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Abstract

For studying homogeneous geodesics in Riemannian and pseudo-Rie-
mannian geometry (on reductive homogeneous spaces) there is a simple
algebraic formula which works, at least potentially, in every given case.
In the affine differential geometry, there is not such a universal formula.
In the previous work, we proposed a simple method of investigation of
homogeneous geodesics in homogeneous affine manifolds in dimension 2.
In the present paper, we use this method on certain classes of homogeneous
connections on the examples of 3-dimensional Lie groups.

Key words: affine connection, affine Killing vector field, homoge-
neous manifold, homogeneous geodesic
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1 Introduction

Let M be a pseudo-Riemannian manifold. If there is a connected Lie group
G ⊂ I0(M) which acts transitively on M as a group of isometries, then M
is called a homogeneous pseudo-Riemannian manifold. Let p ∈ M be a fixed
point. If we denote by H the isotropy group at p, then M can be identified
with the homogeneous space G/H. In general, there may exist more than one
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and the third author were supported by the reesarch project MSM 0021620839 of the Czech
Ministry MŠMT
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such group G ⊂ I0(M). For any fixed choice M = G/H, G acts effectively on
G/H from the left. The pseudo-Riemannian metric g on M can be considered
as a G-invariant metric on G/H. The pair (G/H, g) is then called a pseudo-
Riemannian homogeneous space.
If the metric g is positive definite, then (G/H, g) is always a reductive homo-

geneous space: We denote by g and h the Lie algebras of G and H respectively
and consider the adjoint representation Ad: H×g → g of H on g. There exists a
direct sum decomposition (reductive decomposition) of the form g = m+h where
m ⊂ g is a vector subspace such that Ad(H)(m) ⊂ m. If the metric g is indefinite,
the reductive decomposition may not exist (see for instance [12] for an example
of nonreductive pseudo-Riemannian homogeneous space). For a fixed reductive
decomposition g = m+ h there is a natural identification of m ⊂ g = TeG with
the tangent space TpM via the projection π : G → G/H = M . Using this natu-
ral identification and the scalar product gp on TpM we obtain a scalar product
〈, 〉 on m. This scalar product is obviously Ad(H)-invariant.
The definition of a homogeneous geodesic is well known in the Riemannian

case. In the pseudo-Riemannian case it must be modified as follows:

Definition 1 A geodesic γ(s) through the point p defined in an open interval
J (where s is an affine parameter) is said to be homogeneous if there exists
(1) a diffeomorphism s = ϕ(t) between the real line and the open interval J ;
(2) a nonzero vectorX ∈ g such that γ(ϕ(t)) = exp(tX)(p) for all t ∈ (−∞,+∞).
The vector X is then called a geodesic vector.

For results on homogeneous geodesics in homogeneous Riemannian manifolds
we refer for example to [4], [15], [18], [20], [22]. A homogeneous Riemannian
manifold all of whose geodesics are homogeneous is called a Riemannian g.o. ma-
nifold . For many results and further references on Riemannian g.o. manifolds
see for example [7], [10], [14], [19], [2]. Homogeneous geodesics are interesting
also in pseudo-Riemannian geometry and null homogeneous geodesics are of
particular interest. In [12] and [24], the authors study plane-wave limits (Penrose
limits) of homogeneous spacetimes along light-like homogeneous geodesics. In
these papers, each geodesic vector X is characterized by the formula (1). See
also [5], [8], [9]. A rigorous mathematical proof of this characterization is given
in [8]:

Lemma 2 Let X ∈ g. Then the curve γ(t) = exp(tX)(p) (the orbit of a one-
parameter group of isometries) is a geodesic curve with respect to some param-
eter s if and only if

〈[X,Z]m, Xm〉 = k〈Xm, Z〉 for all Z ∈ m, where k ∈ R is some constant. (1)

Further, if k = 0, then t is an affine parameter for this geodesic. If k �= 0, then
s = e−kt is an affine parameter for the geodesic. The second case can occur
only if the curve γ(t) is a null curve in a (properly) pseudo-Riemannian space.

For the study of homogeneous geodesics in homogeneous affine manifolds, we
cannot use the algebraic tools as in pseudo-Riemannian geometry. In [11], the
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present authors described a new, elementary method for studying homogeneous
geodesics in homogeneous affine manifolds. Let us now recall this method.

Definition 3 Let ∇ be an affine connection on a manifold M . Then ∇, or also
(M,∇), is said to be homogeneous, if for each two points x, y ∈ M there exists
an affine transformation ϕ : M → M such that ϕ(x) = y. It means that ϕ is a
diffeomorphism such that

∇ϕ∗X
ϕ∗Y = ϕ∗(∇XY )

holds for every vector fields X,Y defined on M .

Definition 4 A vector field X on an affine manifold (M,∇) is called an affine
Killing vector field if the Lie derivative LX∇ vanishes, or, equivalently, if X
satisfies the equation

[X,∇Y Z]−∇Y [X,Z]−∇[X,Y ]Z = 0, (2)

for all vector fields Y, Z.

Proposition 5 Let (M,∇) be a homogeneous affine manifold and p ∈ M .
There exist n = dim(M) affine Killing vector fields which are linearly inde-
pendent at each point of some neighbourhood U of p.

Proof Let (M,∇) be homogeneous, i.e., M = G/H, where ∇ is G-invariant.
Let X1, . . . , Xn be an n-tuplet of linearly independent vectors of Tp(M). For
each index i = 1, . . . , n, there exists a vector Zi ∈ g such that

d

dt
exp(tZi)(p)|t=0 = Xi. (3)

Let us define, for each i = 1, . . . , n, a vector field Ki by

Ki(q) =
d

dt
exp(tZi)(q)|t=0 for each q ∈ M. (4)

Then each Ki is called a fundamental vector field attached to Zi ([13]). At
the same time, K1, . . . ,Kn are affine Killing vector fields on (G/H). They are
linearly independent at p and they must be linearly independent also at each
point q of some neighbourhood U of p. �

Definition 6 In a homogeneous affine manifold (M,∇), by a homogeneous
geodesic we mean a geodesic which is an orbit of an one-parameter group of
affine diffeomorphisms. The canonical parameter of the group need not be the
affine parameter of the geodesic.

Recall that a parametrized curve in a manifold M is said to be regular if
γ′(t) �= 0 for all values of t. The following proposition is well known:
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Proposition 7 Let M = G/H (where G acts transitively and effectively on M)
be a homogeneous space with a left-invariant affine connection ∇. Then each
regular curve which is an orbit of a 1-parameter subgroup gt ⊂ G on M is an
integral curve of an affine Killing vector field on M .

Definition 8 A nonvanishing smooth vector field Z onM is said to be geodesic
along its regular integral curve γ if the curve γ(t) is geodesic up to a possible
reparametrization. If all regular integral curves of Z are geodesics up to a
reparametrization, then the vector field Z is called a geodesic vector field.

Proposition 9 ([11]) Let Z be a nonvanishing Killing vector field on (M,∇).
1) Z is geodesic along its integral curve γ if and only if

∇Zγ(t)
Z = kγ · Zγ(t) (5)

holds along γ, where kγ ∈ R is a constant. If kγ = 0, then t is the affine
parameter of geodesic γ. If kγ �= 0, then the affine parameter of this geodesic is
s = e−kγt.
2) Z is a geodesic vector field if and only if

∇ZZ = k · Z (6)

holds on M . Here k is a smooth function on M , which is constant along integral
curves of the vector field Z.

Let us now remind the classification of homogeneous affine connections in
dimension 2. The following basic theorem from [3] is a generalization of the
classification result by B. Opozda, [23], to connections with nonzero torsion.
We only change slightly the notation:

Theorem 10 Let ∇ be a locally homogeneous affine connection with arbitrary
torsion on a 2-dimensional manifold M . Then, in a neighborhood U of each
point m ∈ M , either ∇ is locally a Levi-Civita connection of the unit sphere or,
there is a system (u, v) of local coordinates and constants A,B,C,D,E, F,G,H
such that ∇ is expressed in U by one of the following formulas:
Type A

∇∂u
∂u = A∂u +B∂v, ∇∂u

∂v = C∂u +D∂v,

∇∂v
∂u = E∂u + F∂v, ∇∂v

∂v = G∂u +H∂v.

Type B
∇∂u

∂u = A
u ∂u + B

u ∂v, ∇∂u
∂v = C

u ∂u + D
u ∂v,

∇∂v
∂u = E

u ∂u + F
u ∂v, ∇∂v

∂v = G
u ∂u + H

u ∂v,

where not all A,B,C,D,E, F,G,H are zero.

In [11], the present authors studied in details the homogeneous affine con-
nections of type A in the plane R2 and those of type B in the open half-plane.
We proved that any connection of type A admits at least one geodesic Killing
vector field. Connectios of type B do not admit geodesic Killing vector fields in
general, but they admit at least one homogeneous geodesic through any point.
In this paper, we are going to study some 3-dimensional examples.
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2 Homogeneous connections in dimension three

Let now (M,∇) be a 3-dimensional manifold with an arbitrary affine connection.
Let the vector field X be an affine Killing vector field on (M,∇). If there is
a system (u1, u2, u3) of global coordinates onM , then the formula (2) is satisfied
for all Y, Z if, and only if, it is satisfied for all coordinate vector fields (Y = ∂j ,
Z = ∂k), where 1 ≤ j, k ≤ 3. Moreover, the inequality j ≤ k can be added
if the torsion is zero. If we denote by Γl

jk = Γl
jk(u

1, u2, u3) the corresponding

Christoffel symbols (1 ≤ j, k, l ≤ 3) and put X =
∑3

i=1 X
i(u1, u2, u3)∂i, then X

is an affine Killing vector field if, and only if, the following system of 27 partial
differential equations holds:

∂2

∂uk∂uj
X l+

n∑
i=1

(
Xi ∂

∂ui
Γl
jk − Γi

jk

∂

∂ui
X l + Γl

ji

∂

∂uk
Xi + Γl

ik

∂

∂uj
Xi

)
= 0. (7)

As well known, the symmetrization of any affine connection ∇ has the same
geodesics as ∇. Hence we can restrict our calculations to the case of zero
torsion. We use the inequality j ≤ k and the number of equations is reduced to
18. We first simplify our notation as follows:

u1, u2, u3 → u, v, w,

X1(u, v, w), X2(u, v, w), X3(u, v, w) → a(u, v, w), b(u, v, w), c(u, v, w),

Γl
11 → Al, Γl

22 → Bl, Γl
33 → Cl, Γl

12 → El, Γl
13 → F l, Γl

23 → Gl, l = 1, 2, 3.
(8)

Then, an affine Killing vector field

X = a(u, v, w)∂u + b(u, v, w)∂v + c(u, v, w)∂w

is characterized by the system of PDEs as follows:

auu + auA
1 − avA

2 − awA
3 + 2buE

1 + 2cuF
1 + aA1

u + bA1
v + cA1

w = 0,

buu + 2auA
2 + bu(2E

2 −A1)− bwA
3 + 2cuF

2 + aA2
u + bA2

v + cA2
w = 0,

cuu + 2auA
3 + 2buE

3 + cu(2F
3 −A1)− cvA

2 − cwA
3 + aA3

u + bA3
v + cA3

w = 0,

auv + av(A
1 − E2)− awE

3 + buB
1 + bvE

1 + cuG
1 + cvF

1

+ aE1
u + bE1

v + cE1
w = 0,

buv + auE
2 + avA

2 + bu(B
2 − E1)− bwE

3 + cuG
2 + cvF

2

+ aE2
u + bE2

v + cE2
w = 0,

cuv + auE
3 + avA

3 + buB
3 + bvE

3 + cu(G
3 − E1) + cv(F

3 − E2)− cwE
3

+ aE3
u + bE3

v + cE3
w = 0,

auw − avF
2 + aw(A

1 − F 3) + buG
1 + bwE

1 + cuC
1 + cwF

1

+ aF 1
u + bF 1

v + cF 1
w = 0,

buw + auF
2 + awA

2 + bu(G
2 − F 1)− bvF

2 + bw(E
2 − F 3) + cuC

2 + cwF
2

+ aF 2
u + bF 2

v + cF 2
w = 0,
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cuw + auF
3 + awA

3 + buG
3 + bwE

3 + cu(C
3 − F 1)− cvF

2

+ aF 3
u + bF 3

v + cF 3
w = 0,

avv − auB
1 + av(2E

1 −B2)− awB
3 + 2bvB

1 + 2cvG
1

+ aB1
u + bB1

v + cB1
w = 0,

bvv + 2avE
2 − buB

1 + bvB
2 − bwB

3 + 2cvG
2 + aB2

u + bB2
v + cB2

w = 0,

cvv + 2avE
3 + 2bvB

3 − cuB
1 + cv(2G

3 −B2)− cwB
3

+ aB3
u + bB3

v + cB3
w = 0,

avw − auG
1 + av(F

1 −G2) + aw(E
1 −G3) + bvG

1 + bwB
1 + cvC

1 + cwG
1

+ aG1
u + bG1

v + cG1
w = 0,

bvw + avF
2 + awE

2 − buG
1 + bw(B

2 −G3) + cvC
2 + cwG

2

+ aG2
u + bG2

v + cG2
w = 0,

cvw + avF
3 + awE

3 + bvG
3 + bwB

3 − cuG
1 + cv(C

3 −G2)

+ aG3
u + bG3

v + cG3
w = 0,

aww − auC
1 − avC

2 + aw(2F
1 − C3) + 2bwG

1 + 2cwC
1

+ aC1
u + bC1

v + cC1
w = 0,

bww + 2awF
2 − buC

1 − bvC
2 + bw(2G

2 − C3) + 2cwC
2

+ aC2
u + bC2

v + cC2
w = 0,

cww + 2awF
3 + 2bwG

3 − cuC
1 − cvC

2 + cwC
3 + aC3

u + bC3
v + cC3

w = 0. (9)

We shall now consider some 3-dimensional groups and invariant affine connec-
tions on them. From now on, we will write the indices by A, . . . , G down.

3 The abelian group R
3

Let us consider the abelian group R
3(u, v, w) with the affine connection whose

Christoffel symbols

A1, . . . , G3 (10)

are constants and let this group act on itself by the left translations. The
infinitesimal translations are the vector fields

∂u, ∂v, ∂w (11)

and it is easy to verify that these are affine Killing vector fields. Hence the
translations are affine diffeomorphisms and the group R

3 with the given affine
connection is an affine homogeneous manifold.
Let us now consider the general Killing vector field

X = x∂u + y∂v + z∂w ≡ (x, y, z)
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and investigate the condition ∇XX = kX. We obtain, after splitting this
equation with respect to the basic Killing fields ∂u, ∂v, ∂w, the three equations

x2A1 + y2B1 + z2C1 + 2xyE1 + 2xzF1 + 2yzG1 = kx

x2A2 + y2B2 + z2C2 + 2xyE2 + 2xzF2 + 2yzG2 = ky (12)

x2A3 + y2B3 + z2C3 + 2xyE3 + 2xzF3 + 2yzG3 = kz.

Now we denote by L1(x, y, z), L2(x, y, z) and L3(x, y, z) the left-hand sides of
these equations and we eliminate k in the right-hand sides. We obtain three
conditions

S1(x, y, z) = L2(x, y, z)z − L3(x, y, z)y = 0,

S2(x, y, z) = L3(x, y, z)x− L1(x, y, z)z = 0,

S3(x, y, z) = L1(x, y, z)y − L2(x, y, z)x = 0.

(13)

Explicitly, we have

S1(x, y, z) = x2zA2 − x2yA3 + y2zB2 − y3B3 + z3C2 − yz2C3

+2xyzE2 − 2xy2E3 + 2xz2F2 − 2xyzF3 + 2yz2G2 − 2y2zG3 = 0,

S2(x, y, z) = −x2zA1 + x3A3 − y2zB1 + xy2B3 − z3C1 + xz2C3

−2xyzE1 + 2x2yE3 − 2xz2F1 + 2x2zF3 − 2yz2G1 + 2xyzG3 = 0,

S3(x, y, z) = x2yA1 − x3A2 + y3B1 − xy2B2 + yz2C1 − xz2C2

+2xy2E1 − 2x2yE2 + 2xyzF1 − 2x2zF2 + 2y2zG1 − 2xyzG2 = 0.

(14)

Here we have the algebraical dependency of S1, S2, S3,

xS1(x, y, z) + yS2(x, y, z) + zS3(x, y, z) = 0. (15)

It is easy to see that just these three (algebraically dependent) equations (13)
together give the full information, i.e., these three equations are equivalent with
the conditions (12), and two of them are not enough for such equivalence.
For the later use, we shall need the following

Lemma 11 Two cubic curves in the real projective plane P2(R) have always
a non-empty real intersection.

This statement must be known from some literature. But, instead of giving
references, we present here a short proof which was kindly offered us by Professor
Thomas Friedrich. We start with

Theorem 12 (Borsuk–Ulam, [1]) Let f : Sn → R
n be a continuous map.

Then there exists a point x∗ ∈ Sn such that f(x∗) = f(−x∗).

In particular, if f : Sn → R
n is an odd map (i.e. f(x) = −f(−x)), then there

exist always a point x∗ ∈ Sn such that f(x∗) = o (the origin).
Put n = 2 and consider two cubic curves in P2(R), or, equivalently, two

homogeneous polynomials U(x, y, z) and V (x, y, z) of degree 3 defined on R3 \o.
Then we define a map f : S2 → R

2 by the formula

f(x, y, z) = (U(x, y, z), V (x, y, z)) for each (x, y, z) ∈ S2 ⊂ R
3.
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Here f is continuous and it satisfies the condition f(−x) = −f(x), x ∈ S2.
Consequently, by the Borsuk-Ulam theorem, there exist a point x∗ ∈ S2 such
that f(x∗) = (0, 0), i.e. U(x∗) = 0 and V (x∗) = 0. This concludes the proof of
Lemma 11. �

We get the following main result:

Theorem 13 Let one of the following conditions holds:
a) (G1)

2 −B1C1 < 0,

b) (F2)
2 −A2C2 < 0,

c) (E3)
2 −A3B3 < 0.

Then the invariant affine connection on R
3 corresponding to the given param-

eters A1, A2, . . . , G3 admits at least one geodesic Killing vector field.

Proof Let a) be satisfied. Put x = 0 in the equations S2 = 0, S3 = 0. Then
we obtain the equations

−z(B1y
2 + 2G1yz + C1z

2) = 0, y(B1y
2 + 2G1yz + C1z

2) = 0.

Because the quadratic form B1y
2 + 2G1yz + C1z

2 is strictly definite, the only
consequence is y = 0, z = 0. Hence we see that, if (x0, y0, z0) is a nontriv-
ial common solution of the equations S2, S3, which always exists according to
Lemma 11, then x0 �= 0. From the formula (15) we see that (x0, y0, z0) is also a
solution of the equation S1 = 0. Thus all conditions for existence of a solution
of the equations (14) are satisfied and a geodesic Killing vector field exists.
Now, the cases b) and c) are treated analogously: we substitute first y = 0

in the equations S1 = 0, S3 = 0 and then z = 0 in the equations S1 = 0, S2 = 0.
�

Corollary 14 On an unbounded open domain of the parameter space R18[A1,
A2, . . . , G3], the corresponding invariant connections admit at least one homo-
geneous geodesic through any point p ∈ R

3.

4 Other examples

In this section we will consider other examples of 3-dimensional groups with
invariant affine connections. For these groups, we will not consider geodesic
Killing vector fields, because there are no such vector fields in general. For
a Killing vector field, we will investigate just the integral curve through the
origin. Because the connection is homogeneous, we obtain immediately the
same properties at other points.

4.1 The Heisenberg group H3

The Heisenberg group H3 can be represented by the matrices of the form⎛
⎝ 1 u v

0 1 w
0 0 1

⎞
⎠ , (16)
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hence H3 can be identified with the 3-space R3(u, v, w) equipped with the Rie-
mannian metric ds2 = du2+(dv−udw)2+dw2. Then H3 acts on itself from the
left by isometries with respect to this metric and corresponding Killing vector
fields (infinitesimal isometries) are ∂v, ∂w, ∂u + w∂v. Now, an affine connection
∇ on H3 is left-invariant if, and only if, the Lie algebra span{∂u +w∂v, ∂v, ∂w}
consists of affine Killing vector fields of ∇. We write down the equations (9) for
the three choices
1) a(u, v, w) = 1, b(u, v, w) = w, c(u, v, w) = 0;
2) a(u, v, w) = 0, b(u, v, w) = 1, c(u, v, w) = 0;
3) a(u, v, w) = 0, b(u, v, w) = 0, c(u, v, w) = 1.

By solving this system of 54 differential equations, we obtain the Christoffel
symbols in the form

A1(u, v, w) = A1,
A2(u, v, w) = A2 +A3u,
A3(u, v, w) = A3,
B1(u, v, w) = B1,
B2(u, v, w) = B2 +B3u,
B3(u, v, w) = B3,
C1(u, v, w) = C1 − 2G1u+B1u

2,
C2(u, v, w) = C2 + (C3 − 2G2)u+ (B2 − 2G3)u

2 +B3u
3,

C3(u, v, w) = C3 − 2G3u+B3u
2,

E1(u, v, w) = E1,
E2(u, v, w) = E2 + E3u,
E3(u, v, w) = E3,
F1(u, v, w) = F1 − E1u,
F2(u, v, w) = F2 + (F3 − E2)u− E3u

2,
F3(u, v, w) = F3 − E3u,
G1(u, v, w) = G1 −B1u,
G2(u, v, w) = G2 + (G3 −B2)u−B3u

2,
G3(u, v, w) = G3 −B3u,

(17)

where A1, . . . , G3 are constant parameters. We will investigate existence of
homogeneous geodesics for this class of connections.
Our next step will be more subtle than for the group R3. Consider a general

affine Killing vector field from span{∂v, ∂w, ∂u + w∂v}, i.e. X = x(∂u + w∂v) +
y∂v + z∂w, where x, y, z are arbitrary parameters. Now we shall look at Killing
vector field for ∇ which is geodesic along an integral curve. If such a vector
field exists, then (H3,∇) admits affine homogeneous geodesics.
We see easily that the general trajectories of the vector field

X = x(∂u + w∂v) + y∂v + z∂w

are given by

u(t) = xt+ c1, v(t) = xzt2/2 + (y + c3x)t+ c2, w(t) = zt+ c3. (18)
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Now, we shall study only the trajectory starting at the origin of H3(u, v, w),
i.e. we put the integration constants c1, c2, c3 equal to zero. Its tangent vector
γ′(t) satisfies

u′(t) = x, v′(t) = xzt+ y, w′(t) = z. (19)

We express the equation ∇γ′(t)γ
′(t) = kγγ

′(t) along γ(t) and we evaluate it at
the origin (t = 0). We obtain the equations

x2A1 + y2B1 + z2C1 + 2xyE1 + 2xzF1 + 2yzG1 = kx

x2A2 + y2B2 + z2C2 + 2xyE2 + xz(2F2 + 1) + 2yzG2 = ky (20)

x2A3 + y2B3 + z2C3 + 2xyE3 + 2xzF3 + 2yzG3 = kz.

Again, by the elimination of the factor k from the right-hand sides, we obtain
the cubic equations. In this case, we have

S1(x, y, z) = x2zA2 − x2yA3 + y2zB2 − y3B3 + z3C2 − yz2C3

+ 2xyzE2 − 2xy2E3 + xz2(2F2 + 1)− 2xyzF3 + 2yz2G2 − 2y2zG3 = 0,

S2(x, y, z) = −x2zA1 + x3A3 − y2zB1 + xy2B3 − z3C1 + xz2C3

− 2xyzE1 + 2x2yE3 − 2xz2F1 + 2x2zF3 − 2yz2G1 + 2xyzG3 = 0,

S3(x, y, z) = x2yA1 − x3A2 + y3B1 − xy2B2 + yz2C1 − xz2C2

+ 2xy2E1 − 2x2yE2 + 2xyzF1 − x2z(2F2 + 1) + 2y2zG1 − 2xyzG2 = 0.
(21)

In contrast with the equations (12) and (14) which characterized the ex-
istence of geodesic Killing vector field, equations (20) and (21) characterize
existence of Killing vector field geodesic along its integral curve through the ori-
gin e ∈ H3. Nevertheless, we can prove in the same way as for R3 the existence
of a solution of the system (21). This solution implies existence of a homoge-
neous geodesic through the origin e ∈ H3. Because considered connections are
homogeneous, the same property holds at any point p ∈ H3. Hence, we obtain
the following:

Theorem 15 Let one of the following conditions holds:
a) (G1)

2 −B1C1 < 0,

b) (F2 + 1/2)2 −A2C2 < 0,

c) (E3)
2 −A3B3 < 0.

Then the invariant affine connection corresponding to the given parameters
A1, A2, . . . , G3 admits at least one homogeneous geodesic through any point
p ∈ H3.

4.2 The group E(1, 1)

The group E(1, 1) can be represented by the matrices of the form⎛
⎝ e−w 0 u

0 ew v
0 0 1

⎞
⎠ . (22)
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Hence, E(1, 1) can be identified with the 3-space R3(u, v, w) equipped with the
Riemannian metric ds2 = e2wdu2 + e−2wdv2 + dw2. The right-invariant vector
fields (the Killing vector fields) are ∂u, ∂v, ∂w − u∂u + v∂v. For the Christoffel
symbols A1, . . . , G3, we obtain by solving the equations (9) the conditions

A1(u, v, w) = A1e
w,

A2(u, v, w) = A2e
3w,

A3(u, v, w) = A3e
2w,

B1(u, v, w) = B1e
−3w,

B2(u, v, w) = B2e
−w,

B3(u, v, w) = B3e
−2w,

C1(u, v, w) = C1e
−w,

C2(u, v, w) = C2e
w,

C3(u, v, w) = C3,

E1(u, v, w) = E1e
−w,

E2(u, v, w) = E2e
w,

E3(u, v, w) = E3,

F1(u, v, w) = F1,

F2(u, v, w) = F2e
2w,

F3(u, v, w) = F3e
w,

G1(u, v, w) = G1e
−2w,

G2(u, v, w) = G2,

G3(u, v, w) = G3e
−w,

(23)

where A1, . . . , G3 are constant parameters. Again, we will consider this class of
connections and investigate existence of homogeneous geodesics.
Now we shall consider the Killing vector field

X = x∂u + y∂v + z(∂w − u∂u + v∂v),

where x, y, z are arbitrary parameters. We see easily that the general trajectories
of the vector field X = x∂u + y∂v + z(∂w − u∂u + v∂v) are given for z �= 0 by

u(t) =
x

z
+ c1e

−tz, v(t) = −y

z
+ c2e

tz, w(t) = zt+ c3 (24)

and for z = 0 by

u(t) = xt+ c1, v(t) = yt+ c2, w(t) = c3. (25)

We shall study again the trajectories starting at the origin of E(1,1)(u, v, w).
Hence, for z �= 0, we choose the integration constants

c1 = −x

z
, c2 =

y

z
, c3 = 0. (26)

The tangent vector γ′(t) satisfies now

u′(t) = xe−tz, v′(t) = yetz, w′(t) = z. (27)
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We calculate again the equation∇γ′(t)γ
′(t) = kγγ

′(t) along γ(t) and we evaluate
it at the origin (t = 0). We obtain the equations

x2A1 + y2B1 + z2C1 + 2xyE1 + xz(2F1 − 1) + 2yzG1 = kx

x2A2 + y2B2 + z2C2 + 2xyE2 + 2xzF2 + yz(2G2 + 1) = ky (28)

x2A3 + y2B3 + z2C3 + 2xyE3 + 2xzF3 + 2yzG3 = kz.

In an analogous way as for the previous groups, we deduce the following:

Theorem 16 Let one of the following conditions holds:
a) (G1)

2 −B1C1 < 0 ,

b) (F2)
2 −A2C2 < 0 ,

c) (E3)
2 −A3B3 < 0 .

Then the invariant affine connection on E(1, 1) corresponding to the given pa-
rameters A1, A2, . . . , G3 admits at least one homogeneous geodesic through any
point p ∈ E(1, 1).

4.3 The product group

Let us consider the group G of matrices of the form⎛
⎝ ew 0 u

0 1 v
0 0 1

⎞
⎠ , (29)

which is a semidirect product of a nonabelian 2-dimensional group and the real
line. The right-invariant vector fields (the Killing vector fields) are ∂u, ∂v, ∂w +
u∂u. For the Christoffel symbols A1, A2, . . . , G3, we obtain by solving the equa-
tions (9) the conditions

A1(u, v, w) = A1e
−w,

A2(u, v, w) = A2e
−2w,

A3(u, v, w) = A3e
−2w,

B1(u, v, w) = B1e
w,

B2(u, v, w) = B2,
B3(u, v, w) = B3,
C1(u, v, w) = C1e

w,
C2(u, v, w) = C2,
C3(u, v, w) = C3,
E1(u, v, w) = E1,
E2(u, v, w) = E2e

−w,
E3(u, v, w) = E3e

−w,
F1(u, v, w) = F1,
F2(u, v, w) = F2e

−w,
F3(u, v, w) = F3e

−w,
G1(u, v, w) = G1e

w,
G2(u, v, w) = G2,
G3(u, v, w) = G3

(30)
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where A1, . . . , G3 are constant parameters. We continue with the same proce-
dure as with the group E(1, 1). Now, the integral curves of the Killing vector
field X = x∂u + y∂v + z(u∂u + ∂w) and passing through the origin e ∈ G are for
z �= 0

u(t) =
x

z
(−1 + exp(tz)), v(t) = yt, w(t) = zt (31)

and for z = 0

u(t) = xt, v(t) = yt, w(t) = 0. (32)

The tangent vector γ′(t) satisfies now

u′(t) = xetz, v′(t) = y, w′(t) = z. (33)

From the equation ∇γ′(t)γ
′(t) = kγγ

′(t) at the origin (t = 0), we obtain now
the equations

x2A1 + y2B1 + z2C1 + 2xyE1 + xz(2F1 + 1) + 2yzG1 = kx

x2A2 + y2B2 + z2C2 + 2xyE2 + 2xzF2 + 2yzG2 = ky (34)

x2A3 + y2B3 + z2C3 + 2xyE3 + 2xzF3 + 2yzG3 = kz.

In an analogous way as with previous groups, we obtain the following result:

Theorem 17 Let one of the following conditions holds:
a) (G1)

2 −B1C1 < 0,

b) (F2)
2 −A2C2 < 0,

c) (E3)
2 −A3B3 < 0.

Then the invariant affine connection on G corresponding to the given parame-
ters A1, A2, . . . , G3 admits at least one homogeneous geodesic through any point
p ∈ G.

5 Conclusions

Let us remark that the question about existence of homogeneous geodesics in
homogeneous manifolds with an invariant affine connection was solved affirma-
tively in general during the preparation of this manuscript and the result is
published in the short form in [6]. The examples in the present paper were the
crucial step for understandnig the general situation.
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