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KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 6 , PAGES 9 3 0 – 9 4 3

ON MAIN CHARACTERISTICS OF THE M/M/1/N
QUEUE WITH SINGLE AND BATCH ARRIVALS AND
THE QUEUE SIZE CONTROLLED BY AQM ALGORITHMS

Wojciech M. Kempa

In the article finite-buffer queueing systems of the M/M/1/N type with queue size
controlled by AQM algorithms are considered, separately for single and batch arrivals.
In the latter case two different acceptance strategies: WBAS (Whole Batch Acceptance
Strategy) and PBAS (Partial Batch Acceptance Strategy) are distinguished.

Three essential characteristics of the system are investigated: the stationary queue-size
distribution, the number of consecutively dropped packets (batches of packets) and the
time between two successive accepted packets (batches of packets).

For these characteristics the formulae which can be easily numerically treated are de-
rived. Numerical results obtained for three sample dropping functions are attached as
well.

Keywords: active queue management (AQM), drop function, finite buffer, queue size

Classification: 90B22, 60K25

1. MOTIVATION

The traditional tool for the controlling the queue size in finite-buffer systems is
connected with using the Tail Drop (TD) algorithm. In this approach the arriving
packets are lost only when all “places” in the buffer are occupied (see [2]). To avoid
congestion of the buffer the Active Queue Management (AQM) procedures were
proposed. In the AQM scheme a drop function is introduced and successive packets
are accepted for service with a probability that usually depends on the current queue
size.

For the first time the AQM approach in the control of finite-buffer queues was
described in [4]. In practice different types of dropping functions are used. The most
popular is a linear dropping function (Random Early Detection (RED) algorithm)
which was introduced in [4]. One can also find some applications of the RED scheme
in [7], [9], [10], [12] and [13]. In particular, in [7] the RED scheme is applied to the
G/M/1/N queueing system with batch arrivals and next some measures for assessing
the performance of this algorithm are introduced. One can find some other types of
dropping functions e.g. in [5], [8] (Gentle Random Early Detection (GRED) scheme)
and [1] (Random Exponential Marking (REM) algorithm). In [2] the queueing model
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of the M/M/1/N type with single arrivals is considered and some characteristics for
TD and AQM schemes are compared. The case of AQM algorithms applied in the
queueing system with small buffer capacity is studied in [3].

It seems that the influence of AQM algorithms for main characteristics of finite-
buffer queueing systems is not sufficiently investigated analytically. In particular,
queues with batch arrivals, which can be helpful in modelling the Internet traffic,
are inadequately studied. Besides, majority of results is of numerical nature only.

In the article we consider separately systems of the M/M/N/1 type with single
and batch arrivals, with AQM algorithms applied for the controlling the queue size.
For batch arrivals we analyze two types of acceptance strategies: WBAS (Whole
Batch Acceptance Strategy) and PBAS (Partial Batch Acceptance Strategy) which
will be described in details in the next section. Three main characteristics of such
systems are investigated: the steady-state queue size, the number of consecutively
lost packets (or batches in the case of batch arrivals) and the time between two
successive accepted packets (batches of packets). These characteristics are of great
importance in the analyzing the influence of AQM algorithms for the risk of buffer
congestions. We treat them analytically, considering separately cases of individual
and group arrivals. Explicit equations for all characteristics which can be used
in numerical practice are derived. As an illustration we present numerical results
obtained for three different sample drop functions.

Thus, the article is organized as follows. In the next Section 2 we describe models
and introduce some necessary notations. In Section 3 we investigate queue-size
distribution in the steady state of the system. Section 4 is devoted to the distribution
of the number of consecutively lost packets (batches of packets) – we present a useful
algorithm for computing proper probabilities. In Section 5 we derive results for the
distribution of the time between two successive accepted packets (batches of packets).
The last Section 6 contains numerical results.

2. DESCRIPTION OF MODELS

Let us consider the M/M/1/N queueing system in that interarrival times and service
times are mutually independent and exponentially distributed random variables with
means λ−1 and µ−1 respectively. The system capacity is assumed to be N (there
are N − 1 places in the buffer queue and one place for service). We investigate
separately systems with individual and batch arrivals. Thus, let us denote by pk the
probability that the arriving batch size is exactly k, where

∑∞
k=1 pk = 1.

As a tool for controlling the queue size in the system we introduce a drop function
dk depending on the actual queue size k. For the case of single arrivals dk gives
the probability of rejection the arriving packet that finds k packets present in the
system. Of course dk = 1 for k ≥ N. For group arrivals we distinguish two acceptance
strategies (see [6] for more details):

• the Whole Batch Acceptance Strategy (WBAS) in which the arriving batch is
always lost (without using a drop function) when the batch size is larger than
the number of free waiting places in the buffer;

• the Partial Batch Acceptance Strategy (PBAS) in which the arriving packet
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can be partially accepted (according to the dropping procedure) even when the
batch size is larger than the number of available free positions in the buffer.

In the case of batch arrivals we additionally assume that all packets belonging to the
same arriving batch are dropped with the same probability depending on the queue
size just before the batch arrival.

3. STEADY-STATE QUEUE-SIZE DISTRIBUTION

In this section we deal with the steady-state queue size distribution. We consider
cases of individual and batch arrivals separately.

3.1. Individual arrivals

Let us call the “ordinary” one the system without dropping of packets. The steady-
state queue size probabilities πk, k = 0, 1, . . . , N for the “ordinary” system can be
obtained from the following equilibrium equations: λπ0 = µπ1,

(λ + µ)πk = λπk−1 + µπk+1, 1 ≤ k ≤ N − 1,
µπN = λπN−1

(1)

and hence the following well known result (see for example [11]) can be obtained:

πk =
(1− %)%k

1− %N+1
, 0 ≤ k ≤ N, (2)

where % = λ
µ denotes the occupation rate of the system.

Now let us assume that the arriving packet which finds k packets present in the
system is dropped with probability dk, k = 0, 1, . . . , N. The system of equilibrium
equations for the steady-state queue-size probabilities π̂k takes the following form:

λ(1− d0)π̂0 = µπ̂1,[
λ(1− dk) + µ

]
π̂k = λ(1− dk−1)π̂k−1 + µπ̂k+1, 1 ≤ k ≤ N − 1,

µπ̂N = λ(1− dN−1)π̂N−1.

(3)

Hence we get

π̂k =
λk

µk

k−1∏
i=0

(1− di)π̂0, k = 1, 2, . . . N. (4)

From the condition
N∑

k=0

π̂k = 1

we easily find

π̂0 =
(
1 +

N∑
k=1

%k
k−1∏
i=0

(1− di)
)−1

(5)
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and hence, finally,

π̂k =
%k

∏k−1
i=0 (1− di)

1 +
∑N

j=1 %j
∏j−1

i=0 (1− di)
, k = 0, 1, . . . , N. (6)

Let us note that (6) is equivalent to (2) if di ≡ 0.

3.2. Group arrivals

Now let us consider the case of packets entering in groups. Denoting by ΠW
k and ΠP

k

the steady-state queue-size probabilities with respect to the strategies WBAS and
PBAS respectively, we can write down the following systems of equlibrium equations
in the “ordinary” system:

λΠW
0

∑N
i=1 pi = µΠW

1 ,(
λ

∑N−k
i=1 pi + µ

)
ΠW

k = λ
∑k−1

i=0 ΠW
i pk−i + µΠW

k+1, k = 1, . . . , N − 1,

µΠW
N = λ

∑N−1
i=0 ΠW

i pN−i

(7)

and
λΠP

0 = µΠP
1 ,

(λ + µ)ΠP
k = λ

∑k−1
i=0 ΠP

i pk−i + µΠP
k+1, k = 1, . . . , N − 1,

µΠP
N = λ(

∑∞
i=N piΠP

0 +
∑∞

i=N−1 piΠP
1 + . . . +

∑∞
i=1 piΠP

N−1).

(8)

Now, let us introduce a drop function dk to the model. Assume that each packet
in the arriving group which can be joined to the queue, has the same probability
of dropping and is dropped independently on the other packets in the same batch.
First, let us consider the WBAS strategy. It is obvious that the queue size in the
system at fixed moment t can be described by a continuous-time Markov chain with
the state space {0, 1, . . . , N}. It is easy to check that for 0 ≤ k < l ≤ N − 1 we have

q̂W
k,l = λ(1− dk)l−k

(
pl−k +

N−k∑
i=l−k+1

pi

(
i

l − k

)
d

i−(l−k)
k

)
, (9)

where q̂W
k,l denotes the intensity of transition from state k to l. Besides we have

q̂W
k,N = λ(1− dk)N−kpN−k, 0 ≤ k ≤ N − 1. (10)

Hence we can find stationary probabilities Π̂W
k in the case of WBAS from the fol-

lowing system of equations:
Π̂W

0

∑N
i=1 q̂W

0,i = µΠ̂W
1 ,

(
∑N

i=k+1 q̂W
k,i + µ)Π̂W

k =
∑k−1

i=0 Π̂W
i q̂W

i,k + µΠ̂W
k+1, k = 1, . . . , N − 1,

µΠ̂W
N =

∑N−1
i=0 Π̂W

i q̂W
i,N .

(11)
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For the steady-state probabilities Π̂P
k in the PBAS we have, in fact, the same system

of equations
Π̂P

0

∑N
i=1 q̂P

0,i = µΠ̂P
1 ,

(
∑N

i=k+1 q̂P
k,i + µ)Π̂P

k =
∑k−1

i=0 Π̂P
i q̂P

i,k + µΠ̂P
k+1, k = 1, . . . , N − 1,

µΠ̂P
N =

∑N−1
i=0 Π̂P

i q̂P
i,N ,

(12)

where proper transition intensities q̂P
k,l for 0 ≤ k < l ≤ N − 1 are defined as follows:

q̂P
k,l = λ(1− dk)l−k

(
pl−k +

∞∑
i=l−k+1

pi

(
i

l − k

)
d

i−(l−k)
k

)
(13)

and, for 0 ≤ k ≤ N − 1,

q̂P
k,N = λ(1− dk)N−k×

×
[
pN−k +

∞∑
i=1

pN−k+i

(
1 +

i∑
j=1

(
N − k

N − k − j

) i∑
l=j

(
l − 1
j − 1

)
dl

k

)]
. (14)

4. NUMBER OF CONSECUTIVELY LOST PACKETS

In this section our aim is to find the explicit representation for the probability
function of the number of consecutively lost packets (batches of packets) in the
steady state of the system. As in the previous section, we consider cases of individual
and group arrivals separately.

4.1. Individual arrivals

Let us denote by γ the number of consecutively dropped packets in the steady state of
the system. If X and Y are random variables denoting interarrival time and service
time respectively, then (having in mind the memoryless of exponential distributions)

α = P{X < Y } =
λ

λ + µ
(15)

is the probability that an arrival epoch precedes a departure one. Let P{γ ≥ k | i}
denote the probability that at least k packets are lost consecutively on condition
that the “series of losses” begins with i packets present in the system.

Applying the formula of total probability we obtain

P{γ ≥ 1 | i} = di and hence P{γ ≥ 1} =
N∑

i=0

diπ̂i. (16)

Let us briefly comment (16). In the first equation the probability that at least one
packet will be lost, if the series of losses begins with i packets present, equals the
probability di that the first arriving packet is dropped. The second equation in (16)
is the consequence of the first one by using the formula of total probability.
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One can construct a useful algorithm for computing probabilities P{γ ≥ k | i} for
successive k. Let us note that the formula of total probability gives

P{γ ≥ k | i} = di

[
αP{γ ≥ k − 1 | i}+ (1− α)P{γ ≥ k − 1 | i− 1}

]
, (17)

where i = 1, 2, . . . , N , and besides

P{γ ≥ k | 0} = dk
0 , (18)

where dk
0 denotes the probability that at least k successive losses occur on condition

that the series of losses begins when the system is empty.
Of course now

P{γ = k} =
N∑

i=0

π̂iP{γ = k | i} =
N∑

i=0

π̂i

(
P{γ ≥ k | i} −P{γ ≥ k + 1 | i}

)
. (19)

4.2. Group arrivals

Let us consider the system with dropping of packets and group arrivals. Let ΓW

and ΓP denote numbers of consecutively dropped batches in the system with WBAS
and PBAS strategy respectively. Introducing conditional probabilities P{ΓW ≥ k | i}
and P{ΓP ≥ k | i} we obtain

P{ΓW ≥ 1 | i} =
N−i∑
k=1

pkdk
i +

∞∑
k=N−i+1

pk, i = 0, 1, . . . , N. (20)

Indeed, if the size of the arriving batch exceeds the number of free places in the
system at the pre-arrival epoch, then the batch is rejected as a whole “by definition”
(the second summand in (20)). Otherwise, particular packets can be lost by using a
drop function (the first summand in (20)).

Next we get for i = 1, 2, . . . , N

P{ΓW ≥ n | i} =
(N−i∑

k=1

pkdk
i +

∞∑
k=N−i+1

pk

)
×

(
αP{ΓW ≥ n− 1 | i}+ (1− α)P{ΓW ≥ n− 1 | i− 1}

)
(21)

and

P{ΓW ≥ n | 0} =
( N∑

k=1

pkdk
i +

∞∑
k=N+1

pk

)n

, (22)

where n ≥ 1.
In the PBAS strategy the arriving batch is rejected as a whole if all packets in

this batch are dropped, thus for the PBAS model we obtain

P{ΓP ≥ 1 | i} =
∞∑

k=1

pkdk
i , i = 0, 1, . . . , N. (23)
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Hence we get for i = 1, 2, . . . , N

P{ΓP ≥ n | i} =
∞∑

k=1

pkdk
i

[
αP{ΓP ≥n−1 | i}+ (1−α)P{ΓP ≥n−1 | i−1}

]
(24)

and

P{ΓP ≥ n | 0} =
( ∞∑

k=1

pkdk
0

)n

, n ≥ 1. (25)

Lastly we can write

P{Γ? = k} =
N∑

i=0

π̂iP{Γ? = k | i} =
N∑

i=0

Π̂?
i

(
P{Γ?≥k | i} −P{Γ?≥k+1 | i}

)
, (26)

where the notation ? stands for “W” or “P”.

5. TIME BETWEEN ACCEPTED PACKETS (BATCHES OF PACKETS)

5.1. Individual arrivals

Let i be the number of packets in the system just after the arrival of accepted packet.
Let us denote by τ the time from this moment to the nearest arrival of accepted
packet. There is a natural relationship between random variables τ and γ. In the
case of k consecutive losses, τ has the Erlang distribution with k + 1 degrees of
freedom. The rule of total probability leads to the following formula:

P{τ > x | i} = P{
γ+1∑
k=1

Xk > x | i} =
∞∑

m=1

P{
m+1∑
k=1

Xk > x}P{γ = m | i} =

= e−λx
∞∑

m=1

m∑
k=0

(λx)k

k!
P{γ = m | i}, (27)

where X1, X2, . . . are successive interarrival times. Hence we easily obtain

P{τ > x} =
N∑

i=0

π̂iP{τ > x | i}. (28)

5.2. Group arrivals

Similarly, let us denote by T the time between two successive completely accepted
batches. The distribution of T has the same form for WBAS and PBAS strategies.
We have

P{T > x | i} = P{
Γ?+1∑
k=1

Xk > x | i} =
∞∑

m=1

P{
m+1∑
k=1

Xk > x}P{Γ? = m | i} =

= e−λx
∞∑

m=1

m∑
k=0

(λx)k

k!
P{Γ? = m | i}, (29)
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where the notation ? was defined earlier. Finally we get

P{T > x} =
N∑

i=0

Π̂?
i P{T > x | i}. (30)

6. NUMERICAL EXAMPLES

All formulae obtained above can be easily numerically treated. In the following
illustrative examples we compare the queue-size distributions in systems with and
without dropping of packets for cases of individual and batch arrivals. Besides, for
systems with drop functions, we evaluate distributions of consecutively lost packets
(batch of packets). We derive results for the system of capacity N = 8 and for three
different drop functions dn:

• an increasing linear dropping function (RED) of the form

dn =

 0, n ≤ 3,
0.2n− 0.6, 3 < n < 8,

1, n ≥ 8;
(31)

• an exponential dropping function (REM) of the form

dn =

 0, n ≤ 4,
−1.0187e−n+4 + 1.0186, 4 < n < 8,

1, n ≥ 8;
(32)

• an increasing broken line as a dropping function (GRED) of the form

dn =


0, n ≤ 2,

0.1n− 0.2, 2 < n ≤ 5,
0.2333n− 0.8664, 5 < n < 8,

1, n ≥ 8.

(33)

The described above drop functions are presented in Figure 1 below.

2 4 6 8
n

0.2

0.4

0.6

0.8

1

dHnL function RED

2 4 6 8
n

0.2

0.4

0.6

0.8

1

dHnL function REM

2 4 6 8
n

0.2

0.4

0.6

0.8

1

dHnL function GRED

Fig. 1. Three different sample drop functions: RED, REM and

GRED.

For the need of examples we assume that the arrival rate (of single customers or
batches) is λ = 2, the service rate is µ = 3 and the size of arriving groups (in the
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Queue size (k) πk π̂k (RED) π̂k (REM) π̂k (GRED)
0 0.342236 0.361642 0.360954 0.364943
1 0.228157 0.241195 0.240636 0.243296
2 0.152105 0.160730 0.160424 0.162197
3 0.101403 0.107153 0.106949 0.108131
4 0.067602 0.071436 0.071300 0.064879
5 0.045068 0.038099 0.047533 0.034602
6 0.030045 0.015240 0.011286 0.016148
7 0.020030 0.004064 0.000897 0.005023
8 0.013354 0.000542 0.000019 0.000781

Tab. 1. Comparison of queue-size distributions for the single arrival

system with and without AQM algorithms.

k P{γ = k} (RED) P{γ = k} (REM) P{γ = k} (GRED)
1 0.029977 0.025394 0.036201
2 0.008262 0.009768 0.007733
3 0.002686 0.003802 0.002243
4 0.000956 0.001492 0.000770
5 0.000357 0.000589 0.000286
6 0.000138 0.000233 0.000111
7 0.000054 0.000093 0.000043
8 0.000021 0.000037 0.000017

Tab. 2. Distribution function of the number of consecutively lost

packets for different-type drop functions.

case of batch arrivals) is geometrically distributed with probability function pk = 1
2k

for k ≥ 1. Thus, we investigate the underloaded system (with % = 0.(6) < 1) in the
case of single arrivals and the overloaded system (with % = 1.(3) > 1) in the case
of batch arrivals. For the latter case we will consider disciplines WBAS and PBAS
separately. In all computations we take the precision of 10−6.

6.1. The system with single arrivals

In Table 1 we present the comparison of the queue-size distributions for the case of
“ordinary” system and with different-type drop functions. Results from Table 1 are
presented geometrically in Figure 2.

As one can see, for different sample drop functions, the REM one most efficiently
reduces the risk of buffer’s congestion.

Table 2 contents results for the distribution of the number of consecutively lost
packets k for different drop functions (we take k from 1 to 8).

For three fixed sample drop functions, for the GRED one the probability of losing
(consecutively) big number of packets is the lowest one.
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Fig. 2. Comparison of queue-size distributions for the single arrival

system with and without AQM algorithms.

6.2. The batch arrival system with WBAS discipline

The stationary queue-size distribution function for the system with and without
drop function is presented in Table 3 and Figure 3. In the table we use notations
introduced earlier.

Queue size (k) ΠW
k Π̂W

k (RED) Π̂W
k (REM) Π̂W

k (GRED)
0 0.118411 0.144968 0.149103 0.145368
1 0.078632 0.096268 0.099014 0.096533
2 0.091174 0.111622 0.114806 0.111930
3 0.105061 0.128623 0.132293 0.128979
4 0.119549 0.146360 0.150535 0.142239
5 0.132564 0.151454 0.166924 0.144973
6 0.139192 0.128829 0.124201 0.129051
7 0.129250 0.073589 0.050531 0.079832
8 0.086167 0.018287 0.012592 0.021096

Tab. 3. Comparison of queue-size distributions for the batch arrival

system with and without dropping of packets (WBAS).

It is easy to note that the REM function (among sample ones) is the best one for
the avoiding buffer’s congestions.

Distributions of numbers of consecutively lost batches of packets k for different
drop functions in the system with WBAS service discipline are presented in Table 4
for k = 1, . . . , 8.
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Fig. 3. Comparison of queue-size distributions for the batch arrival

system with and without dropping of packets (WBAS).

As one can see, if we are interested in the minimizing the risk of dropping of big
number of batches, the RED dropping function is the better one (of course, taking
into consideration three functions defined earlier).

6.3. The batch arrival system with PBAS discipline

The steady-state queue-size distribution for the system with and without dropping
function in the case of PBAS strategy is presented in Table 5 and Figure 4.

Probability of the buffer’s congestion is the smallest one for the case of REM
functions (taking into consideration three sample functions).

Distributions of numbers of consecutively lost batches of packets k for different

k P{ΓW = k} (RED) P{ΓW = k} (REM) P{ΓW = k} (GRED)
1 0.133259 0.123609 0.135496
2 0.060902 0.070050 0.058020
3 0.031188 0.041570 0.028844
4 0.015889 0.023867 0.014405
5 0.007843 0.013175 0.006981
6 0.003742 0.007001 0.003272
7 0.001733 0.003595 0.001490
8 0.000783 0.001793 0.001490

Tab. 4. Distribution of the number of consecutively lost batches of

packets for different-type drop functions (WBAS).
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Queue size (k) ΠP
k Π̂P

k (RED) Π̂P
k (REM) Π̂P

k (GRED)
0 0.093207 0.123240 0.133494 0.124841
1 0.062138 0.082160 0.088996 0.083227
2 0.072494 0.095854 0.103829 0.097098
3 0.084576 0.111829 0.121134 0.113281
4 0.098672 0.130467 0.141323 0.128035
5 0.115118 0.142548 0.164876 0.137074
6 0.134304 0.138252 0.140172 0.135676
7 0.156688 0.110976 0.076297 0.108522
8 0.182803 0.064674 0.029879 0.072245

Tab. 5. Comparison of queue-size distributions for the batch arrival

system with and without dropping of packets (PBAS).
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Fig. 4. Comparison of queue-size distributions for the batch arrival

system with and without dropping of packets (PBAS)

drop functions in the system with PBAS service discipline are presented in Table 6
for k = 1, 2, 3, 4.
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k P{ΓP = k} (RED) P{ΓP = k} (REM) P{ΓP = k} (GRED)
1 0.131921 0.119620 0.129158
2 0.059951 0.072035 0.054883
3 0.029745 0.043518 0.026718
4 0.014489 0.025571 0.012691

Tab. 6. Distribution of the number of consecutively lost batches of

packets for different-type drop functions (PBAS).

R E FER E NCE S

[1] S. Athuraliya, S. H. Low, V. H. Li, and Y. Qinghe: REM: active queue management.
IEEE Network 15 (2001), 3, 48–53.

[2] T. Bonald, M. May, and J. Ch. Bolot: Analytic evaluation of RED performance. In:
Proc. Nineteenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies 3 (2000), pp. 1415–1424.

[3] L. Chrost, A. Brachman, and A. Chydzinski: On the performance of AQM algoritms
with small buffers. Comput. Network CCIS 39 (2009), 168–173.

[4] S. Floyd and V. Jacobson: Random early detection gateways for congestion avoid-
ance. IEEE ACM T. Network 1 (1993), 4, 397–412.

[5] S. Floyd: Recommendations on using the gentle variant of RED.
http://www.aciri.org/floyd/red/gentle.html, March 2000.

[6] A. Frey and Y. Takahashi: An MX/GI/1/N queue with close-down and vacation
times. J. Appl. Math. Stoch. Anal. 12 (1999), 1, 63–83.

[7] W. Hao and Y. Wei: An extended GIX/M/1/N queueing model for evaluating the
performance of AQM algorithms with aggregate traffic. Lect. Notes Comput. Sci.
3619 (2005), 395–404.

[8] V. Rosolen, O. Bonaventure, and G. Leduc: A RED discard strategy for ATM
networks and its performance evaluation with TCP/IP traffic. Comput. Comm. R.
29 (1999), 3, 23–43.

[9] L. Sun and L. Wang: A novel RED scheme with preferential dynamic threshold
deployment. In: Computational Intelligence and Security Workshops 2007, pp. 854–
857.

[10] S. Suresh and O. Gol: Congestion management of self similar IP traffic – application
of the RED scheme. In: Wireless and Optical Communications Networks, Second
IFIP International Conference 2005, pp. 372–376.

[11] H. Takagi: Queueing analysis, Volume 1: Vacation and priority systems, Part 1.
North–Holland, Amsterdam –London –New York –Tokyo 1983.

[12] N. Xiong, Y. Yang, X. Defago, and Y. He: LRC-RED: A self-tuning robust and adap-
tive AQM scheme. In: Sixth International Conference on Parallel and Distributed
Computing Applications and Technologies 2005, pp. 655–659.

[13] K. Zhou, K. L. Yeung, and V. O. K. Li: Nonlinear RED: A simple yet efficient active
queue management scheme. Comput. Network 50 (2006), 18, 3784–3794.



Characteristics of the M/M/1/N queue controlled by AQM algorithms 943

Wojciech M. Kempa, Silesian University of Technology, Institute of Mathematics, ul.

Kaszubska 23, 44-100 Gliwice. Poland.

e-mail: wojciech.kempa@polsl.pl


		webmaster@dml.cz
	2013-09-22T21:52:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




