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Abstract

The object of the present paper is to study weakly W3-symmetric man-
ifolds and its decomposability with the existence of such notions. Among
others it is shown that in a decomposable weakly W3-symmetric manifold
both the decompositions are weakly Ricci symmetric.
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1 Introduction

The study of Riemann symmetric manifolds began with the work of Cartan [3].
A Riemannian manifold (Mn, g) is said to be locally symmetric due to Cartan
[3] if its curvature tensor R satisfies the relation ∇R = 0, where ∇ denotes the
operator of covariant differentiation with respect to the metric tensor g.
During the last five decades the notion of locally symmetric manifolds has

been weakened by many authors in several ways to a different extent such as
recurrent manifold by Walker [36], semisymmetric manifold by Sinyukov [32]
and Szabó [33], pseudosymmetric manifold in the sense of Mikeš [12, 13] and
Deszcz [8], pseudosymmetric manifold in the sense of Chaki [4], generalized
pseudosymmetric manifold by Chaki [5], weakly symmetric manifold by Selberg
[21] and weakly symmetric manifold by Támassy and Binh [34]. It may be
noted that the notion of weakly symmetric Riemannian manifolds by Selberg
[21] is different and are not equivalent to that of Támassy and Binh [34]. In this
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54 Shyamal Kumar Hui

connection it is mentioned that Mikeš [11] studied projective-symmetric and
projective-recurrent affinely connected spaces. Also in [14] Mikeš and Tolobaev
studied symmetric and projectively symmetric affinely connected spaces and it
is shown that [14] there exist projectively m-symmetric spaces, the differ from
k-symmetric spaces and projectively k-symmetric spaces (k < m).
The notions of weakly symmetric and weakly projective symmetric manifolds

were introduced by Tamássy and Binh [34]. A non-flat Riemannian manifold
(Mn, g), n > 2, is called a weakly symmetric manifold if its curvature tensor R
of type (0,4) satisfies the condition

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) +B(Y )R(X,Z,U, V )

+ F (Z)R(Y,X,U, V ) +D(U)R(Y, Z,X, V ) + E(V )R(Y, Z, U,X) (1)

for all vector fields X, Y , Z, U , V ∈ χ(Mn), χ(Mn) being the Lie algebra of
smooth vector fields onM , where A, B, F , D and E are 1-forms (not simultane-
ously zero) and ∇ denotes the operator of covariant differentiation with respect
to the Riemannian metric g. The 1-forms are called the associated 1-forms of
the manifold and an n-dimensional manifold of this kind is denoted by (WS)n.
The existence of a (WS)n is proved by Prvanović [18]. Then De and Bandy-
opadhyay [7] gave an example of a (WS)n by a metric of Roter [19] and proved
that in a (WS)n, B = F and D = E [7]. Hence the defining condition of a
(WS)n reduces to the following form:

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) +B(Y )R(X,Z,U, V )

+B(Z)R(Y,X,U, V ) +D(U)R(Y, Z,X, V ) +D(V )R(Y, Z, U,X). (2)

The example of a (WS)n given in [7] was of vanishing scalar curvature.
However, there are various proper examples of a (WS)n given by Shaikh and
Jana [27], which are of non-vanishing scalar curvatures. (WS)n is also studied
by Altay [1], Binh [2], Hui, Matsuyama and Shaikh [10], Özen and Altay ([15,
16]), Shaikh et. al. ([22, 23, 24, 25, 26, 27, 28, 29, 31]).
Also in 1993 Tamássy and Binh [35] introduced the notion of weakly Ricci

symmetric manifolds. A Riemannian manifold (Mn, g), n > 2, is called weakly
Ricci symmetric manifold if its Ricci tensor S of type (0,2) is not identically
zero and satisfies the condition

(∇XS)(Y, Z) = A(X)S(Y, Z) +B(Y )S(Z,X) +D(Z)S(Y,X), (3)

where A, B and D are three non-zero 1-forms and ∇ denotes the operator of
covariant differentiation with respect to the Riemannian metric g. Such an
n-dimensional manifold is denoted by (WRS)n.
In 1973, Pokhariyal [17] introduced the notion of a new curvature tensor,

denoted byW3 and studied its relativistic significance. TheW3-curvature tensor
of type (0,4) is defined by

W3(Y, Z, U, V ) = R(Y, Z, U, V )

+
1

n− 1

[
S(Y, V )g(Z,U)− S(Y, U)g(Z, V )

]
, (4)
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where R is the curvature tensor of type (0,4) and S is the Ricci tensor of type
(0,2). The present paper deals with a Riemannian manifold (Mn, g), n > 2,
(the condition n > 2 is assumed throughout the paper) whose W3-curvature
tensor is not identically zero and satisfies the condition

(∇XW3)(Y, Z, U, V ) = A(X)W3(Y, Z, U, V ) +B(Y )W3(X,Z,U, V )

+ F (Z)W3(Y,X,U, V ) +D(U)W3(Y, Z,X, V ) + E(V )W3(Y, Z, U,X) (5)

for all vector fields X, Y , Z, U , V ∈ χ(Mn), where A, B, F , D and E are
1-forms (not simultaneously zero). Such a manifold will be called a weakly W3-
symmetric manifold and is denoted by (WW3S)n, where the first ‘W ’ stands
for the word weakly and ‘W3’ represents the ‘W3-curvature tensor’. Here A, B,
F , D, E are said to be the associated 1-forms of the manifold.
The paper is organized as follows. Section 2 is concerned with preliminaries.

It is shown that in a (WW3S)n, the associated 1-forms B �= F and D = E.
Hence the defining condition (5) of a (WW3S)n turns into the following form:

(∇XW3)(Y, Z, U, V ) = A(X)W3(Y, Z, U, V ) +B(Y )W3(X,Z,U, V )

+ F (Z)W3(Y,X,U, V ) +D(U)W3(Y, Z,X, V ) +D(V )W3(Y, Z, U,X), (6)

where A, B, F and D are 1-forms (not simultaneously zero).
Section 3 is devoted to the study of Einstein (WW3S)n. Every (WS)n is

a (WW3S)n. However, the converse is not true. In this section it is proved
that an Einstein (WW3S)n with vanishing scalar curvature is a (WS)n. Also
it is shown that an Einstein (WW3S)n is a (WS)n if and only if the scalar
curvature of the manifold vanishes. Section 4 deals with the decomposable
(WW3S)n and a full classification of such a manifold is given. It is proved that
in a decomposable (WW3S)n, one of the decomposition is Ricci symmetric as
well as locally symmetric but the other decomposition is a manifold of constant
curvature. Shaikh and Jana [27] already proved that every (WS)n is not a
(WRS)n, in general. In this paper it is shown that if a Riemannian manifold
(Mn, g) is a decomposable (WW3S)n such thatM = Mp

1×Mn−p
2 (2 ≤ p ≤ n−2),

then M1 is (WRS)p and M2 is (WRS)n−p.
Recently Özen and Altay [15] studied the totally umbilical hypersurfaces of

weakly and pseudosymmetric spaces. Again Özen and Altay [16] also studied
the totally umbilical hypersurfaces of weakly concircular and pseudo concircular
symmetric spaces. In this connection it may be mentioned that Shaikh, Roy
and Hui [30] studied the totally umbilical hypersurfaces of weakly conharmon-
ically symmetric spaces. Section 5 deals with the study of totally umbilical
hypersurfaces of weakly W3-symmetric manifolds. Finally, in the last section,
the existence of (WW3S)n and decomposable (WW3S)n is ensured by an inter-
esting example.

2 Preliminaries

In this section, some formulas are derived, which will be useful to the study of
decomposable (WW3S)n. Let {ei : i = 1, 2, . . . , n} be an orthonormal basis of
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the tangent space at any point of the manifold. Then the Ricci tensor S of type
(0,2) and the scalar curvature r of the manifold are given by the following:

S(X,Y ) =

n∑
i=1

R(ei, X, Y, ei)

and

r =

n∑
i=1

S(ei, ei) =

n∑
i=1

g(Qei, ei),

where Q is the Ricci-operator, i.e., g(QX, Y ) = S(X,Y ) for all X, Y . Now from
(4), we have the following:

n∑
i=1

W3(ei, Z, U, ei) =
1

n− 1

[
(n− 2)S(Z,U) + rg(Z,U)

]
, (7)

n∑
i=1

W3(Y, ei, ei, V ) = 2 S(Y, V ), (8)

n∑
i=1

W3(Y, Z, ei, ei) = 0 =
n∑

i=1

W3(ei, ei, U, V ). (9)

Also from (4) it follows that

(i) W3(Y, Z, U, V ) �= −W3(Z, Y, U, V ),

(ii) W3(Y, Z, U, V ) = −W3(Y, Z, V, U),

(iii) W3(Y, Z, U, V ) �= W3(U, V, Y, Z),

(iv) W3(Y, Z, U, V ) +W3(Z,U, Y, V ) +W3(U, Y, Z, V ) �= 0.

⎫⎪⎪⎬
⎪⎪⎭

(10)

In view of (4) we obtain by virtue of Bianchi identity that

(∇XW3)(Y, Z, U, V ) + (∇Y W3)(Z,X,U, V ) + (∇ZW3)(X,Y, U, V )

=
1

n− 1

[
(∇XS)(Y, V )g(Z,U)− (∇XS)(Y, U)g(Z, V ) + (∇Y S)(Z, V )g(X,U)

− (∇Y S)(Z,U)g(X,V ) + (∇ZS)(X,V )g(Y, U)− (∇ZS)(X,U)g(Y, V )
]
. (11)

Proposition 2.1 The defining condition of a (WW3S)n can always be ex-
pressed in the form (6).

Proof Interchanging U and V in (5), we get

(∇XW3)(Y, Z, V, U) = A(X)W3(Y, Z, V, U) +B(Y )W3(X,Z, V, U)

+ F (Z)W3(Y,X, V, U) +D(V )W3(Y, Z,X,U) + E(U)W3(Y, Z, V,X). (12)

Adding (5) and (12), we obtain by virtue of (10)(ii) that

λ(U)W3(Y, Z,X, V ) + λ(V )W3(Y, Z,X, V ) = 0, (13)

where λ(X) = D(X)− E(X) for all X.
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If we choose a particular vector field ρ such that λ(ρ) �= 0, then putting
U = V = ρ in (13), we get W3(Y, Z,X, ρ) = 0. Again setting V = ρ in
(13), we obtain W3(Y, Z,X,U) = 0 for all vector fields Y , Z, X and U , which
contradicts to our assumption that the manifold is not W3-flat. Hence we must
have λ(X) = 0 for all X and consequently D(X) = E(X) for all X. But in
view of (10)(i), it follows that the relation B = F does not hold in a (WW3S)n.
Hence the defining condition of a (WW3S)n can be written as (6). This proves
the proposition. �

Proposition 2.2 If in a (WW3S)n the Ricci tensor vanishes then it is a (WS)n.

Proof Let us consider a (WW3S)n such that the Ricci tensor vanishes, i.e.,
S(X,Y ) = 0 for all X, Y . Then from (4), it follows that W3(Y, Z, U, V ) =
R(Y, Z, U, V ). Consequently the relation (6) yields the relation (2). This proves
the proposition. �

Proposition 2.3 In a (WW3S)n of non-zero constant scalar curvature
(2n−3)r
3n−4

is an eigenvalue of the Ricci tensor S corresponding to the eigenvector σ defined
by g(X, σ) = L(X) = B(X) + F (X)−A(X) �= 0 for all X.

Proof By virtue of (6), (11) yields

A(X)W3(Y, Z, U, V ) + {B(X) + F (X)}W3(Z, Y, U, V )

+A(Y )W3(Z,X,U, V ) + {B(Y ) + F (Y )}W3(X,Z,U, V )

+A(Z)W3(X,Y, U, V ) + {B(Z) + F (Z)}W3(Y,X,U, V )

+D(U)
[
W3(Y, Z,X, V ) +W3(Z,X, Y, V ) +W3(X,Y, Z, V )

]
−D(V )

[
W3(Y, Z,X,U) +W3(Z,X, Y, U) +W3(X,Y, Z, U)

]
=

1

n− 1

[
(∇XS)(Y, V )g(Z,U)− (∇XS)(Y, U)g(Z, V ) + (∇Y S)(Z, V )g(X,U)

− (∇Y S)(Z,U)g(X,V ) + (∇ZS)(X,V )g(Y, U)− (∇ZS)(X,U)g(Y, V )
]
. (14)

Setting Y = V = ei in (14) and taking summation over i, 1 ≤ i ≤ n and using
(7)–(9), we get

1

n− 1
A(X){(n− 2)S(Z,U) + rg(Z,U)} − 2{B(X) + F (X)}S(Z,U)

+W3(Z,X,U, ρ1) +W3(X,Z,U, ρ2) +W3(X,Z,U, ρ3)

− 2A(Z)S(X,U) +
1

n− 1
{B(Z) + F (Z)}{(n− 2)S(X,U) + rg(X,U)}

+D(U)

[
1

n− 1
{(n− 2)S(Z,X) + rg(Z,X)} − 2S(Z,X)

]

−
[
W3(ρ4, Z,X, U) +W3(Z,X, ρ4, U) +W3(X, ρ4, Z, U)

]
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=
1

n− 1

[
dr(X)g(Z,U)− 2(∇XS)(Z,U)

+
1

2
dr(Z)g(X,U)− (n− 1)(∇ZS)(X,U)

]
, (15)

where A(X) = g(X, ρ1), B(X) = g(X, ρ2), F (X) = g(X, ρ3) and D(X) =
g(X, ρ4) for all X. Again contracting (15) over Z and U , we obtain

(3n− 4)L(QX)− (2n− 3)r L(X) =
1

2
(n− 2)dr(X), (16)

where Q is the Ricci operator, i.e., g(QX, Y ) = S(X,Y ) for all X, Y and
L(X) = g(X, σ) = B(X) + F (X) − A(X) �= 0 and r is the scalar curvature of
the manifold.
If the scalar curvature r of the manifold is non-zero constant then

dr(X) = 0 for all X. (17)

By virtue of (17), it follows from (16) that

L(QX) =
2n− 3

3n− 4
rL(X),

which implies that

S(X, σ) =
2n− 3

3n− 4
rg(X, σ).

This proves the proposition. �

3 Einstein (WW3S)n

Let us consider a (WW3S)n, which is an Einstein manifold. Then we have

S(X,Y ) =
r

n
g(X,Y ) (18)

from which it follows that

dr(X) = 0 and (∇ZS)(X,Y ) = 0 for all X,Y, Z. (19)

If in an Einstein (WW3S)n, r = 0 then from (18) it follows that S(X,Y ) = 0
for all X, Y and hence by virtue of Proposition 2.2, we can state the following:

Theorem 3.1 An Einstein (WW3S)n with vanishing scalar curvature is
a (WS)n.

By virtue of (18) and (19), we have from (4) that

W3(Y, Z, U, V ) = R(Y, Z, U, V )

+
r

n(n− 1)

[
g(Y, V )g(Z,U)− g(Y, U)g(Z, V )

]
(20)
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and
(∇XW3)(Y, Z, U, V ) = (∇XR)(Y, Z, U, V ). (21)

In view of (20) and (21), (6) yields

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) +B(Y )R(X,Z,U, V )

+ F (Z)R(Y,X,U, V ) +D(U)R(Y, Z,X, V ) +D(V )R(Y, Z, U,X)

+
r

n(n− 1)

[
A(X){g(Y, V )g(Z,U)− g(Y, U)g(Z, V )}

+ B(Y ){g(X,V )g(Z,U)− g(X,U)g(Z, V )}
+ F (Z){g(Y, V )g(Z,X)− g(Y, U)g(X,V )}
+ D(U){g(Y, V )g(Z,X)− g(Y,X)g(Z, V )}
+ D(V ){g(Y,X)g(Z,U)− g(Y, U)g(Z,X)}

]
. (22)

Now if the Einstein (WW3S)n is a (WS)n, then using (2) in (22), we get

[B(Z)− F (Z)]R(Y,X,U, V )

=
r

n(n− 1)

[
A(X){g(Y, V )g(Z,U)− g(Y, U)g(Z, V )}

+ B(Y ){g(X,V )g(Z,U)− g(X,U)g(Z, V )}
+ F (Z){g(Y, V )g(Z,X)− g(Y, U)g(X,V )}
+ D(U){g(Y, V )g(Z,X)− g(Y,X)g(Z, V )}
+ D(V ){g(Y,X)g(Z,U)− g(Y, U)g(Z,X)}

]
. (23)

Setting X = U = ei in (23) and taking summation over i, 1 ≤ i ≤ n, we get

[B(Z)− F (Z)]S(Y, V )

=
r

n(n− 1)

[
A(Z)g(Y, V )−A(Y )g(Z, V )− (n− 1)B(Y )g(Z, V )

+ (n− 1)F (Z)g(Y, V ) +D(Z)g(Y, V )−D(Y )g(Z, V )
]
. (24)

Using (18) in (24), we obtain

r

n
[B(Z)− F (Z)]g(Y, V )

=
r

n(n− 1)

[
A(Z)g(Y, V )−A(Y )g(Z, V )− (n− 1)B(Y )g(Z, V )

+ (n− 1)F (Z)g(Y, V ) +D(Z)g(Y, V )−D(Y )g(Z, V )
]
. (25)

Contracting (25) over Y and Z, we get

r{B(Z)− F (Z)} = 0. (26)

Since in a (WW3S)n, B �= F . Then from (26), we must obtain r = 0. Thus we
can state the following:
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Theorem 3.2 If an Einstein (WW3S)n is a (WS)n then the scalar curvature
of the manifold vanishes.

Combining Theorem 3.1 and Theorem 3.2, we can state the following:

Theorem 3.3 An Einstein (WW3S)n is a (WS)n if and only if the scalar
curvature of the manifold vanishes.

4 Decomposable (WW3S)n

A Riemannian manifold (Mn, g) is said to be decomposable or product manifold
([20], [37]) if it can be expressed asMp

1 ×Mn−p
2 for 2 ≤ p ≤ n−2, that is, in some

coordinate neighbourhood of the Riemannian manifold (Mn, g), the metric can
be expressed as

ds2 = gijdx
idxj = ḡabdx

adxb+
∗
gαβ dxαdxβ , (27)

where ḡab are functions of x1, x2, . . . , xp denoted by x̄ and
∗
gαβ are functions of

xp+1, xp+2, . . . , xn denoted by
∗
x; a, b, c, . . . run from 1 to p and α, β, γ, . . . run

from p+1 to n. The two parts of (27) are the metrics of Mp
1 (p ≥ 2) and Mn−p

2

(n− p ≥ 2) which are called the decompositions of the decomposable manifold
Mn = Mp

1 ×Mn−p
2 (2 ≤ p ≤ n− 2).

Let (Mn, g) be a Riemannian manifold such that Mn = Mp
1 × Mn−p

2 for
2 ≤ p ≤ n − 2. Here throughout this section each object denoted by a ‘bar’ is
assumed to be from M1 and each object denoted by a ‘star’ is assumed to be
from M2.

Let X̄, Ȳ , Z̄, Ū , V̄ ∈ χ(M1) and
∗
X,

∗
Y ,

∗
Z,

∗
U,

∗
V ∈ χ(M2). Then in a decom-

posable Riemannian manifold Mn = Mp
1 ×Mn−p

2 (2 ≤ p ≤ n− 2), the following
relations hold [37]:

R(
∗
X, Ȳ , Z̄, Ū) = 0 = R(X̄,

∗
Y , Z̄,

∗
U) = R(X̄,

∗
Y ,

∗
Z,

∗
U),

(∇ ∗
X
R)(Ȳ , Z̄, Ū , V̄ ) = 0 = (∇X̄R)(Ȳ ,

∗
Z, Ū ,

∗
V ) = (∇ ∗

X
R)(Ȳ ,

∗
Z, Ū ,

∗
V ),

R(X̄, Ȳ , Z̄, Ū) = R̄(X̄, Ȳ , Z̄, Ū);R(
∗
X,

∗
Y ,

∗
Z,

∗
U) =

∗
R (

∗
X,

∗
Y ,

∗
Z,

∗
U),

S(X̄, Ȳ ) = S̄(X̄, Ȳ );S(
∗
X,

∗
Y ) =

∗
S (

∗
X,

∗
Y ),

(∇X̄S)(Ȳ , Z̄) = (∇̄X̄S)(Ȳ , Z̄); (∇ ∗
X
S)(

∗
Y ,

∗
Z) = (

∗
∇ ∗

X
S)(

∗
Y ,

∗
Z),

and
r = r̄+

∗
r,

where r, r̄, and
∗
r are scalar curvatures of M , M1, M2 respectively.

Let us consider a Riemannian manifold (Mn, g), which is a decomposable
(WW3S)n. Then Mn = Mp

1 ×Mn−p
2 (2 ≤ p ≤ n− 2).
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Now from (4), we find

W3(
∗
Y , Z̄, Ū , V̄ ) = 0

= W3(Ȳ ,
∗
Z,

∗
U,

∗
V ) = W3(Ȳ ,

∗
Z, Ū , V̄ ) = W3(Ȳ , Z̄,

∗
U, V̄ ), (28)

W3(Ȳ ,
∗
Z,

∗
U, V̄ ) =

1

n− 1
S(Ȳ , V̄ )g(

∗
Z,

∗
U), (29)

W3(
∗
Y , Z̄, Ū ,

∗
V ) =

1

n− 1
S(

∗
Y ,

∗
V )g(Z̄, Ū), (30)

W3(
∗
Y , Z̄,

∗
U, V̄ ) = − 1

n− 1
S(

∗
Y ,

∗
U)g(Z̄, V̄ ), (31)

W3(Ȳ ,
∗
Z, Ū ,

∗
V ) = − 1

n− 1
S(Ȳ , Ū)g(

∗
Z,

∗
V ), (32)

(∇ ∗
X
W3)(Ȳ , Z̄, Ū , V̄ ) = 0 = (∇X̄W3)(

∗
Y ,

∗
Z,

∗
U,

∗
V ). (33)

Again from (6), we find

(∇X̄W3)(Ȳ , Z̄, Ū , V̄ ) =

A(X̄)W3(Ȳ , Z̄, Ū , V̄ ) +B(Ȳ )W3(X̄, Z̄, Ū , V̄ ) + F (Z̄)W3(Ȳ , X̄, Ū , V̄ )

+D(Ū)W3(Ȳ , Z̄, X̄, V̄ ) +D(V̄ )W3(Ȳ , Z̄, Ū , X̄), (34)

A(
∗
X)W3(Ȳ , Z̄, Ū , V̄ ) = 0, (35)

B(
∗
Y )W3(X̄, Z̄, Ū , V̄ ) = 0, (36)

F (
∗
Y )W3(Ȳ , X̄, Ū , V̄ ) = 0, (37)

D(
∗
U)W3(Ȳ , Z̄, X̄, V̄ ) = 0. (38)

B(
∗
Y )W3(X̄,

∗
Z,

∗
U, ∗̄V ) + F (

∗
Z)W3(

∗
Y , X̄,

∗
U, V̄ ) = 0, (39)

B(Ȳ )W3(
∗
X, Z̄, Ū ,

∗
V ) + F (Z̄)W3(Ȳ ,

∗
X, Ū,

∗
V ) = 0, (40)

(∇X̄W3)(Ȳ ,
∗
Z,

∗
U, V̄ ) = A(X̄)W3(Ȳ ,

∗
Z,

∗
U, V̄ ) +B(Ȳ )W3(X̄,

∗
Z,

∗
U, V̄ )

+ D(V̄ )W3(Ȳ ,
∗
Z,

∗
U, X̄), (41)

(∇ ∗
X
W3)(

∗
Y , Z̄, Ū ,

∗
V ) = A(

∗
X)W3(

∗
Y , Z̄, Ū ,

∗
V ) +B(

∗
Y )W3(

∗
X, Z̄, Ū ,

∗
V )

+ D(
∗
V )W3(

∗
Y , Z̄, Ū ,

∗
X). (42)

Also from (6), we obtain

(∇ ∗
X
W3)(

∗
Y ,

∗
Z,

∗
U,

∗
V ) = A(

∗
X)W3(

∗
Y ,

∗
Z,

∗
U,

∗
V ) +B(

∗
Y )W3(

∗
X,

∗
Z,

∗
U,

∗
V )

+ F (
∗
Z)W3(

∗
Y ,

∗
X,

∗
U,

∗
V ) +D(

∗
U)W3(

∗
Y ,

∗
Z,

∗
X,

∗
V )

+D(
∗
V )W3(

∗
Y ,

∗
Z,

∗
U,

∗
X), (43)
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A(X̄)W3(
∗
Y ,

∗
Z,

∗
U,

∗
V ) = 0, (44)

B(Ȳ )W3(
∗
X,

∗
Z,

∗
U,

∗
V ) = 0, (45)

F (Z̄)W3(
∗
Y ,

∗
X,

∗
U,

∗
V ) = 0, (46)

D(Ū)W3(
∗
Y ,

∗
Z,

∗
X,

∗
V ) = 0. (47)

From (35)–(38) we conclude that either
(I) A = B = F = D = 0 on M2, or,
(II) M1 is W3-flat.
Firstly, we consider the case (I). Then from (42), it follows that

(∇ ∗
X
W3)(

∗
Y , Z̄, Ū ,

∗
V ) = 0,

which implies by virtue of (30) that

(∇ ∗
X
S)(

∗
Y ,

∗
V ) = 0 (48)

and hence the decomposition M2 is Ricci symmetric.
Also from (43), we have

(∇ ∗
X
W3)(

∗
Y ,

∗
Z,

∗
U,

∗
V ) = 0

and hence

(∇ ∗
X
R)(

∗
Y ,

∗
Z,

∗
U,

∗
V )+

1

n− 1

[
(∇ ∗

X
S)(

∗
Y ,

∗
V )g(

∗
Z,

∗
U)− (∇ ∗

X
S)(

∗
Y ,

∗
V )g(

∗
Z,

∗
V )

]
= 0,

which yields by virtue of (48) that (∇ ∗
X
R)(

∗
Y ,

∗
Z,

∗
U,

∗
V ) = 0, i.e., the decomposi-

tion M2 is locally symmetric.
Secondly, we assume that M1 is W3-flat. Then we have

R(Ȳ , Z̄, Ū , V̄ ) = − 1

n− 1

[
S(Ȳ , V̄ )g(Z̄, Ū)− S(Ȳ , Ū)g(Z̄, V̄ )

]
. (49)

Contracting (49) over Ȳ and V̄ , we obtain

S(Z̄, Ū) = − r̄

n− 2
g(Z̄, Ū). (50)

In view of (50), (49) yields

R(Ȳ , Z̄, Ū , V̄ ) =
r̄

(n− 1)(n− 2)

[
g(Ȳ , V̄ )g(Z̄, Ū)− g(Ȳ , Ū)g(Z̄, V̄ )

]

that is, the decomposition M1 is a manifold of constant curvature.
Thus we can state the following:
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Theorem 4.1 Let (Mn, g) be a Riemannian manifold such that

M = Mp
1 ×Mn−p

2 , 2 ≤ p ≤ n− 2.

If Mn is a (WW3S)n then either (I) or (II) holds.
(I) A = 0, B = 0, F = 0, D = 0 on M2 (resp. M1), and hence M2 (resp.

M1) is Ricci symmetric as well as locally symmetric.
(II) M1 (resp. M2) is W3-flat and hence M1 (resp. M2) is a manifold of

constant curvature.

Using (29) in (41), we get

(∇X̄S)(Ȳ , V̄ ) = A(X̄)S(Ȳ , V̄ ) +B(Ȳ )S(X̄, V̄ ) +D(V̄ )S(Ȳ , X̄). (51)

Similarly by virtue of (30) we have from (42) that

(∇ ∗
X
S)(

∗
Y ,

∗
V ) = A(

∗
X)S(

∗
Y ,

∗
V ) +B(

∗
Y )S(

∗
X,

∗
V ) +D(

∗
V )S(

∗
Y ,

∗
X). (52)

From (51) and (52), we can state the following:

Theorem 4.2 Let (Mn, g) be a Riemannian manifold such that

M = Mp
1 ×Mn−p

2 , 2 ≤ p ≤ n− 2.

If M is a (WW3S)n then the decomposition M1 is (WRS)p and the decompo-
sition M2 is (WRS)n−p.

Using (30) and (32) in (40), we obtain

B(Ȳ )S(
∗
X,

∗
V )g(Z̄, Ū)− F (Z̄)S(Ȳ , Ū)g(

∗
X,

∗
V ) = 0. (53)

Contracting (53) over
∗
X and

∗
V , we get

∗
r B(Ȳ )g(Z̄, Ū)− (n− p)F (Z̄)S(Ȳ , Ū) = 0. (54)

Again contracting (54) over Z̄ and Ū , we get

F (QȲ ) = r1F (Ȳ ) where r1 =
p

n− p

∗
r . (55)

Similarly it follows from (39) that

F (Q
∗
Y ) = r2F (

∗
Y ) where r2 =

n− p

p
r̄. (56)

Hence we can state the following:

Theorem 4.3 Let (Mn, g) be a Riemannian manifold such that

M = Mp
1 ×Mn−p

2 , 2 ≤ p ≤ n− 2.

If M is a (WW3S)n then the relations (55) and (56) hold.
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5 Totally umbilical hypersurfaces of (WW3S)n

Let (V̄ , ḡ) be an (n+1)-dimensional Riemannian manifold covered by a system
of coordinate neighbourhoods {U, yα}. Let (V, g) be a hypersurface of (V̄ , ḡ)
defined in a locally coordinate system by means of a system of parametric equa-
tion yα = yα(xi), where Greek indices take values 1, 2, . . . , n and Latin indices
take values 1, 2, . . . , (n+ 1). Let Nα be the components of a local unit normal
to (V, g). Then we have

gij = ḡαβy
α
i y

β
j , (57)

ḡαβN
αyβj = 0, ḡαβN

αNβ = e = 1, (58)

yαi y
β
j g

ij = ḡαβ −NαNβ , yαi =
∂yα

∂xi
. (59)

The hypersurface (V, g) is called a totally umbilical hypersurface ([6],[9]) of
(V̄ , ḡ) if its second fundamental form Ωij satisfies

Ωij = Hgij , yαi,j = gijHNα, (60)

where the scalar function H is called the mean curvature of (V, g) given by
H = 1

n

∑
gijΩij . If, in particular, H = 0, i.e.,

Ωij = 0, (61)

then the totally umbilical hypersurface is called a totally geodesic hypersurface
of (V̄ , ḡ).
The equation of Weingarten for (V, g) can be written as Nα

,j = −H
n yαj . The

structure equations of Gauss and Codazzi ([6],[9]) for (V, g) and (V̄ , ḡ) are re-
spectively given by

Rijkl = R̄αβγδB
αβγδ
ijkl +H2Gijkl, (62)

R̄αβγδB
αβγ
ijk Nδ = H,i gjk −H,j gik, (63)

where Rijkl and R̄αβγδ are curvature tensors of (V, g) and (V̄ , ḡ) respectively,
and

Bαβγδ
ijkl = Bα

i B
β
j B

γ
kB

δ
l , Bα

i = yαi , Gijkl = gilgjk − gikgjl.

Also we have ([6], [9])

S̄αδB
α
i B

δ
j = Sij − (n− 1)H2gij , (64)

S̄αδN
αBδ

i = (n− 1)H,i, (65)

where Sij and ¯Sαδ are the Ricci tensors of (V, g) and (V̄ , ḡ) respectively.
In terms of local coordinates the relations (4) and (6) can be written as

(W3)hijk = Rhijk +
1

n− 1

[
Shkgij − Shjgik

]
, (66)
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(W3)hijk,l = Al(W3)hijk +Bh(W3)lijk + Fi(W3)hljk

+ Dj(W3)hilk +Dk(W3)hijl. (67)

By virtue of (62) and (64), we have from (66) that

(W3)ijkl = ¯(W3)αβγδB
αβγδ
ijkl + 2H2Gijkl. (68)

Let (V̄ , ḡ) be a weakly W3-symmetric manifold. Then we get

(W̄3)βγσα,δ = Aδ(W̄3)βγσα +Bβ(W̄3)δγσα + Fγ(W̄3)βδσα

+ Dσ(W̄3)βγδα +Dα(W̄3)βγσδ, (69)

where A,B, F and D are 1-forms (not simultaneously zero).
Multiplying both sides of (69) by Bαβγδσ

hijkl and then using (67) and (68), we
get either H = 0 or

2H,kGijlh = H
[
AkGijlh +BiGkjlh + FjGiklh

+ DlGijkh +DhGijlk

]
. (70)

Transvecting (70) by gihgjl, we obtain

2nH,k =
[
nAk +Bk + Fk + 2Dk

]
H for all k. (71)

This leads to the following:

Theorem 5.1 If the totally umbilical hypersurface of a (WW3S)n is a (WW3S)n
then either the manifold is a totally geodesic hypersurface or the associated
1-forms A,B, F and D are related by the relation (71).

We now consider that the space (V, g) is totally geodesic hypersurface, i.e.,

H = 0. (72)

In view of (72), (68) yields

¯(W3)αβγδB
αβγδ
ijkl = (W3)ijkl. (73)

Using (73) in (69), we have the relation (67). Thus we can state the following:

Theorem 5.2 The totally geodesic hypersurface of a (WW3S)n is (WW3S)n.

6 Example of (WW3S)n and decomposable (WW3S)n

Example 6.1 Let M = {(x1, x2, x3, x4) ∈ R
4 : 0 < x4 < 1} be a manifold

endowed with the metric

ds2 = gijdx
idxj = (x4)

4
3

[
(dx1)2 + (dx4)2

]
+ (dx2)2 + (dx3)2,

i, j = 1, 2, 3, 4. (74)
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Then the only non-vanishing components of the Christoffel symbols, the curva-
ture tensor, Ricci tensor, scalar curvature,W3-curvature tensor and its covariant
derivatives are given by

Γ1
14 = Γ4

44 =
2

3x4
= −Γ4

11,

R1441 = − 2

3(x4)
2
3

, S11 = S44 = − 2

3(x4)2
,

r = − 4

3(x4)
10
3

�= 0, (W3)1414 =
4

9(x4)
2
3

= −(W3)4114,

(W3)1212 =
2

9(x4)2
= (W3)1313 = −(W3)4224 = −(W3)4334,

(W3)1212,4 = (W3)1313,4 = −(W3)4224,4 = −(W3)4334,4 = − 20

27(x4)3
, (75)

(W3)1414,4 = − 40

27(x4)
5
3

= −(W3)4114,4, (76)

and the components that can be obtained from these by the symmetry proper-
ties, where ‘,’ denotes the covariant differentiation with respect to the metric
tensor. Therefore, the manifoldM4 with the considered metric is a Riemannian
manifold, which is neither W3-flat nor W3 symmetric and is of non-vanishing
scalar curvature.
We shall now show that this (M4, g) is a (WW3S)4, that is, it satisfies (67).
In terms of local coordinate system we consider the components of the 1-

forms A, B, F and D as follows:

A(∂i) = Ai = − 10

3x4
for i = 4

= 0 otherwise, (77)

Bi = Fi = Di = 0 for i = 1, 2, 3, 4,

where ∂i = ∂
∂xi .

In our M4 with the considered 1-forms, (67) reduces to the following equa-
tions:

(W3)121l,i = Ai(W3)121l +B1(W3)i21l + F2(W3)1i1l

+ D1(W3)12il +Dl(W3)121i, (78)

(W3)12t2,i = Ai(W3)12t2 +B1(W3)i2t2 + F2(W3)1it2

+ Dt(W3)12i2 +D2(W3)12ti, (79)

(W3)1u12,i = Ai(W3)1u12 +B1(W3)iu12 + Fu(W3)1i12

+ D1(W3)1ui2 +D2(W3)1u1i, (80)
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(W3)t212,i = Ai(W3)t212 +Bt(W3)i212 + F2(W3)ti12

+ D1(W3)t2i2 +D2(W3)t21i, (81)

(W3)131u,i = Ai(W3)131u +B1(W3)i31u + F3(W3)1i1u

+ D1(W3)13iu +Du(W3)131i, (82)

(W3)13t3,i = Ai(W3)13t3 +B1(W3)i3t3 + F3(W3)1it3

+ Dt(W3)13i3 +D3(W3)13ti, (83)

(W3)1p13,i = Ai(W3)1p13 +B1(W3)ip13 + Fp(W3)1i13

+ D1(W3)1pi3 +D3(W3)1p1i, (84)

(W3)t313,i = Ai(W3)t313 +Bt(W3)i313 + F3(W3)ti13

+ D1(W3)t3i3 +D3(W3)t31i, (85)

(W3)14lp,i = Ai(W3)14lp +B1(W3)i4lp + F4(W3)1ilp

+ D1(W3)14ip +Dp(W3)141i, (86)

(W3)14t4,i = Ai(W3)14t4 +B1(W3)i4t4 + F4(W3)1it4

+ Dt(W3)14i4 +D4(W3)14ti, (87)

(W3)t414,i = Ai(W3)t414 +Bt(W3)i414 + F4(W3)ti14

+ D4(W3)t4i4 +D4(W3)t41i, (88)

(W3)411l,i = Ai(W3)411l +B4(W3)i11l + F1(W3)4i1l

+ D1(W3)41il +Dl(W3)411i, (89)

(W3)41t4,i = Ai(W3)41t4 +B4(W3)i1t4 + F1(W3)4it4

+ Dt(W3)41i4 +D4(W3)41ti, (90)

(W3)4t14,i = Ai(W3)4t14 +B4(W3)it14 + Ft(W3)4i14

r + D1(W3)4ti4 +D4(W3)4t1i, (91)

(W3)1114,i = Ai(W3)1114 +B1(W3)i114 + F1(W3)1i14

+ D1(W3)11i4 +D4(W3)111i, (92)



68 Shyamal Kumar Hui

(W3)q114,i = Ai(W3)q114 +Bq(W3)i114 + F1(W3)qi14

+ D1(W3)q1i4 +D4(W3)q11i, (93)

(W3)422l,i = Ai(W3)422l +B4(W3)i22l + F2(W3)4i2l

+ D2(W3)42il +Dl(W3)422i, (94)

(W3)v224,i = Ai(W3)v224 +Bv(W3)i224 + F2(W3)vi224

+ D2(W3)v2i4 +D4(W3)v22i, (95)

(W3)42s4,i = Ai(W3)42s4 +B4(W3)i2s4 + F2(W3)4is4

+ Ds(W3)42i4 +D4(W3)42si, (96)

(W3)4s24,i = Ai(W3)4s24 +B4(W3)is24 + Fs(W3)4i24

+ D2(W3)4si4 +D4(W3)4s2i, (97)

(W3)433l,i = Ai(W3)433l +B4(W3)i33l + F3(W3)4i3l

+ D3(W3)43il +Dl(W3)433i, (98)

(W3)v334,i = Ai(W3)v334 +Bv(W3)i334 + F3(W3)vi34

+ D3(W3)v3i4 +D4(W3)v33i, (99)

(W3)4434,i = Ai(W3)4434 +B4(W3)i434 + F4(W3)4i34

+ D3(W3)44i4 +D4(W3)443i, (100)

(W3)4434,i = Ai(W3)4434 +B4(W3)i434 + F4(W3)4i34

+ D3(W3)44i4 +D4(W3)443i, (101)

where i = 1, 2, 3, 4; l = 1, 2, 3, 4; t = 2, 3, 4; u = 1, 3, 4; p = 1, 4; v = 1, 2, 3;
q = 2, 3; s = 3, 4, since for the cases other than (78)–(101), the components of
each term of (67) either vanishes identically or the relation (67) holds trivially
using the skew-symmetry property of W3.
Now using (75) and (77), it follows for i = 4 that, right hand side of (78)

(for l = 2) = A4 (W3)1212 = − 20
27(x4)3 = (W3)1212,4 = left hand side of (78) (for

l = 2).
For i = 1, 2, 3, the relation (77) implies that both sides of equation (78) are

equal. By the similar arguement, it can be easily seen that the equation (79)–
(101) holds. Thus the manifold under consideration is weakly W3-symmetric
manifold.
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Hence we can state the following:

Theorem 6.2 Let (M4, g) be a Riemannian manifold endowed with the metric
given in (74). Then (M4, g) is a weakly W3-symmetric manifold with non-
vanishing scalar curvature, which is neither W3-flat nor W3-symmetric.

Example 6.3 Let M = {(x1, x2, x3, . . . , xn) ∈ R
n : 0 < x4 < 1} be a manifold

endowed with the metric

ds2 =
[
(x4)

4
3 − 1

][
(dx1)2 + (dx4)2

]
+ δabdx

adxb, (102)

where δab is the kronecker delta and a, b run from 1 to n. Then the only non-
vanishing components of the Christoffel symbols, the curvature tensor, Ricci
tensor, scalar curvature, projective curvature tensor and its covariant derivatives
are given by

Γ1
14 = Γ4

44 =
2

3x4
= −Γ4

11, R1441 = − 2

3(x4)
2
3

,

S11 = S44 = − 2

3(x4)2
, r = − 4

3(x4)
10
3

�= 0,

(W3)1414 =
2(n− 2)

3(n− 1)(x4)
2
3

= −(W3)4114,

(W3)1212 = (W3)1313 =
2

3(n− 1)(x4)2
= −(W3)4224 = −(W3)4334,

(W3)1k1k = (W3)4k4k =
2

3(n− 1)(x4)2
,

(W3)1212,4 = (W3)1313,4 = −(W3)4224,4 = −(W3)4334,4

= − 20

9(n− 1)(x4)3
, (103)

(W3)1414,4 = − 20(n− 2)

9(n− 1)(x4)
5
3

= −(W3)4114,4, (104)

(W3)1k1k,4 = (W3)4k4k,4 = − 20

9(n− 1)(x4)3
for 5 ≤ k ≤ n. (105)

If we consider the components of the 1-forms A, B, F and D as

A(∂i) = Ai = − 10

3x4
for i = 4

= 0 otherwise ,

Bi = Fi = Di = 0 for i = 1, 2, . . . , n,

where ∂i = ∂
∂xi , then it can be easily shown that Mn is a (WW3S)n, which is

not W3-symmetric. Hence we can state the following:
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Theorem 6.4 Let (Mn, g), n ≥ 4, be a Riemannian manifold endowed with
the metric given in (102). Then (Mn, g) is a weakly W3-symmetric manifold
with non-vanishing scalar curvature, which is not W3-symmetric.

Let (M4
1 , g1) be a Riemannian manifold in Example 6.1 and (Rn−4, g0) be

an (n− 4)-dimensional Euclidean space with standard metric g0. Then (Mn, g)
in Example 6.2 is a product manifold of (M4

1 , g1) and (Rn−4, g0). Thus we can
state the following:

Theorem 6.5 Let (Mn, g), n ≥ 4, be a Riemannian manifold endowed with
the metric given in (102). Then (Mn, g)(n ≥ 4) is a decomposable weakly W3-
symmetric manifold (M4

1 , g1)× (Rn−4, g0) with non-vanishing scalar curvature,
which is not W3-symmetric.
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