write down
the condition of rolling without sliding of the ball on the rotating plane

ẋ−Rωy + Ω(t) y = 0, ẏ +Rωx − Ω(t)x = 0, (40)
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or, using the Euler angles we obtain the following two equations

f1 ≡ ẋ−R sinψ ϑ̇+R sinϑ cosψ ϕ̇+ Ω(t) y = 0 ,

f2 ≡ ẏ +R cosψ ϑ̇+R sinϑ sinψ ϕ̇− Ω(t)x = 0 ,

which represent two nonholonomic constraints affine in components of velocities.
These equations evidently satisfy condition (8),

rank

(
∂f i

∂q̇σ

)
= rank

(
1 0 −R sinψ R sinϑ cosψ 0
0 1 −R sinϕ R sinϑ cosψ 0

)
= 2,

thus dimQ = dim J1Y − 2 = 9. Constraint 1-forms (10) take the form

ϕ1 = dx+ Ω(t)ydt−R sinψdϑ+R sinϑ cosψdϕ ,

ϕ2 = dy − Ω(t)xdt+R cosψdϑ+R sinϑ sinψdϕ .

The constrained system [αQ] is in this case represented by the equivalence class of
a 2-form

αQ = A′1 ω
1 ∧ dt+A′2 ω

2 ∧ dt+A′3 ω
3 ∧ dt+

+

3∑
l=1

B′l1 ω
l ∧ dϑ̇+B′l2 ω

l ∧ dϕ̇+B′l3 ω
l ∧ dψ̇ + F̄ + ϕ(2)

on Q, where ω1 = dϑ − ϑ̇dt, ω2 = dϕ − ϕ̇dt, ω3 = dψ − ψ̇dt, and where for the
coefficients A′l we obtain

A′1 = −(R2 + k2)ϕ̇ψ̇ sinϑ+

+RΩ(t)(ẋ cosψ + ẏ sinψ) +RΩ̇(t)(x cosψ + y sinψ) ,

A′2 = −R2ϑ̇ϕ̇ sinϑ cosϑ+ (R2 + k2)ϑ̇ψ̇ sinϑ+

+RΩ̇(t) sinϑ(x sinψ − y cosψ) +RΩ(t) sinϑ(ẋ sinψ − ẏ cosψ) ,

A′3 = k2ϑ̇ϕ̇ sinϑ ,

and for the coefficients B′ls we have

B′11 = − (R2 + k2) , B′12 = 0 , B′13 = 0 ,

B′21 = 0 , B′22 = −(R2 sin2 ϑ+ k2) , B′23 = −k2 cosϑ ,

B′31 = 0 , B′32 = −k2 cosϑ , B′33 = − k2 .

The motion of this constrained system is described by the following three reduced
equations (see [26]):

(R2 + k2) ϑ̈+ (R2 + k2) ϕ̇ ψ̇ sinϑ−
−RΩ(t)(ẋ cosψ + ẏ sinψ)−R Ω̇(t)(x cosψ + y sinψ) = 0 ,

(R2 sin2 ϑ+ k2) ϕ̈+ k2 cosϑ ψ̈ +

+R2ϑ̇ ϕ̇ sinϑ cosϑ− (R2 + k2) ϑ̇ ψ̇ sinϑ−
−RΩ(t) sinϑ (ẋ sinψ − ẏ cosψ)−R Ω̇(t) sinϑ (x sinψ − y cosψ) = 0 ,

k2 cosϑφ̈+ k2ψ̈ − k2ϑ̇ ϕ̇ sinϑ = 0 .
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To simplify these equations we can use other coordinates, so called quasicoordi-
nates. Recall that ωx, ωy, ωz denote the components of the instantaneous angular
velocity, which are determined by means of the Euler angles

ωx = ϑ̇ cosψ + ϕ̇ sinϑ sinψ ,

ωy = ϑ̇ sinψ − ϕ̇ sinϑ cosψ ,

ωz = ψ̇ + ϕ̇ cosϑ .

(41)

Consider now “quasicoordinates” q1, q2, q3 on the configuration space defined byt
q̇1 = ωx, q̇

2 = ωy, q̇
3 = ωz. Denote by (t, x, y, q1, q2, q3, ẋ, ẏ, ωx, ωy, ωz) associated

coordinates on J1Y . Then the expression of Lagrangian (39) in quasicoordinates
is as follows:

L =
1

2

(
ẋ2 + ẏ2 + k2(ω2

x + ω2
y + ω2

z)
)
,

and equations of the constrained submanifold take the form (40). Reduced equa-
tions of motion of the constrained mechanical system in the quasicoordinates have
the form (

R2 + k2
)
q̈1 −R2Ω(t) q̇2 −RΩ̇(t)x+RΩ2(t) y = 0 ,(

R2 + k2
)
q̈2 +R2Ω(t) q̇1 −RΩ̇(t) y −RΩ2(t)x = 0 ,

− k q̈3 = 0 .

(42)

Using the definition of the quasicoordinates q1, q2, q3 we obtain that

q̇3 = ωz = C3 = const,

and the first two equations of the system (42) can be reduced to a system of first
order linear differential equations(

R2 + k2
)
ω̇x −R2Ω(t)ωy −R Ω̇(t)x+RΩ2(t) y = 0 ,(

R2 + k2
)
ω̇y +R2Ω(t)ωx −R Ω̇(t) y −RΩ2(t)x = 0 .

(43)

Substituting constraint equations (40) into equations (42) we get two first in-
tegrals: (

R2 + k2
)
ωx −RΩ(t)x = D1

(
R2 + k2

)
,(

R2 + k2
)
ωy −RΩ(t) y = D2

(
R2 + k2

)
,

(44)

where D1, D2 are arbitrary constants. Comparing the expressions for ωx, ωy from
the constraint equations (40) and from (44) we obtain

ẋ+
k2Ω(t)

R2 + k2
y +RD1 = 0, ẏ − k2Ω(t)

R2 + k2
x−RD2 = 0. (45)

Differentiating the last two equations we get the following system of second order
differential equations

ẍ+
k2Ω(t)

R2 + k2
ẏ +

k2Ω̇(t)

R2 + k2
y = 0, ÿ − k2Ω(t)

R2 + k2
ẋ+

k2Ω̇(t)

R2 + k2
x = 0 (46)
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for unknown functions x(t), y(t), which describe the motion of the point of contact
of the ball with the plane.

Let us suppose, that for a given function Ω(t) of the angular velocity of the
rotating plane we have found a solution x(t), y(t) of (46). If we put

A =
(
R2 + k2

)
, b(t) = R2 Ω(t),

and denote

F1 (t, x(t), y(t)) = R Ω̇(t)x−RΩ2(t) y ,

F2 (t, x(t), y(t)) = R Ω̇(t) y +RΩ2(t)x ,

then the system (43) can be written in the form

A ω̇x − b(t)ωy = F1 (t, x(t), y(t)) ,

A ω̇y + b(t)ωx = F2 (t, x(t), y(t)) .
(47)

This is a system of two first order linear non-homogeneous differential equations
with nonconstant coefficients. First, we solve the corresponding homogeneous sys-
tem

ω̇x =
B(t)

A
ωy, ω̇y = −B(t)

A
ωx

and obtain the following result

ωHx (t) = C1 sin

(
B(t)

A

)
+ C2 cos

(
B(t)

A

)
,

ωHy (t) = −C2 sin

(
B(t)

A

)
+ C1 cos

(
B(t)

A

)
,

where B(t) =
∫
b(t) dt. Next we are looking for a particular solution by the stan-

dard procedure of variation of constants

ωPx (t) = C1(t) sin

(
B(t)

A

)
+ C2(t) cos

(
B(t)

A

)
,

ωPy (t) = C1(t) cos

(
B(t)

A

)
− C2(t) sin

(
B(t)

A

)
,

where C1(t), C2(t) are obtained by integrating the following equations

Ċ1(t) = F1 (t, x(t), y(t)) sin

(
B(t)

A

)
+ F2 (t, x(t), y(t)) cos

(
B(t)

A

)
,

Ċ2(t) = F1 (t, x(t), y(t)) cos

(
B(t)

A

)
− F2 (t, x(t), y(t)) sin

(
B(t)

A

)
.

A general solution of equations (47) is then of the form(
ωx(t)
ωy(t)

)
=

(
ωHx (t)
ωHy (t)

)
+

(
ωPx (t)
ωPy (t)

)
.
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The solution in terms of quasicoordinates is then determined by elementary quadra-
tures

q1(t) =

∫
ωx(t) dt, q2(t) =

∫
ωy(t) dt, q3(t) =

∫
C3 dt,

and the solution in terms of Euler angles is described by differential equations (41).
In a particular case, when Ω(t) = Ω0 = const., (see [22]) the system (46) takes

the form

ẍ+
k2Ω0

R2 + k2
ẏ = 0, ÿ − k2Ω0

R2 + k2
ẋ = 0.

Using first integrals (45) we write:

ẍ+

(
k2Ω0

R2 + k2

)2

x = − k2RΩ0

R2 + k2
D2 ,

ÿ +

(
k2Ω0

R2 + k2

)2

y = − k2RΩ0

R2 + k2
D1 .

A solution of the corresponding homogeneous system is:

xH(t) = A1 sin

[(
k2Ω0

R2 + k2

)2

t

]
+A2 cos

[(
k2Ω0

R2 + k2

)2

t

]
,

yH(t) = A3 sin

[(
k2Ω0

R2 + k2

)2

t

]
+A4 cos

[(
k2Ω0

R2 + k2

)2

t

]
,

where A1, A2, A3, A4 are arbitrary constants. Using the procedure of variation of
constants we get a particular solution:

xP (t) = −RD2
R2 + k2

k2Ω0
, yP (t) = −RD1

R2 + k2

k2Ω0
.

Finally, the general solution takes the form

x(t) = A1 sin

[(
k2Ω0

R2 + k2

)2

t

]
+A2 cos

[(
k2Ω0

R2 + k2

)2

t

]
−RD2

R2 + k2

k2Ω0
,

y(t) = A3 sin

[(
k2Ω0

R2 + k2

)2

t

]
+A4 cos

[(
k2Ω0

R2 + k2

)2

t

]
−RD1

R2 + k2

k2Ω0
,

where D1, D2 are constants, which occur in the first integrals (44). Hence the ball
on the rotating table moves along ellipses parameters of which depend on initial
conditions.
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[15] O. Krupková: On the geometry of non-holonomic mechanical systems. In: O. Kowalski,
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[26] M. Tichá: Mechanical systems with nonholonomic constraints. Thesis, Faculty of
Science, University of Ostrava, Ostrava, 2004 (in Czech).
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